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Abstract 

Background:  COVID-19 continues to disrupt social lives and the economy of many countries and challenges their 
healthcare capacities. Looking back at the situation in Germany in 2020, the number of cases increased exponentially 
in early March. Social restrictions were imposed by closing e.g. schools, shops, cafés and restaurants, as well as borders 
for travellers. This reaped success as the infection rate descended significantly in early April. In mid July, however, the 
numbers started to rise again. Of particular reasons was that from mid June onwards, the travel ban has widely been 
cancelled or at least loosened. We aim to measure the impact of travellers on the overall infection dynamics for the 
case of (relatively) few infectives and no vaccinations available. We also want to analyse under which conditions politi-
cal travelling measures are relevant, in particular in comparison to local measures. By travel restrictions in our model 
we mean all possible measures that equally reduce the possibility of infected returnees to further spread the disease 
in Germany, e.g. travel bans, lockdown, post-arrival tests and quarantines.

Methods:  To analyse the impact of travellers, we present three variants of an susceptible–exposed–infected–recov-
ered–deceased model to describe disease dynamics in Germany. Epidemiological parameters such as transmission 
rate, lethality, and detection rate of infected individuals are incorporated. We compare a model without inclusion 
of travellers and two models with a rate measuring the impact of travellers incorporating incidence data from the 
Johns Hopkins University. Parameter estimation was performed with the aid of the Monte–Carlo-based Metropolis 
algorithm. All models are compared in terms of validity and simplicity. Further, we perform sensitivity analyses of the 
model to observe on which of the model parameters show the largest influence the results. In particular, we compare 
local and international travelling measures and identify regions in which one of these shows larger relevance than the 
other.

Results:  In the comparison of the three models, both models with the traveller impact rate yield significantly better 
results than the model without this rate. The model including a piecewise constant travel impact rate yields the best 
results in the sense of maximal likelihood and minimal Bayesian Information Criterion. We synthesize from model 
simulations and analyses that travellers had a strong impact on the overall infection cases in the considered time 
interval. By a comparison of the reproductive ratios of the models under traveller/no-traveller scenarios, we found that 
higher traveller numbers likely induce higher transmission rates and infection cases even in the further course, which 
is one possible explanation to the start of the second wave in Germany as of autumn 2020. The sensitivity analyses 
show that the travelling parameter, among others, shows a larger impact on the results. We also found that the rel-
evance of travel measures depends on the value of the transmission parameter: In domains with a lower transmission 
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Introduction
Background
The COVID-19 disease in Germany started with a first 
infection case on 26 January 2020 in Bavaria [1]. In 
March, the number of cases grew rapidly (with a maxi-
mum of 6933 cases on 27 March), and various social 
restrictions were imposed as an active intervention of 
the disease [2, 3]. On June 10, only 16 new infection cases 
were detected [2]. In mid June, travel related restric-
tions were relaxed within Europe [4]. However, the pan-
demic continued to spread worldwide and by the end 
of August, new maxima for the daily cases worldwide 
set another record for that time [5]. Towards the end of 
the summer holidays in the first German states in mid 
to end of August, a second rise of incidence happened 
with over 1000 new infection cases per day [2]. Figure 1 
shows the temporal evolution of COVID-19 cases in Ger-
many from 26 January until 31 August, as reported by the 

Johns-Hopkins-University (JHU). The daily registered 
COVID-19 are shown on the left side; on the right side, 
the cumulative registered cases can be seen.

According to the Robert Koch Institute (RKI), a gov-
ernmental institute for disease control in Germany, many 
of the cases from June onwards were directly related 
to German travellers returning home from abroad [6]. 
Given already long implementation of such travel restric-
tions (as of 2022), studies that evaluate their effective-
ness in Germany are limited. Internationally, however, 
relevant studies have been preceding and may provide 
insights for ensuing ones. Siegenfeld et  al. [7] propose 
and estimate a region-to-region reproduction number, 
as opposed to the usual person-to-person reproduction 
number, by assuming that the number of other regions 
infected by a ‘central’ region follows a Poisson process. 
The number appears to be linearly dependent on the 
probabilities of an infected individual from the central 

parameter, caused either by the current variant or local measures, it is found that handling the travel parameters is 
more relevant than those with lower value of the transmission.

Conclusions:  We conclude that travellers is an important factor in controlling infection cases during pandemics. 
Depending on the current situation, travel restrictions can be part of a policy to reduce infection numbers, especially 
when case numbers and transmission rate are low. The results of the sensitivity analyses also show that travel meas-
ures are more effective when the local transmission is already reduced, so a combination of those two appears to be 
optimal. In any case, supervision of the influence of travellers should always be undertaken, as another pandemic or 
wave can happen in the upcoming years and vaccinations and basic hygiene rules alone might not be able to pre-
vent further infection waves.

Keywords:  COVID-19, Epidemiology, Disease dynamics, Travellers, SEIRD-model, Parameter estimation, Metropolis 
algorithm, BIC, Sensitivity analysis, Reproduction number

Jan Feb Mar Apr May Jun Jul Aug Sep
Date 2020   

0

1000

2000

3000

4000

5000

6000

7000

# 
of

 c
as

es

Daily new registered COVID-19 cases

Jan Feb Mar Apr May Jun Jul Aug Sep
Date 2020   

0

0.5

1

1.5

2

2.5

# 
of

 c
as

es

105

Cumulated registered COVID-19 cases

Fig. 1  Daily confimed cases (left) and cumulative confirmed cases (right) with COVID-19 in Germany from January 26 until August 31, 2020 
according to Johns Hopkins University
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region to travel outside the region, before and after the 
imposition of travel restrictions. Accordingly, supervision 
of the number of travellers becomes one of the decisive 
parameters to contain the spread of COVID-19. They 
conclude that if high-risk areas impose travel measures 
coupled with social measures shortly after community 
transmission, then the reduction of travellers becomes 
the determining factor if the outbreak can be eliminated. 
However, without timely social measures that manage to 
reduce the local reproduction number to a value below 
1, travel restrictions only lead to a delay in the spread of 
epidemics. Chinazzi et  al. [8] emphasize a more broad-
minded definition of travel restrictions to include case 
detection and behavioral changes, as the lone flight traffic 
limitations around Wuhan in January 2020 (up to 90%) 
could have only returned a modest containment effect. 
However they found that, while initially effective—as 
case importations were reduced by nearly 80% until mid-
February by international travel restrictions after 2–3 
weeks the effect was reduced and numbers grew outside 
China. Zou et  al. [9] introduced a multi-patch trans-
portation model and also studied the effects of vaccina-
tion and quarantine on the disease dynamics of such a 
multi-patch model. As a result they propose to control 
travel or migration in high-risk areas while interventions 
in low-risk areas are less effective. Leung et al. [10] also 
address the combination of traffic flow reduction and 
testing–quarantine for inbound travellers toward reo-
pening the economy as a good response in case of weak-
ening public health and social measures (PHSMs) and 
vaccine limitation. A systematic review over the impact 
of travel restrictions on influenza can be found in Mateus 
et al. [11]. The WHO review considers the effectiveness 
of internal and external travel restrictions and concludes 
only very strict restrictions would be expected to have an 
impact on influenza transmission, but the evidence on 
these results is proclaimed as low. It is also stated that 
extensive travel restrictions cause meaningful reduction 
of the spread of influenza, but only in terms of a delay 
of several weeks or months, not in terms of containing 
the disease in areas of high risk. Also, correspondence 
by Hollingsworth et  al. [12] conveys that for scenarios 
with few infection cases and a low reproductive value R , 
travelling can help to contain diseases, while for a higher 
value of R only very hard travelling restrictions can pre-
vent spread or postpone the possible wave to a later date, 
so they conclude that given those latter circumstances, 
country-based transmission reduction is to be preferred 
over travel restrictions. Epstein et  al. [13] used stochas-
tic epidemic models to explore the role of international 
(air) travel restrictions, and also found that strong inter-
ventions in travelling can lead to a short-time delay in the 
spread of epidemics, but they state that this ‘saved’ time 

can be effectively used by other disease control measures. 
Another systematic review by Grépin et al. [14] regarding 
the effectiveness of travel restrictions has compared the 
results to the role of travel restrictions on influenza. The 
authors find that the recommendations of WHO [15] do 
not necessarily apply to those of COVID-19 as it remains 
unclear if the findings on influenza can be compared 
here. Travel measures implemented in Wuhan are found 
to be effective at the reduction of cases both nationally 
and internationally, and are more effective when those 
measures are undertaken early (i.e. in the outbreak). A 
diffusion-based and non-international approach can be 
found in Berestycki et al. [16]. The authors find that fast 
diffusion effects along major roads are an important fac-
tor of the spread of epidemics like COVID-19 in Italy and 
HIV in the Democratic Republic of Congo.

