
PNEUMONIA DETECTION ON CHEST X-RAY USING RADIOMIC 
FEATURES AND CONTRASTIVE LEARNING

Yan Han1, Chongyan Chen2, Ahmed Tewfik1, Ying Ding2,*, Yifan Peng3,*

1Cockrell School of Engineering, The University of Texas at Austin

2School of Information, The University of Texas at Austin

3Department of Population Health Sciences, Weill Cornell Medicine

Abstract

Chest X-ray becomes one of the most common medical diagnoses due to its noninvasiveness. The 

number of chest X-ray images has skyrocketed, but reading chest X-rays still has been manually 

performed by radiologists, which creates huge burnouts and delays. Traditionally, radiomics, as 

a subfield of radiology that can extract a large number of quantitative features from medical 

images, demonstrates its potential to facilitate medical imaging diagnosis before the deep learning 

era. With the rise of deep learning, the explainability of deep neural networks on chest X-ray 

diagnosis remains opaque. In this study, we proposed a novel framework that leverages radiomics 

features and contrastive learning to detect pneumonia in chest X-ray. Experiments on the RSNA 

Pneumonia Detection Challenge dataset show that our model achieves superior results to several 

state-of-the-art models (> 10% in F1-score) and increases the model’s interpretability.
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1. INTRODUCTION

Pneumonia is the leading cause of people hospitalized in the US [1]. It requires timely 

and accurate diagnosis for immediate treatment. As one of the most ubiquitous diagnostic 

imaging tests in medical practice, chest X-ray plays a crucial role in pneumonia diagnosis in 

clinical care and epidemiological studies [2]. However, rapid pneumonia detection in chest 

X-rays is not always available, particularly in the low-resource settings where there are not 

enough trained radiologists to interpret chest X-rays. There is, therefore, a critical need to 

develop an automated, fast, and reliable method to detect pneumonia on chest X-rays.

With the great success of deep learning in various fields, deep neural networks (DNNs) 

have proven to be powerful tools that can detect pneumonia to augment radiologists [3, 4, 
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5, 6]. However, most of the DNNs lacks explainability due to their black-box nature. Thus 

researchers still have a limited understanding of DNNs’ decision-making process.

One method of increasing the explainability of DNNs in chest radiographs is to leverage 

radiomics. Radiomics is a novel feature transformation method for detecting clinically 

relevant features from radiological imaging data that are difficult for the human eye to 

perceive. It has proven to be a highly explainable and robust technique because it is related 

to a specific region of interest (ROI) of the chest X-rays [7]. However, directly combining 

radiomic features and medical image hidden features provides only marginal benefits, a 

result mostly due to the lack of correlations at a “mid-level”; it can be challenging to relate 

raw pixels to radiomic features. In efforts to make more efficient use of multimodal data, 

several recent studies have shown promising results from contrastive representation learning 

[8, 9]. But, to the best of our knowledge, no studies have exploited the naturally occurring 

pairing of images and radiomic data.

In this study, we proposed a framework that leverages radiomic features and contrastive 

learning to detect pneumonia in chest X-ray. Our framework improves chest x-ray 

representations by maximizing the agreement between true image-radiomics pairs versus 

random pairs via a bidirectional contrastive objective between the image and human-crafted 

radiomic features. Experiments on the RSNA Pneumonia Detection Challenge dataset [10] 

show that our methods can fully utilize unlabeled data, provide a more accurate pneumonia 

diagnosis, and remedy the black-box’s transparency.

Our contribution in this work is three-fold: (1) We introduce a framework for pneumonia 

detection that combines the expert radiographic knowledge (radiomic features) with deep 

learning. (2) We improve chest X-ray representations by exploring the use of contrastive 

learning. Our model thus has the advantages of utilizing the paired radiomic features 

requiring no additional radiologist input. (3) We find that our models significantly 

outperform baselines in pneumonia detection with improved model explainability.

2. RELATED WORK

Pneumonia detection is a binary classification task which requires to classify a chest 

radiology image into either pneumonia or normal. Popular pneumonia detection dataset 

includes RSNA Pneumonia Detection Challenge [10] and pediatric pneumonia diagnosis1.

Traditionally, non-image features (e.g., patient age, gender, and body temperature) and 

radiomic features [11] are used for automatic chest disease classification. In recent years, 

many studies explored deep neural networks (DNNs) for this task [12, 13, 14]. For instance, 

Rajpurkar et al. introduced the CheXNet, a deep CNN trained to predict 14 diseases on 

chest X-ray [13]. Liang and Zheng used the Residual Neural Network (ResNet-18) [15] 

pre-trained on the NIH ChestX-ray 14 dataset and fine-tuned on the child’s chest X-rays 

dataset for pediatric pneumonia diagnosis [14].