Structure of the paper
In the present study our first question is the following: 

	(Q0)	 How can we model the spread of infections in 
Germany with inclusion of travellers to measure 
the impact they have on the overall numbers?

A susceptible–exposed–infected–recovered–deceased 
(SEIRD) model introduced in the previous work of 
Heidrich et al. [17] is used as the foundation for any of 
the applied systems. In the most simple version, we use 
a system which does not include travellers as a refer-
ence. As a next step, we set up another SEIRD model 
for Germany which includes travellers to the respec-
tive countries and estimate both the ‘classical’ param-
eters and also the impact of the infected travellers to 
the overall epidemics. In one variation of the model, 
the impact of travellers is assumed to be constant over 
time, while in a second formulation, we allow a time-
dependent value as awareness of the population and 
political policies might change over time. The travel-
lers are assumed to be part of the infection cycle in the 
respective destination countries, for which we have 
also set up another (aiding) SEIRD model. We estimate 
the relevant model parameters by using the available 
data from the Johns-Hopkins University (JHU) [2]. 
The estimation of several disease-related parameters 
like e.g. the transmission rate, death rate or detec-
tion rate as of Heidrich et al. [17] is based on a least-
squares fit between the model output and the reported 
data, where both the reported infections and fatalities 
are taken into account. Furthermore, the three models 
are compared in terms of validity and simplicity. Poste-
rior to the fitting and parameter estimation, two ques-
tions remain in discussions: 
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	(Q1)	 Which variable parameters need more care-
ful specifications for which the model solutions, 
as well as the likelihood function, easily perturb 
within large orders of magnitude as these param-
eters slightly change?

	(Q2)	 Which interventions (local interventions like 
social distancing, masks, lockdown etc. or trav-
elling restrictions) should be more emphasized 
for possible variations of parameter values in the 
prediction window?

Our goal will then be to answer these questions with 
the help of two measures: At first, we consider a time-
dependent measure, in which we observe which param-
eters have a larger impact on the outcome of the five 
(S,E,I,R,D) compartments. Further, we consider time-
independent measures and compare local measures 
(identified by the overal transmission rate) and travel 
measures (identified with the newly introduced travel 
impact rate) and regard under which circumstances one 
or the other are more relevant for the infection cases. 
Using the results of questions (Q0), (Q1) and (Q2), we 
aim to give an answer on the relevance of travel restric-
tions on the Corona or other infectious diseases in gen-
eral, and to investigate under which conditions travel 
restrictions can be a more powerful tool than other non-
pharmaceutical measures.

Methods
All methods were performed in accordance with the rel-
evant guidelines and regulations.

Data
The incidence data used in this study are daily registered 
COVID-19 cases and deceased cases from Germany (see 
Fig. 1) and other countries from 1 June until 31 August, 
2020. Due to the usual independent and identically dis-
tributed (iid) assumption on the measurement error (cf. 
King et  al. [18]), only the daily incidence data will be 
used for optimization parameter estimation of the later 
introduced models. To accompany the modeling, popu-
lation data from all countries in consideration are taken 
from UN data [19]. We only include European countries 
with available traveller statistics and countries outside 
of Europe with a total sum of more than 5000 travellers 
in the travelling statistics. For the close European coun-
tries, the number of travellers is estimated by the travel 
statistics of 2020 for German travellers [20] (for relative 
shares) and hospitality statistics in Germany for foreign 
travellers [21]; these numbers are generally subtracted 
from the total amount of flight passengers. The num-
ber of travellers from and to farther and non-European 

countries is gained from analysis of the flight passengers 
from the respective country [22]. In some larger coun-
tries, namely USA, Russia, China, and Japan, the data was 
problematic. Flight routes from and to these countries 
are often non-direct, so the plain values of flight pas-
sengers would underestimate the real amount of travel-
lers to these countries. As a compromise, we assumed 
the amount of German travellers to those countries to 
be the same as the number of foreign visitors from those 
countries in Germany, which makes this estimation more 
meaningful. The populations and amount of travellers per 
month of this total of 55 countries is presented in Table 2.

Model
Traveller induced model
In the previous work we investigated the dynamics of 
COVID-19 disease until early May 2020 [17]; this study 
departs from this approach. Again we use a variation of 
the SIR-model introduced by Kermack and McKendrick 
[23]; see also Martcheva [24] for an overview of mathe-
matical models in epidemiology. It builds up on delayed 
differential equation (DDE) system to describe the behav-
iour of the disease in Germany in summer 2020. While 
the use of stochastic variables can make the model more 
realistic, but may also lead to further technical questions 
including noise type, stable ergodicity, and predictability, 
which go beyond the original scope. Therefore, we tested 
a deterministic model for the main aim. The entire popu-
lation N is subdivided into five compartments: suscepti-
ble S, exposed E, infected I, recovered R, and deceased D, 
so that we deal with a so-called SEIRD model. The virus 
is transmitted from infected persons to susceptible per-
sons at a piecewise constant rate β . After an incubation 
duration κ−1 exposed individuals become infective. Loss 
of infectivity is gained after an average duration γ−1 ; the 
death parameter µ describes the probability for infected 
persons dying from the disease. A time lag τ between the 
infected and the deceased state accounts for the fact that 
the number of people dying from the disease is attained 
from the infected number τ days earlier. Here, we also 
introduce an additional compartment: travellers Et which 
have been exposed to the disease abroad. Values for the 
fixed model parameters in Germany are given in Table 1.

Table 1  Used parameter values

Parameter Value References

N 83,019,213 [19]

κ (3 d )−1 [25]

γ (10 d )−1 [25]
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Table 2  Fixed parameter values for the population Nj as well as the (estimated) number of Germans travelling to the respective 
country j, namely TGermany↔j , per month in summer 2020 and the transmission parameters βj,1/2 by application of Eq. (4)

Country Population Travellers Transmission

June July August βj,1 βj,2

Decimal power/unit 106 1 1 1 10−1d−1 10−1d−1

Albania 2.88 945 3366 9505 1.20 1.19

Austria 8.90 312,364 636,414 782,818 1.35 1.36

Belarus 9.45 1595 1985 3102 0.38 0.65

Belgium 11.51 36,210 155,295 92,495 1.17 1.60

Bosnia and Herzegovina 3.30 2811 2849 6702 1.54 1.10

Brazil 211.05 6715 4366 3778 1.22 1.12

Bulgaria 6.95 11,562 42,552 74,363 1.24 1.06

Canada 37.41 4746 9778 8368 0.31 1.33

China 1433.78 3711 5921 7077 1.55 1.05

Croatia 4.06 66,029 84,952 150,790 0.31 1.10

Cyprus 0.89 360 7191 14,049 0.42 1.89

Czech Republic 10.69 51,518 130,651 148,353 0.84 1.41

Denmark 5.81 48,986 395,924 571,649 0.77 1.70

Egypt 100.39 2542 5134 7790 0.65 0.36

Estonia 1.33 1006 3380 5967 0.23 2.00

Ethiopia 112.08 1431 2089 2066 1.84 1.45

Finland 5.53 4624 12,134 19,074 0.31 1.74

France 67.20 105,905 326,298 345,913 0.95 1.96

Greece 10.7 15,930 179,531 372,892 1.41 1.75

Hungary 9.77 30,154 53,080 71,577 0.36 1.71

Iceland 0.34 889 7892 13,718 1.66 1.56

Ireland 4.97 4892 8965 9065 0.43 2.20

India 1366.42 5168 8676 14,046 1.39 1.25

Israel 88.52 2455 2693 797 1.65 1.23

Italy 60.29 126,855 272,324 415,581 0.21 1.75

Japan 126.86 1457 2340 3292 1.78 1.29

Kosovo 1.72 586 7341 18,626 1.59 1.10

Latvia 1.91 5936 12,637 20,798 0.31 1.52

Lebanon 6.87 167 1699 5298 1.09 1.94

Lithuania 2.79 1203 1787 2415 0.49 1.89

Luxembourg 0.63 4562 4466 2946 2.54 0.51

Malta 0.51 261 9338 16,974 1.16 1.95

Mexico 127.58 2079 2726 2253 1.70 0.69

Montenegro 0.63 728 2490 4118 3.75 0.54

Moldova 4.04 972 1728 3815 0.85 1.30

Netherlands 17.40 188,840 721,721 1,592,831 1.04 1.72

Northern Macedonia 2.08 0 3486 9875 0.89 1.02

Norway 5.37 8326 42,589 64,125 0.74 1.70

Poland 27.94 95,372 171,127 268,559 0.52 1.51

Portugal 10.29 17,659 63,369 111,867 0.51 0.81

Qatar 2.83 6063 8336 6747 0.79 1.00

Romania 19.36 5702 32,822 41,255 1.18 1.35

Russia 145.87 3550 6017 7324 0.61 1.03

Serbia 8.77 5164 5577 9672 1.62 0.61

Slovakia 5.46 19,372 31,161 56,401 1.16 1.54

Slovenia 2.07 3759 5361 5987 1.44 1.14
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These assumptions lead us to the following five-dimen-
sional ODE system. 

 Let X = (Xi) and Z = (Zi) denote the daily new con-
firmed cases and deaths related to COVID-19 in 
Germany. The subscript i serves to point out the meas-
urement at time point ti as reported by the JHU [2]. Not 
all infections are by nature detected, from which case we 
introduce detection rates δ for Germany and δj for the 
destination country, respectively. For the persons which 
are currently infected or have recovered, we assume that 
only this proportion δ or δj is tested and detected and 
hence appears in the statistics; however, we assume no 
undetected deceased cases. We assume that the propor-
tion of detected cases versus real infections is constant 
over the whole time interval, so that no temporal change 
of the detection rate is needed in our model. The initial 
value of the infected cases at the starting date t0 is later 
on subject of the estimation procedure. Therefore, we use 
the infected data as the real data divided by the detection 
rate, for Germany and destination countries, respectively:

(1a)
Ṡ = −

β

N
S I − ET (t)

S(t0) = S0 = N − E0 − I0 − R0 − D0 > 0

(1b)Ė =
β

N
S I + ET (t)− κ E E(t0) = E0 ≥ 0

(1c)
İ = κ E − γ

(

(1− µ) I + µ I(t − τ )
)

I(t0 − τ ≤ t ≤ t0) = ϕ(t) > 0

(1d)Ṙ = (1− µ)γ I R(t0) = R0 ≥ 0

(1e)Ḋ = µγ I(t − τ ) D(t0) = D0 ≥ 0

As travel measures are relaxed as of June 15, we designed 
the starting time t0 of this model as June 1. This way we 
allow parameter estimation of the transmission rate β 
in the first two weeks which is fully independent of the 
travel impact rate α , so those parameters are not corre-
lated during the optimization process (note that in Eq. 
(3) those parameters are multiplied with each other). The 
end date is fixed to 31 August because of the end of sum-
mer holidays (in most German states) and new restric-
tions in other countries from September onwards, e.g. a 
travel warning for Spain [4], which will affect the trans-
mission parameters. The initial values are either gained 
from the JHU data sets [2] or introduced as free param-
eters which have to be optimized in the Metropolis algo-
rithm. The function ϕ : [t0 − τ , t0] → R+ denotes the 
initial history of the infected required for the well-posed-
ness of the above DDE; the value τ is another free param-
eter. The number of travellers which have been exposed 
to the disease is defined as

The values I (j) and N (j) are defined by the number of 
infected people and respectively the resident population 
in country (j)  = (0) at time t. The function T(0)↔(j)(t) 
describes the number of travellers from Germany to 
country j, whereby the superscript (0) denotes Germany 
from now on. Travellers are assumed to have a higher 
risk of getting infected, due to being more active, visiting 
places and travelling (e.g., in a plane) with more contacts 
than an average resident. Therefore, we define α(t) to 
quantify the special risk of getting infected as a traveller. 
If α ≡ 1 , then the transmission rate for travellers is equal 

(2)ϕ(t) :=
interp{(Xi)}(t)

δ
t0 − τ ≤ t ≤ t0.

(3)ET (t) = α(t)
∑

j

β(j)(t)

N (j)
T(0)↔(j)(t) I

(j)(t).

Table 2  (continued)

Country Population Travellers Transmission

June July August βj,1 βj,2

Decimal power/unit 106 1 1 1 10−1d−1 10−1d−1

Spain 47.32 22,209 331,894 436,624 1.19 1.86

Sweden 10.32 9050 39,584 46,878 0.38 0.55

Switzerland 8.50 102,698 272,121 388,971 1.49 1.35

Tunisia 11.69 644 2709 11,292 1.09 2.12

Turkey 83.43 36,986 144,350 343,972 0.77 1.14

United Kingdom 66.43 17,026 29,925 32,969 0.92 1.16

Ukraine 43.99 3020 8934 14,759 0.77 1.44

United States of America 329.06 24,123 42,409 41,613 0.81 1.62

United Arab Emirates 9.77 3231 9394 6856 0.59 1.10
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to the country’s specific transmission rate β(j)(t) . This 
rate is piecewise constant with switching returned from 
imposition or relaxation of certain measures. No inclu-
sion of travellers due to bans or closed borders are identi-
cal to α ≡ 0.

Infection rate induced model
As we aim to estimate βj(t) and I (j) for all relevant coun-
tries, we have to set up another ODE system modelling 
the disease dynamics. Let (j) therefore be the specific 
country. For all countries (j), j ∈ {1, 2, . . . ,M − 1,M} 
with M being the amount of observed countries, we 
estimate the local transmission rate βj(t) as well as 
the amount of infected persons I (j)(t) for all relevant 
time points by using an SEIRD model without a trav-
eller compartment, while the total population N (j) is 
assumed to be constant over time. 

 Let again X (j) = (X
(j)
i ) and Z(j) = (Z

(j)
i ) denote the daily 

infection and death cases in the respective destination 
country as reported by the JHU [2]. Then, the history 
function is denoted analogously to before by

The values for κ and γ are assumed to be independent 
of country (j). In the datasets for the countries, we find 
a sudden ‘step’ in the infection rates. This can not be 
modelled by travellers like in the model for Germany, 
which has two reasons: (1) Traveller data is not avail-
able for each country. (2) The reasons for the raised 
infection numbers in other countries are not of interest 
for the traveller model in Germany. Instead of using an 
additional parameter α and a traveller compartment, we 
assume the transmission rates to be piecewise constant. 

(4a)

Ṡ(j) = −
βj(t)

N (j)
S(j) I (j)

S(j)(t0) = S
(j)
0 = N (j) − E

(j)
0 − I

(j)
0 − R

(j)
0 − D

(j)
0 > 0

(4b)
Ė(j) =

βj(t)

N (j)
S(j) I (j) − κ E(j)Ė(j)(t0) = E

(j)
0 ≥ 0

(4c)
İ (j) = κ E(j) − γ

(

(1− µj) I
(j) + µj I

(j)(t − τj)
)

I (j)(t ≤ t0) = ϕ(j)(t) > 0

(4d)Ṙ(j) =
(

1− µj

)

γ I (j) R(j)(t0) = R
(j)
0 ≥ 0

(4e)Ḋ(j) = µj γ I (j)(t − τj) D(j)(t0) = D
(j)
0 ≥ 0

(5)

ϕj(t) :=
interp{(X

(j)
i )}(t)

δj
t0 − τj ≤ t ≤ t0.