1 https://data.mendeley.com/datasets/rscbjbr9sj/3 
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For the medical image classification task, semi-supervised or unsupervised learning methods 

have benefited this task hugely because preparing annotated corpora is generally time-

consuming and expensive. It also requires domain expertise and significant effort to ensure 

accuracy and consistency. To relieve this problem, one method is to utilize unlabeled image 

data. For example, Tang et al., [16] introduces the task-oriented unsupervised adversarial 

network, which consists of a cyclic I2I translation framework for RSNA Pneumonia 

Detection Challenge and a pediatric pneumonia diagnosis dataset.

Another popular trend, especially in recent years, is the contrastive representation learning 

[17, 18, 9]. Nevertheless, it may not be beneficial to directly apply these visual contrastive 

learning methods to medical images than pre-training models on ImageNet and fine-tuning 

them on medical images, mainly because the medical images have high interclass similarity 

[8]. Thus, Zhang et al. [8] proposed to use contrastive learning to learn visual representations 

from radiology images and text reports by maximizing the agreement between image-text 

representation pairs. Different from these works, we studied the contrastive learning between 

radiomics and convolutional neural networks (CNN) features to obtain medical visual 

representations. Therefore, our model does not require radiology text reports which are 

usually not publicly available. To this end, we deem that our framework is simple yet 

scalable when coupled with large-scale medical image datasets.

3. PROPOSED METHOD

Inspired by recent contrastive learning algorithms [8], our model learns representations by 

maximizing agreement between radiomics features related to pneumonia ROI of the chest 

X-rays and the image features extracted by the attention-based convolutional neural network 

(CNN) model, via a contrastive loss in the latent space. Since radiomics can be considered as 

the quantified prior knowledge of radiologists, we deem that our model is more interpretable 

than others. As illustrated in Figure 1, our framework consists of three phases: contrastive 

training, supervised fine-tuning, and testing.

Contrastive training.

The model is given two inputs, xu and xv. xu is the original chest X-rays without a 

corresponding paired bounding box. xv is the original chest X-rays with an additional paired 

bounding box. For normal chest X-rays, we take the whole image as a bounding box.

For xu, we utilize the pre-trained attention-based CNN models, Residual Attention Network 

(ResNet-18Attention) [19] pre-trained on CIFAR-10 [20], as the backbone of the network. 

We replace the last fully-connected layer with a multilayer perceptron (MLP) to generate a 

128-dimensional image features vector u. For xv, we apply the PyRadiomics2 to extract 102-

dimensional quantitative features, and [21] showed the details of these quantitative features 

and extraction process. We then use an MLP to map the features to a 128-dimensional 

radiomics feature v.

2 https://pyradiomics.readthedocs.io/en/latest/ 
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At each epoch of training, we sample a mini-batch of N input pairs (Xu, Xv) from the 

training data, and calculate their image features and radiomics features pairs (U, V). We use 

(ui, vi) to denote the ith pair. The training loss function will be divided into two parts. The 

first part is a contrastive image-to-radiomics loss:

Li
u v = − log exp( < ui, vi > ∕ τ)

∑k = 1
N exp( < ui, vk > ∕ τ) (1)

where < ui, vi > represents the pairwise distance, i.e. [∑(ui − vi)p]
1
p  and p represents the 

norm degree, e.g., p = 1 and p = 2 represent the Taxicab norm and Euclidean norm, 

respectively; and τ ∈ ℝ+ represents a temperature parameter. In our model, we set p to 2 

and τ to 0.1. Like previous work [8], which uses a contrastive loss between inputs of the 

different modalities, our image-to-radiomics contrastive loss is also asymmetric for each 

input modality. We thus define a similar radiomics-to-image contrastive loss as:

Li
v u = − log exp( < vi, ui > ∕ τ)

∑k = 1
N exp( < vi, uk > ∕ τ) (2)

Our final loss is then computed as a weighted combination of the two losses averaged over 

all pairs in each minibatch where λ ∈ [0, 1] is a scalar weight

Ltrain = 1
N ∑

i = 1

N
(λLi

u v + (1 − λ)Li
v u) (3)

Supervised fine-tuning.

We follow the work of Zhang et al. [8] by fine-tuning both the CNN weights and the MLP 

blocks together, which closely resembles how the pre-trained CNN weights are used in 

practical applications. In this process, the loss function is the cross-entropy loss where y and 

y represent the true and predicted disease label, respectively.:

Lfine − tune = − (y log y + (1 − y) log(1 − y)) (4)

Testing.

The model is only given one input, the original chest X-rays xu without a corresponding 

paired bounding box. Image features are extracted then mapped into the 128-dimensional 

feature representation u. Finally, the predicted output is calculated based on u.

4. EXPERIMENTS AND DISCUSSION

4.1. Dataset and Experimental Settings

To evaluate the performance of our proposed model, we conducted experiments on a public 

Kaggle dataset: RSNA Pneumonia Detection Challenge3. It contains 30,227 frontal-view 
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images, out of which 9,783 images has pneumonia with a corresponding bounding box. We 

used 75% imaged for training and fine-tuning and 25% for testing.