By performing various simulations, the best-fitting 
‘switching date’ where the rate is allowed to change value 
is found to be 20 July:

This system (4) is used both for the destination countries 
of German travellers and also for the model for Germany 
which does not include travellers (later on to be called 
model A). In the latter case, we can see the system as a 
special case of system (1) with j = 0 , representing Ger-
many. Travel restrictions are being relaxed as of 15 June 
[26]. This date is therefore assigned to be the starting 
time t0 for the destination countries, while the starting 
date remains 1 June for the no-travel model for Ger-
many. The end date remains 31 August (in both cases) as 
we require the values of βj and I (j) until the end of the 
observed time interval, and of course nothing changes for 
the German model. The parameters N (j) reflect the cur-
rent total populations in all regarded countries which are 
the destination or origin of travellers from and to Ger-
many; the population values are taken from UN data [19]. 
Results using the optimized parameters are also shown in 
Table 2.

Travellers and travel impact rate
We only include European countries with available trav-
eller statistics and countries outside of Europe with a 
total sum of more than 5000 travellers in the travelling 
statistics. For the close European countries, the number 
of travellers is estimated by the travel statistics of 2019 
and 2020 for German travellers [20] (for relative shares) 
and hospitality statistics in Germany for foreign travel-
lers [21]. The number of travellers from and to farther 
and non-European countries is gained from analysis of 
the flight passengers from the respective country [22]. 
In some larger countries, namely USA, Russia, China, 
and Japan, the data was problematic. Flight routes from 
and to these countries are often non-direct, so the plain 
values of flight passengers would underestimate the real 
amount of travellers to these countries. As a compromise, 
we assumed the amount of German travellers to those 
countries to be the same as the number of foreign visitors 
from those countries in Germany, which makes this esti-
mation more meaningful. The populations and amount of 
travellers per month of this total of M = 55 countries is 
presented in Table 2.

By using this table, we can compute the daily value for 
T(0)↔(j) by the number of travellers divided by the days 
in the respective month. E.g., for June, only the 16 days 
from 15 June to 30 June are considered. Average time 

(6)βj(t) :=

{

β
(j)
0 , t ≤ 19 July

β
(j)
1 , 20 July ≤ t
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of spending time here is 12 days so e.g. for July, we have 
T(0)↔(j) = 331,894 · 12

31d ≈ 128,475 day−1 . The uncertainty 
in the value of 12 days for the average travel length is 
mitigated by the estimation of α , as these two values are 
directly multiplied and thus only the product of those 
two values is important.

In model B, α(t) is assumed to be constant over time as 
soon as the travel ban is loosened:

In model C, we define a piecewise constant function α(t) 
as follows:

This way, we are able to identify temporal differences in 
the travelling compartment, e.g. caused by a different 
social behaviour or loosened restrictions. The last three 
‘switching points’ are arbitrarily chosen at the beginning 
of each month to account for the time-dependency of α.

Models, parameter bounds and initial values
The parameters to be estimated in Eqs. (1) and (4) are 
transmission rate, detection rate, lethality, time lag, travel 
impact rate and numbers of exposed on 1 June 2020 (Ger-
many) respectively 15 June 2020 (all other countries). The 
optimal parameters u(j)∗ and u∗ are determined by solv-
ing the following maximization problems in the respec-
tive models. This results in consideration of the following 
three models, with an auxiliary model being pre-evalu-
ated before handling models B and C.

Model A: Time-dependent transmission rate, starting 
1 June

Auxiliary model for models B and C: For all countries 
j = 1, . . . , 55 , starting 15 June

(7)α(t) :=

{

0 t ≤ 14 June
α 15 June ≤ t ≤ 31 August

(8)α(t) :=











0 t ≤ 14 June
α0 15 June ≤ t ≤ 30 June
α1 1 July ≤ t ≤ 31 July
α2 1 August ≤ t ≤ 31 August

(9)
max
u(0)

L(u(0)) subject to ODE (4)

where u(0) =
(

β
(0)
0 ,β

(0)
1 , δ0,µ0, τ0,E

(0)
0

)

∈ R
6

Model B: Constant travel transmission parameter α(t) 
from 15 June onwards

Model C: Piecewise linear travel transmission function 
α(t) starting 15 June and jumps on 1 July and 1 August

Table  3 shows the constraints for all parameters in the 
three models, which can also be used for uj (with the 
starting values R0 and Z0 = D0 as listed on the JHU web-
site [2]).

Previous investigations by Götz and Heidrich [27] 
and Heidrich et al. [17] already give us orders of mag-
nitude for the initial values of the optimization for 
βi and δ . The order of magnitude of the time inter-
val between the onset of infectiousness and death is 
derived from RKI modelling studies [25]. We allow a 
larger span in τ and τj than in [17] because the onset 
between infection and death is also dependent of the 
date on which the death case is registered in the sta-
tistics, where significantly different values depending 
on the country are possible here. A potential reason 
for this lies in different policies and procedures in 
reporting infection and death cases. The starting val-
ues at time t0 for the detected cumulated infected X0 , 
detected recovered Y0 = δR0 and detected dead Z0 
can be taken from the statistics. The initial number 
of infected is then defined as I0 = (X0 − Y0 − Z0)/δ . 
Depending on the detection rate δ , the ‘real’ numbers 
I0 and R0 can be calculated by dividing those detected 
values by δ . For the initial guess on the ‘real’ number 
of exposed individuals E0 at time t0 , we use a deriva-
tion using the Basic Reproduction Number R0 , which 
indicates how many new infections an infected indi-
vidual causes on average during its illness in an other-
wise susceptible population. In our model, the share of 
infected persons I0 can either be at the start, the mid-
dle or the end of the infection, so several possible time 

(10)
max
u(j)

L(u(j)) subject to ODE (4)

where u(j) =
(

β
(j)
0 ,β

(j)
1 , δj ,µj , τj ,E

(j)
0

)

∈ R
6

(11)
max
u

L(u) subject to ODE (1)

where u = (β , δ,µ, τ ,α,E0) ∈ R
6

(12)
max
u

L(u) subject to ODE (1)

where u = (β , δ,µ, τ ,α0,α1,α2,E0) ∈ R
8

Table 3  Parameter constraints with the respective constraints of the fitted parameters

β0/1 δ µ τ αj N0 E0 I0 R0 D0

> 0.05 0.05−1 ≤ 0.1 3−40 > 0 82,846,340 > 0 9,407/δ 165,632/δ 8555
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stages of the infections are possible. The middle of this 
time interval is assumed to be the mean of all infected 
persons at time t0 . Thus, up to this point in time they 
could infect about R0/2 · I0 persons on average which 
then become exposed to the virus, i.e. this is identical 
to E0 . Here, we assume that the initial basic reproduc-
tive number is approximately R0 ≈ 1 because of the 
stagnation of cases on a low level at the beginning of 
June.

Likelihood function
As seen in the previous section, the unknown parameter 
sets u(j) and u will be estimated by maximisation of a like-
lihood function, which will be developed in this section. 
Note that the derivation of the function is described in 
detail only for u, but is equivalent for the likelihood func-
tion of u(j).

We denote Ĩ and R̃ as the difference between the daily 
infection cases, i.e. for i = 1 . . .N :

Hence we compare the data X to the model output Ĩ and 
X (j) to Ĩ (j) , as well as Z with D̃ and Z(j) with D̃(j) . At time 
ti , our model validation is subject to measurement error, 
which is assumed to be of degenerate multivariate Gauss-
ian distribution with mean (Xi,Zi) or (Xj

i ,Z
j
i ) and covari-

ance matrix � or �j , where one covariate corresponds to 
the measurement error from confirmed cases and the 
other to the deceased cases. The time invariance of the 
covariance matrix was opted only for the sake of simplic-
ity. Further simplification may assert prior assumption 
that the covariance terms in the measurement error are 
zero, meaning that each error is an independent process. 
This leads us to � = diag(σY , σZ) or �j = diag(σ

j
X , σ

j
Z) . 

Our likelihood function for only time point ti reads as

Assuming iid processes for all measurements at all 
time points, Kalbfleisch [28] pointed out a constant 
K = (2π)N that serves to simplify the joint likelihood 
function

(13)
Ĩi = {δ[I(ti+1)+ R(ti+1)] + D(ti+1)}

− {δ[I(ti)+ R(ti)] + D(ti)}

D̃i = D(ti+1)− D(ti)

(14)

Li(u) :=
1

2πσXσZ
exp

(

−
(Ĩi − Xi)

2

σ 2
X

−
(D̃i − Zi)

2

σ 2
Z

)

.

(15)

L(u) = K
∏

i

Li(u)

=
1

σN
X σN

Z

exp

(

−
∑

i

(Ĩi − Xi)
2

σ 2
X

+
(D̃i − Zi)

2

σ 2
Z

)

.

Our study designates the standard deviations as to 
approximate the means of confirmed and deceased cases, 
σY := �X�/N  and σZ := �Z�/N  . Defining J(u) as the 
sum of squares error of the difference between data and 
estimation using the parameter set u, i.e.,

the likelihood and log-likelihood function then read as

As the calculation can be done equivalently for the des-
tination countries (j), the log-likelihood log L(j)(u) is 
defined as

Model specification
The aim in model specification for the fitting of the 
data is that we have a measure (criterion) based on fit 
and complexity (information-type criterion). Therefore, 
regarding models A, B, and C, we opt for a minimal value 
of the Bayesian Information Criterion

according to Raftery [29], whose first term measures 
complexity represented by the observation size N and the 
number of parameters |u|, while the second term rep-
resents the maximal likelihood function. Note that for 
the travel destination countries, we do not compare the 
model output as we only allow the travel-independent 
system (4). The BIC penalizes the number of parameters 
more than the Akaike Information Criterion (AIC) [30], 
where the latter would have replaced the factor log(N ) 
by 2. As far as model specification is concerned, our aim 
will be to choose between three models by selecting the 
model with minimal BIC as well as amending the ques-
tion if the role of travellers is significant.

(16)J (u) =
∑

i

(Ĩi − Xi)
2

�X�2
+

(D̃i − Zi)
2

�Z�2
,

(17)L(u) =
N 2N

�X�N�Z�N
exp

(

−N 2J (u)
)

,

(18)

log L(u) = log

(

N 2N

�X�N�Z�N

)

− N 2J (u).

= N [2 logN − log �X� − log �Z� − NJ (u)].

(19)
log L(j)(u) = N (j)

[

2 logN (j) − log �X (j)�

− log �Z(j)� − N (j)J (j)(u)
]

.

(20)BIC = logN · |u| − 2 log L(u)
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Metropolis algorithm
In our study, we use a Metropolis algorithm (cf. Metrop-
olis et al. [31], Gelman et al. [32] or Gilks et al. [33]) for 
estimation of parameters in the ODE systems (1) and (4) 
according to the procedure described in Schäfer and Götz 
[34] and Heidrich, Schäfer et  al. [17]. Using the param-
eter set u0 as of Table 4 as starting conditions, we assign 
random draws unew from a normally distributed (and thus 
symmetric) proposal function q, i.e. unew ∼ q(unew|ui−1) , 
in every iteration i.

Using the previously defined J(u) as the target distribu-
tion, we calculate the approximative distribution by

whereby c is an arbitrary real value. For the acceptance 
probability, it follows

In Eq. (22) we can see that the value of c is redundant as it 
cancels out in the division. If the sample is accepted with 
the probability p, we set ui = unew ; with the probability 
1− p , the sample is declined, meaning u = ui−1 accord-
ing to Rusatsi [35] or Schäfer and Götz [34].

Confidence intervals of the parameters
Considering that the observation size N and the num-
ber of parameters |u| hold the relation N ≫ |u| , we 
adopt the idea of asymptotic confidence interval pro-
posed in Teukolsky et al. [36]. Together with Raue et al. 
[37], these authors suggest that the asymptotic con-
fidence interval can be a good approximation of the 
uncertainty in the optimal parameters u∗ providing 
that, besides the aforementioned relation, the meas-
urement error is relatively small as compared to the 
data. The formula of the confidence interval for each 
parameter u∗k is given by CIk :=

[

u∗k − ψ ,u∗k + ψ
]

 , with 
ψ being defined as

(21)π(u) = c · exp

(

−
J (u)2

2σ 2

)

,

(22)
p(unew|ui−1) = min

{

1,
π(unew) · q(ui−1|ui)

π(ui) · q(ui|ui−1))

}

= min

{

1,
π(unew)

π(ui)

}

.

(23)ψ :=

√

2χ2(q, df ) ·
(

∇−2(− log L(u∗))
)

kk
.

The operator ∇−2 denotes the inverse of the Hessian 
while χ2(q, df ) denotes the q quantile of the χ2 distribu-
tion with the degree of freedom df. The degree of free-
dom can be chosen between two that further determines 
the type of confidence interval: df = 1 gives the pointwise 
asymptotic confidence interval (PACI) that works on the 
individual parameter, df = |u| gives the simultaneous 
asymptotic confidence interval (SACI) that works jointly 
for all the parameters [36].

Current reproductive number
We also calculated the current 7-day reproduction num-
ber as of Götz et al. [38]: Defining the reproduction num-
ber R7,t as the 7-day moving average of the infection 
cases at time t to the infection cases at time t − 3 (assum-
ing an incubation period of κ−1 = 3 days), we have

This ratio will be helpful to compare the results to the 
given infection data and find estimates on how the dis-
ease dynamics behave at least shortly after the investi-
gated time interval.

Sensitivity analysis
To answer questions (Q1) and (Q2), the basic idea of sen-
sitivity analysis lies in the definition of a certain meas-
ure M for variable change that is worth of investigation, 
especially when one would like to describe its sensitiv-
ity with respect to a parameter ϑ . The sensitivity of M 
with respect to ϑ in the sense of first-order change can 
be measured using Taylor expansion. Suppose that ϑ is 
increased to a certain percentage ε from its current value, 
i.e., ϑ  → ϑ + εϑ . This way, the ratio (ϑ + εϑ)/ϑ = 1+ ε 
returns the total percentage post perturbation and ε 
denotes the additional percentage of gain. Note that 
imposing ε as the percentage is considered more robust 
than as simply the increase, considering that different 
parameters may live in disparate scales. Now, in the simi-
lar manner as for the parameter, the total percentage in 
M post perturbation on ϑ is given by

providing that ε is sufficiently small. Since the percentage 
of gain is usually considered similar across parameters, 

(24)R7,t =

∑6
k=0 It−k

∑6
k=0 It−3−k

.

(25)
M(ϑ + εϑ)

M(ϑ)
= 1+ εϑ

∂ϑM(ϑ)

M(ϑ)
+ O (ε2)

Table 4  Orders of magnitude of the initial values for adapting the model to the available data

Param. β0/1 δ µ τ αj E0

Init. val. 0.1 0.3 0.005 20 1 1/2 · I0
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the role of ε in the preceding equation is often neglected. 
The remaining expression thus provides a measurement 
of the sensitivity. Usually, authors refer ∂ϑM(ϑ) as the 
sensitivity index and ϑ∂ϑM(ϑ)/M(ϑ) as the elasticity, cf. 
Rockenfeller et  al. [39]. Between two parameters ϑ1,ϑ2 , 
it is logical to say that M is more sensitive to ϑ1 than ϑ2 
when the absolute normalized sensitivity indices hold the 
relation

Time‑dependent measures
The question (Q1) conveys the notion of model solution 
and addresses what our model solutions, including those 
excluded from the measurement or fitting, could have 
changed as we perturb the optimal parameter set, i.e. 
� = {β ,α,ET , κ ,µ, γ , τ } . Our interest is now driven by 
all the measures M that represent model state variables 
� = {S,E, I ,R,D} , which apparently are time-varying. 
To reveal the elasticity, one first compute the sensitivity 
index of state ψi ∈ � with respect to parameter �j ∈ �:

from the sensitivity system of equations (cf. [39]):

The function f above defines the vector field of the model 
system, i.e., �̇ = f (t,� ,�).