We used SGD as our optimizer and set the initial learning rate as 0.1. We iterated the 

training and fine-tuning process for 200 epochs with batch size 64 and early stooped if 

the loss did not decrease. We reported accuracy, F1 score, and the area under the receiver 

operating characteristic curve (AUC).

4.2. Results

We compared four models: (1) ResNet-18, (2) ResNet-18 with radiomics features 

(ResNet-18Radi), (3) ResNet-18 with the attention mechanism (ResNet-18Att), and (4) 

ResNet-18Attention with radiomics features (ResNet-18AttRadi).

Experimental results are shown in Table 1. Compared with the baseline models (ResNet-18 

and ResNet-18Att), our radiomics-based models (ResNet-18Radi and ResNet-18AttRadi) 

achieved better performance on the pneumonia/normal binary classification task. It suggests 

that radiomic features can provide additional strengths over the image features extracted 

by the CNN model. Compared ResNet-18Att with ResNet-18 and ResNet-18AttRadi with 

ResNet-18Radi, we observed that the attention mechanism could effectively boost the 

classification accuracy. It proves our hypothesis that pneumonia is often related to some 

specific ROI of chest X-rays. Hence, the attention mechanism makes it easier for the CNN 

model to focus on those regions.

Figure 2 shows the training and fine-tuning loss convergence for the ResNet-18AttRadi 

model on the training set. We find that the loss drops rapidly during the pre-training stage 

within just a few epochs, revealing that contrastive learning makes the model learn to extract 

image features fast and effectively.

To fairly evaluate the impact of radiomics features on ROI, we conducted additional 

experiments using the whole image as a bounding box to extract the radiomics features, 

denoted as ResNet-18FairRadi and ResNet-18AttFairRadi. Table 2 shows that even if 

without ROI, the radiomics features could improve the performance of the deep learning 

model by 5% in F1 score. This observation further demonstrates that combining radiomics 

features with a deep learning model for reading chest X-rays is necessary.

4.3. Visualization of the deep learning model

To demonstrate the interpretability of our model, we show some selected examples of 

model visualization, i.e., attention maps of ResNet-18Att and ResNet-18AttRadi. Figure 3 

shows the original chest X-ray with a bounding box, attention map of the final attention 

layer of the ResNet-18Att and ResNet-18AttRadi, respectively. These examples suggest that 

our ResNet-18AttRadi model can focus on a more accurate area of the chest X-ray while 

ResNet-18Att attends to almost the whole image and contains plenty of attention noise. This 

illustrates that contrastive learning can help the model learn from radiomics features related 

3 https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data 
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to certain ROIs and thus attend more to the correct regions. And more examples of the 

attention maps can be found in the supplemental material.

5. CONCLUSION AND FUTURE WORK

In this work, we present a novel framework by combining radiomic features and contrastive 

learning to detect pneumonia from chest X-ray. Experimental results showed that our 

proposed models could achieve superior performance to baselines. We also observed that 

our model could benefit from the attention mechanism to highlight the ROI of chest X-rays.

There are two limitations to this work. First, we evaluated our framework on one deep 

learning model (ResNet). We plan to assess the effect of radiomic features on other DNNs in 

the future. Second, our model relies on bounding box annotations during the training phase. 

We plan to leverage weakly supervised learning to automatically generate bounding boxes 

on large-scale datasets to ease the expert annotating process. In addition, we will compare 

contrastive learning with multitask learning to further exploit the integration of radiomics 

with deep learning.

While our work only scratches the surface of contrastive learning using radiomics 

knowledge in the medical domain, we hope it will shed light on the development 

of explainable models that can efficiently use domain knowledge for medical image 

understanding.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An overview of the proposed model.
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Fig. 2. 
The training and fine-tuning loss convergence for the ResNet-18AttRadi model.
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Fig. 3. 
An example of visualization of attention maps. The left figure is the original Pneumonia 
chest X-ray with a bounding box. The right two figures are the attention maps of the final 

attention layer ResNet-18Att and ResNet-18AttRadi, respectively.

Han et al. Page 10

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2022 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Han et al. Page 11

Table 1.

Experimental results

Model Accuracy F1 score AUC

ResNet-18 0.763 0.782 0.795

ResNet-18Att 0.815 0.826 0.848

ResNet-18Radi 0.851 0.901 0.898

ResNet-18AttRadi 0.886 0.927 0.923
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Table 2.

Experimental Results Without Using Bounding Box

Model Accuracy F1 score AUC

ResNet-18 0.763 0.782 0.795

ResNet-18FairRadi 0.821 0.841 0.864

ResNet-18Att 0.815 0.826 0.848

ResNet-18AttFairRadi 0.854 0.884 0.877
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