Time‑independent measures
The question (Q2) is concerned more with interventions. 
In this case, we focus more on parameters that can be 
changed with the help of humans. In our context, such 
parameters could be β and α . The direct transmission rate 
β has always been related to the proximity of the suscepti-
ble against infected humans and can be reduced with the 
aid of masks and social/physical distancing. The param-
eter α is related additional factors that drive the infection 
more than it could have been in the origin and destina-
tion country. For example, travellers are more exposed to 
physical encounters with other humans during flights, in 
public transportation, or in touristic areas, whereas locals 
spend more time at home. More protective apparatuses 
and educational campaigns will help reduce α . In this 
regard, two different measures for the sensitivity can be 
considered. For the first choice, we may take, for exam-

ple, 
M :=

∫ T
0 I dt , which represents the total number of 

(26)
∣

∣

∣

∣

ϑ1
∂ϑ1M(ϑ1)

M(ϑ1)

∣

∣

∣

∣

>

∣

∣

∣

∣

ϑ2
∂ϑ2M(ϑ2)

M(ϑ2)

∣

∣

∣

∣

.

(27)Sij :=
d

d�j
�i

(28)S′ij =
∑

k

Skj ·
∂

∂ψk
fi +

∂

∂�j
fi, Sij(0) = 0 .

infected cases over all observations. If α,β > 0 , M is then 
more sensitive to β rather than α when it holds

This inequality, however, includes the terms 
|
∫ T
0 ∂β I dt|, |

∫ T
0 ∂αI dt| that do not account for entropy 

or state of disorder. However, it is possible that the inte-
gral vanishes due to oscillations of the integrand ∂αI . This 
will result in a small sensitivity index rather than ∂β I that 
just forms a ‘calm’ trajectory above zero, so that the result 
would not be meaningful. To account for the entropy, we 
shall therefore consider the second measure

which represents the total variation of I with respect to β , 
evaluated up to the current parameter value β̂ . Now, M is 
said to be more sensitive to β than α (or vice versa) if

From the computational perspective, one can define a 
certain grid representing domain of interest for the two 
parameters, for example [βmin,βmax] × [αmin,αmax] . The 
next step follows from computing the sensitivity indi-
ces for all grid points and applies the ratio of actual total 
variation and accumulated total variation as in Eq. (31). 
Therefore, the left-hand side should be done via stepping 
α (vertical mode) and the right-hand side via stepping β 
(right mode).

Numerical results
The number of iterations for Germany using the 
Metropolis algorithm, as well as for the preprocessing 
in each country should be a high number to prevent 
the algorithm from local minima. As in our previous 
work in Heidrich, Schäfer et al. [17] we set this num-
ber to 20,000. While the estimation was done for the 
daily cases, we plot the cumulated infection and dead 
because of better visibility. The reported cumulated 
cases consist of the currently infected cases plus the 
recovered plus the deceased cases, which are calcu-
lated as above by δ(I + R)+ D.

Model A
To be able to compare the output of the optimal solu-
tions for the three models, the result of the model with 

(29)β ·

∣

∣

∣

∣

∣

∫ T
0 ∂β I dt
∫ T
0 I dt

∣

∣

∣

∣

∣

> α ·

∣

∣

∣

∣

∣

∫ T
0 ∂αI dt
∫ T
0 I dt

∣

∣

∣

∣

∣

.

(30)M :=

∫ β̂

0

∫ T

0
|∂β I(t, s)| dtds,

(31)

β̂·

∣

∣

∣

∣

∣

∣

∫ T
0 |∂β I | dt

∫ β̂

0

∫ T
0 |∂β I(t, s)| dtds

∣

∣

∣

∣

∣

∣

> α̂ ·

∣

∣

∣

∣

∣

∫ T
0 |∂αI | dt

∫ α̂

0

∫ T
0 |∂αI(t, s)| dtds

∣

∣

∣

∣

∣

.
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a piecewise constant value for β and no traveller com-
partment is shown in Fig.  2. The optimization seems 
to be fairly decent for the death curve (right figure), 
but the model overestimates the infection cases (left 
figure) between June and August, which also shows 
in lower values for L(u) as seen in Table 8. In Table  5 
the mean and standard deviations for the estimated 
parameters of the above explained model, starting 
values and methods are shown. Several parameter 
estimates are not very reliable, like the detection rate 
of 18% which is expected to be higher due to compa-
rably few cases yet an increased amount of available 
tests. For example, the study of Radon et al. [40] sug-
gests a dark figure of slightly less than 50% in total 
until November. The death rate of 1% also appears to 
be much lower than expected (around 1%; for exam-
ple, Dimpfl et al. [41] calculated a fatality rate of 0.83% 
for the first wave, while Morwitzky et  al. [42] found 
a fatality rate of 2.15% as of November 2020). These 
findings suggest that Model A might not be a decent 
model to describe the disease behaviour in Germany in 
summer 2020.

Model B
For Model B with a constant value for α from 15 June 
onwards, Table  6 shows the mean and standard devia-
tions for the estimated parameters of the above explained 
model, starting values and methods. The estimated 
parameters, as far as known, are in line with what is to be 

expected. At the beginning of the investigated time inter-
val, a rough estimate for the basic reproduction num-
ber without travellers is R0 = β/γ ≈ 0.4 . As β denotes 
the transmission rate at the beginning of June, without 
any effect of travellers, this estimate seems to be valid, 
but less than expected. A detection rate of 50− 60% as 
well as a death rate of 0.6% are also valid estimates at 
the observed time interval. The time lag between infec-
tion and death is obviously dependent on the day of the 
registration of both infection and death, where 4 weeks 
is a decent approximation as well. Additionally, the 
pointwise asymptotic confidence interval and simulta-
neous asymptotic confidence interval are shown by ψ as 
of Eq. (23), so that the respective interval is defined as 
CIk :=

[

u∗k − ψ ,u∗k + ψ
]

.
Figure 3 shows the estimated disease dynamics in com-

parison to the registered cases using the parameters as of 
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Fig. 2  Estimation of cumulated infections in Germany compared to Johns Hopkins University from 1 June to 31 August with two piecewise 
constant values of the transmission rate β , on the left side the number of infections, on the right side the death cases. Note that, for better visibility, 
the y-axis does not include 0

Table 5  Numerical results for Model A without inclusion of α

Parameter Mean value σ of Metropolis

β0 8.65× 10−2d−1 0.19× 10−2d−1

β1 1.39× 10−1d−1 0.01× 10−1d−1

δ 1.84× 10−1 0.03× 10−1

µ 1.56× 10−3 0.06× 10−3

τ 2.60× 101d 0.04× 101d

E0 3.60× 103 0.05× 103
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Table 6. Additionally, the uncertainty range raised by the 
confidence intervals of the Metropolis algorithm is pro-
vided. For this, we add or subtract the standard deviation 
to or from the mean of the parameter to show the high-
est or lowest possible values of the registered cumula-
tive infected persons. The range of both PACI and SACI 
is comparatively lower and almost no differences could 
be detected in the graphic. It is also observed how large 
the infected cases and fatalities in this model had been if 
α = 0 , i.e. the travel ban had not ended and travellers had 
no impact on the disease dynamics whatsoever.

The left graphic in Fig.  3 shows that for our esti-
mated parameter set, around 50,000 less infections with 
COVID-19 had been registered if the travel compartment 
had not been active. In the right figure concerning the 
death cases would make significant changes only from the 
end of July, resulting in a difference of roughly 150 death 
cases. As both the number of infected and the infection 
rates are higher than in the simulation with no travel-
ler numbers, travellers appear to have created increased 

infection numbers at least at the beginning of Septem-
ber. However, a reasonable prediction on case numbers 
appears to be difficult, as interventions by authorities 
and the public (higher awareness due to higher infection 
numbers) cannot be predicted in the sense of an pre-cal-
culable change of transmission rates.

Model C
For Model C, we now assume that α is not constant 
over the whole time from June to August, but rather 
time-dependent, defining a piecewise constant func-
tion of α with three different values. With α(t) being 
piecewise constant for 15–30 June, July and August, 
the parameter estimation for system (4) yields the fol-
lowing results as to be seen in Table 7. Parameter esti-
mates are similar to those of Model B by the order of 
magnitude and thus equally reliable. In Fig.  4, similar 
to above, we show estimates and measured data for the 
cumulated cases and also the error range with respect 
to the Metropolis algorithm (which is the largest 

Fig. 3  Estimation of cumulated infections in Germany compared to Johns Hopkins University from 1 June to 31 August with a constant impact rate 
α , on the left side the number of infections, on the right side the death cases. Note that, for better visibility, the y-axis does not include 0. The (barely 
visible) shaded area represents the range of the solutions from the SACI and the dashed line describes the simulation with α = 0 , i.e. either no 
travelling is allowed or the traveller compartment had been completely free of the disease

Table 6  Numerical Results for Model B using a constant value of α

Parameter Mean value σ of Metropolis ψ of PACI ψ of SACI

β 3.59× 10−2d−1 0.03× 10−2d−1 0.002× 10−2d−1 0.04× 10−2d−1

δ 5.78× 10−1 0.18× 10−1 0.002× 10−1 0.03× 10−1

µ 6.18× 10−3 0.19× 10−3 0.004× 10−3 0.09× 10−3

τ 2.59× 101d 0.04× 101d 0.001× 101d 0.03× 101d

E0 2.59× 103 0.05× 103 0.001× 103 0.03× 103

α 2.97 0.06 0.002 0.04
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deviation) and the scenario if no travelling had been 
allowed.

Comparison
For the Bayesian analysis, we can now compare the BIC 
values of the three models computed by Eqs. (18) and 

(20). The results for Model A were gained by applying Eq. 
(4), i.e. the model we used to estimate the disease behav-
iour in all other countries (with no travel impact rate, 
but two piecewise constant transmission rates β1,2 ) to 
Germany.

Table  8 shows that in terms of the least-square out-
put, the model with time-dependent, piecewise con-
stant values of α (Model C) shows the best results. Even 
though the penalization of complexity with two more 
parameters, the BIC for model C is the lowest. Accord-
ing to Raftery [29], a BIC difference of 6–10 indicates 
a “strong” evidence (posterior probability of 95–99%) 
that Model C using three piecewise constant values for 
α is to be preferred over B, while there is “very strong” 
evidence that model C, and also B, are to be preferred 
over model A with a posterior probability of > 99% as 
the difference is larger than 10.

Table 7  Numerical results for piecewise constant values of α

Parameter Mean value σ of Metropolis ψ of PACI ψ of SACI

β 5.09× 10−2d−1 0.12× 10−2d−1 0.002× 10−2d−1 0.06× 10−2d−1

δ 4.94× 10−1 0.08× 10−1 0.007× 10−1 0.19× 10−1

µ 5.34× 10−3 0.10× 10−3 0.004× 10−3 0.11× 10−3

τ 2.58× 101d 0.06× 101 d 0.01× 101 d 0.34× 101 d

E0 2.45× 103 0.03× 103 0.003× 103 0.07× 103

α0 2.23 0.05 0.002 0.06

α1 2.45 0.05 0.008 0.02

α2 3.14 0.05 0.004 0.11

Fig. 4  Estimation of cumulated infections in Germany compared to Johns Hopkins University from 1 June to 31 August with three piecewise 
constant travel impact rates α , on the left side the number of infections, on the right side the death cases. The shaded area represents the SACI 
interval. The dashed line describes the simulation with α = 0 , i.e. either no travelling is allowed or the traveller compartment had been completely 
free of the disease

Table 8  Values for the least-square value J(u) and the BIC for the 
various models

J(u) # of Parameters BIC

Model A 4.4174× 10−5 6 − 9087.0

Model B 4.1812× 10−1 6 − 8538.6

Model C 4.1919× 10−1 8 − 8529.9



Page 15 of 19Schäfer et al. BMC Infectious Diseases          (2022) 22:455 	

Lastly, we compare the 7-day reproductive number as 
of Eq. (24). Figure 5 shows the values for the two mod-
els. Both curves have a similar behaviour and the values 
of R7,t in Model B and C would remain � 1 most of the 
time, resulting in growing infected values even for at 
least a short time after the investigated time window, 
i.e. at the beginning of September.

Additionally, we plotted the dynamics of R7,t for the 
hypothetic case that no travellers had contributed to 
the infection cases. In this case the values of R7,t would 

remain < 1 for the whole time in any of the two models. 
This means the disease would have been contained if no 
other effects are assumed.

We can compare future simulations on a short-time 
scale by extending the time interval of the model. When 
we assume that travelling had not been allowed during 
the whole time interval α(t) ≡ 0 , a simulation until Sep-
tember 15 assumes only 100 new registered infections. 
However, in the estimation of model C where travelling 
is allowed, we computed 21,200 new infections if trav-
elling had been disallowed from September 1 onwards 
and 26,300 new infections if the conditions for travel-
ling had not been changed at all between September 1 
and 15 when we assume the situation is not changed by 
any national or international measures, i.e. same travel 
numbers and impact rates as at August 31 are assumed. 
Results for model B show similar values in terms of mag-
nitude; it is important to note that values of those esti-
mates are to be taken with caution.

Sensitivity analysis
For the investigation of time-dependent measures, we 
included the parameters γ and κ from Table  1 although 
they were not optimized, yet can be assumed to bear 
uncertainties, to observe the influence of those param-
eters to the solutions for all five compartments S, E, I, 
R, and D. For Model B, all the parameters �i are almost 
constant, except ET and α , and to some extent β and γ 
(latter of which is however not a mutable parameter in 
our optimization). Figure 6 shows the elasticities �jSij/�i 
using (27) around the parameter values given in Tables 6 
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and 7, respectively. Generally, ET returns the highest sen-
sitivity in all compartments, particularly with ongoing 
simulation time. Additionally, changes in the parameters 
α (after a certain time delay, mainly due to differing from 
zero only after June 15) and also γ would significantly 
influence the infected compartment but not the death 
compartment, in which no parameter shows a higher 
elasticity than 0.15. Note that the parameter ET is actu-
ally proportional to α as of Eq. (3). After all, a caveat with 
these measures remains, as the elasticities are time-vary-
ing. Therefore, preference to a certain parameter for the 
highest elasticity could change over time.

Concerning the time-independent measure, we can 
now generate a two-region profile for which the inequal-
ity in Eq. (31) indeed applies or the other direction does. 
On the basis of Model B for the portraying the upcoming 
winter outbreaks, Fig. 7 shows the comparison of the elas-
ticities in reasonable ranges of β and α , the two param-
eters where interventions actually can change values. 
While reducing the overall transmissions in some way is 
equivalent to a reduction of β , reduction of travellers can 
be interpreted as a reduction of α : Even if the value α is 
not related to the amount of travellers, we have seen that 
α is multiplied with the amount of travellers TGermany↔j . 
If this value is reduced, then the product is reduced by 
the same factor, which would yield the same results as a 
reduction of α by this factor. Alternatively, travel control 
without reduction of traveller numbers can also reduce α . 
Using the fitted value (α, β) = (2.97, 0.0309) we find that 

the measure M as in Eq. (30) is more sensitive to β than 
α . This finding draws forth further practical relevance. 
Our model can be calibrated with new incidence data on 
an initial take-off period in the next winter season, where 
all parameters except β and α are fixed according to our 
fitting. At first, the two parameters can be fitted to these 
new data. May they locate in one of the two regions sepa-
rated by the zero-curve in Fig. 7, we then acquire knowl-
edge on which resources should be drawn in order to 
attack the most sensitive parameter. One can thus wait 
and see how the deployment of the resources gives the 
real-time intervention to the number of infected cases. 
Re-calibration then follows after some time as short-
term feedback from such an intervention is gained, and 
the values of optimal β and α can once again be evaluated 
via Fig.  7. This process of combining sensitivity-based 
interventions remains continuous until the ultimate 
disease eradication is achieved without having to waste 
resources.

Discussion and conclusion
In this present work we intended to measure the impact 
of travellers on the overall disease dynamics in Germany 
during summer 2020 using a modified SEIRD-model 
with a traveller compartment. Travel rates are measured 
by using international flight and hospitality data. The 
infection data of all 55 countries with more than 5000 
German travellers in June, July and August together has 
been used to optimize the single-country infections. Esti-
mates for the transmission rates βj,0/1 and the infected Ij 
at all time t in those countries are found using standard 
SIRUV models and used to estimate the travel impact 
rate for Germany. Parameter estimation was done using 
a Metropolis type algorithm, while other routines like an 
adjoint based approach are also possible.

The estimated parameter values of the travelling-
induced models are generally close to medical estima-
tions, while the model with time-dependent transmission 
rates delivers less reasonable results in terms of the tar-
get function and also the parameter values. In the trav-
eller models, the travel impact rate was estimated to be 
in the range of 2.2 ≤ α ≤ 3.2 , meaning a two-to three 
times higher infection possibility as a traveller than the 
average inhabitant of the respective country. The model 
with three time-dependent and piecewise constant 
values of the travel impact rate α(t) yields better val-
ues than a model with only one constant value for α(t) 
in the L2 norm and also better BIC values despite two 
more parameters being used, and can be classified as very 
strongly preferred.

The raised infection numbers and infection rates by 
travellers are also assumed to have caused higher infec-
tion numbers at least in the following weeks (autumn 
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2020), based on an analysis of the reproductive num-
ber at the end of the investigated time interval. Among 
other reasons such as seasonality and opening of schools 
after the summer holidays, these are assumed to have an 
impact on the second large infection wave in late 2020 [2, 
6]. It needs to be clear that due to the lack of precise data, 
traveller values can be only estimated to a certain degree 
and some data sets with which the parameter estimates 
for the various countries are not necessarily reliable. We 
aimed to reproduce the infection risks for travellers in 
those countries. Because of the large number of coun-
tries, errors are therefore assumed to be evened out as 
the value of ET is a sum of the infections from all those 
countries. Also, using piecewise constant values for α (to 
some extent also βj ) with switching dates as of the first of 
each month is slightly arbitrary. While a steady function 
α(t) or optimization of the switching dates in some way 
can lead to better results, those are prone to overfitting. 
The lower BIC of the model with three different values 
for α indicates this did not happen for model C.

Further, we performed a sensitivity analysis for model 
B, i.e., a constant value of α . In particular, it is found 
that the sensitivities for the travel impact rate α can be 
identified after a certain time delay (which is caused by 
the model definition). The parameters α , ET—which has 
the same behaviour as α due to the construction of the 
model-, β and γ are found to be the most relevant param-
eters. However, in the further analysis we constricted 
toward β and α as those are the parameters regarding 
which political interventions are possible. For those two 
parameters, we designed a two-region profile for which 
the detected domains in which a reduction of α is more 
relevant for disease control in case the transmission 
rate β , especially when the infection cases are otherwise 
comparatively low and can be controlled. Finding those 
domains is similar to the findings of Hollingsworth et al. 
[12], as they claimed travel bans are only relevant in case 
of low values for R, which can be interpreted as a reduc-
tion of the transmission rate β . In case of higher infectiv-
ity rates like for, e.g., the latest mutants (Delta and, even 
more so, Omikron), which go along with a larger value 
of β , those assumptions might thus not hold true in the 
same way. However, it might be reasonable to consider 
travelling restrictions for a supposed variant (or other dis-
ease) with comparatively low transmission rates yet high 
mortality, Still, the raised infection rates at the end of 
summer 2021 are an indicator that higher/‘uncontrolled’ 
traveller numbers might have been a reason for another 
(at that time ‘fourth’) wave one year after the investigated 
time interval, which can be part of future investigations.

Not letting aside that installation of travel restrictions 
has multiple political, legal, social and economical prob-
lems (it is not to be forgotten these pose an encroachment 

into fundamental rights), as we thus conclude that set-
ting up travel policies can be an epidemiologically rea-
sonable policy component to contain disease numbers 
at least for short terms, which is in line to the findings of 
papers [7–14]. Rather than an exportation of cases as in 
Siegenfeld et al. [7] or Chinazzi et al. [8] to several coun-
tries or internally in China as in Zou et al. [9], we consider 
importation of cases from many different countries with 
varying infection rates. Thus, unlike [9], we make gen-
eral statements of the effectiveness of travel restrictions 
due to a combination of all countries in the equation for 
ET (t) . The analysis of the local reproduction number sug-
gest that the values are fluctuating around 1, and travel 
measures have the potential to below 1, resulting in an 
extincting disease. Additionally, short-time simulations 
for the beginning of September 2020 show a difference of 
several thousands of infection cases between no (further) 
travel restrictions and full travel restrictions. These two 
findings indicate that travel measures should be imposed 
alongside other social measures for optimal disease con-
trol. It is up to further research to regard whether solely 
a travel ban or tightening of travel restrictions had just 
postponed the third infection wave to a later date. Even 
if this latter assumption holds true, there are possible 
advantages of delaying the disease: Similar to Epstein 
et al. [13], the findings show that delaying the epidemics 
can be achieved inter alia by travel restrictions. This time 
can then be used to prepare for the income of an infection 
wave, prevents overload the health care system all at once 
(which is also found by Leung et  al. [10]), or postpones 
epidemics until vaccines are available so that the amount 
of severe disease courses is reduced. Travel restrictions to 
farther countries is comparatively ‘cheaper’ than to closer 
ones, where border control is required which induces 
further political and social problems. While restrictions 
to a (lower) amount of high-risk areas like several arti-
cles propose can be more effective, global measures can 
be more effective or ‘safer’ than targeted measures in an 
epidemiological/stochastic sense, due to the highly con-
nected world we live in and possibly rapid changes in 
the disease dynamics in single countries. Awareness of 
the dynamics of the Corona waves in previous years and 
its reasons is important in upcoming years of the pan-
demic and for other fast-spreading diseases as well, and at 
the start of a pandemic or at least a single wave, a strat-
egy combining local social measures with international 
measures, in particularly a (heavy) reduction of traveller 
numbers, should be considered together in terms of opti-
mal control especially when risks cannot be foreseen. It is 
also to be noted that travel measures are undertaken in a 
graded way. Details on related regulations have changed 
from time to time, but certain entry restrictions have been 
upheld since the earlier rise of the pandemic. For example, 
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all persons entering the country must provide a negative 
test result or, later, proof of immunity either by recovery 
or vaccination, then comply with post-arrival quarantines 
depending on the place of departure. However, it remains 
a question which of those two to consider primarily, and 
for that modelling scenarios like the ones presented (e.g. 
Fig.7) can be updated on the current situation .

Further work in this topic might also include the 
impact of foreign travellers in Germany and a interna-
tional multi-patch/network model including travellers 
from and to all investigated regions or countries. Also, 
other types of models, e.g. stochastic delayed differential 
equations (SDDE) or agent-based systems, can be used to 
model disease dynamics and incorporation of travellers.
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