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ABSTRACT: Determining the aqueous solubility of molecules is
a vital step in many pharmaceutical, environmental, and energy
storage applications. Despite efforts made over decades, there are
still challenges associated with developing a solubility prediction
model with satisfactory accuracy for many of these applications.
The goals of this study are to assess current deep learning methods
for solubility prediction, develop a general model capable of
predicting the solubility of a broad range of organic molecules, and
to understand the impact of data properties, molecular
representation, and modeling architecture on predictive perform-
ance. Using the largest currently available solubility data set, we
implement deep learning-based models to predict solubility from
the molecular structure and explore several different molecular
representations including molecular descriptors, simplified molecular-input line-entry system strings, molecular graphs, and three-
dimensional atomic coordinates using four different neural network architecturesfully connected neural networks, recurrent neural
networks, graph neural networks (GNNs), and SchNet. We find that models using molecular descriptors achieve the best
performance, with GNN models also achieving good performance. We perform extensive error analysis to understand the molecular
properties that influence model performance, perform feature analysis to understand which information about the molecular
structure is most valuable for prediction, and perform a transfer learning and data size study to understand the impact of data
availability on model performance.

■ INTRODUCTION

Because molecular aqueous solubility is a key performance
determiner across many applications, its prediction is one of
the key steps in many material selection pipelines. For example,
solubility is a critical physical property for drug development
and for electrolyte development which determines the
performance of devices such as batteries, sensors, and solar
cells. In particular, molecular solubility is a key performance
driver for redox flow batteries (RFBs) based on organic active
materials. These are a promising energy storage technology
with potential to address the cost, safety, and functionality
needs of the grid-scale energy storage systems forming a critical
component of our future electric grid for renewable integration
and grid modernization.1 The key feature of RFB technology is
that the energy-bearing redox-active ions/molecules are
dissolved in a supporting liquid electrolyte, which, in the
case of aqueous RFBs, is water. Traditional transition metal
ions commonly used for RFBs are facing many challenges, such
as cost and limited chemical space,2 which has led to the search
for inexpensive and sustainable organic molecules to support
growing grid energy storage needs. Because the solubility of
candidate organic molecules dictates their maximum concen-

tration in an electrolyte, and thus the energy density of a RFB
system, solubility is a key molecular design factor. The need to
quickly screen and explore potential candidate molecules for
their expected performance in the RFB, motivates us to
develop improved models for solubility prediction that can
perform well at the high solubility regime (>0.5 mol/L)
required for these technologies. Such property prediction
models are also a key capability needed for the inverse design
of molecules with targeted properties.3−5

Solubility prediction has been an intensive research area for
many years. Major approaches include the general solubility
equation,6 the Hildebrand and Hansen solubility parameters,7,8

COSMO-RS,9 and methods leveraging molecular dynamics
simulations.10,11
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Solubility prediction efforts have increasingly turned to the
use of statistical and machine learning methods. Early
computational solubility prediction efforts based on the
molecular structure were mainly based on developing
regression models to predict solubility using the structural
and electronic properties of the molecules as input. For
example, regression models were developed which leveraged
connectivity indices and a polarizability factor,12 structural and
atomic charge-based properties,13 and molecular fragments.14

As high-performance computers and large training data sets
became available, artificial neural networks and deep learning
which are capable of leveraging the raw molecular structure as
input grew in popularity for molecular property prediction. In
recent years, these methods have proven to be promising in
predicting thermal conductivity, toxicity, lipophilicity, bio-
activity, water solubility, protein structure band gap, heat
capacity, and scent descriptors, among other properties.15−21

These efforts have explored a range of molecular representa-
tions and deep learning modeling architectures, including
molecular fingerprints and fully connected neural net-
works,22−27 simplified molecular-input line-entry system
(SMILES) strings and recurrent neural networks,28−30

mo l e cu l a r g r aph s and g r aph neu r a l ne two rk s
(GNNs),15,16,18,31−33 and spatially aware architectures such
as SchNet.34,35

These types of techniques have also been previously applied
to the problem of solubility prediction. The most often applied
graph-based neural network techniques include DAG recursive
neural networks,15 graph convolutional networks,36 message
passing neural networks (MPNNs),37 and MPNN models with
self-attention.18 Other efforts have explored alternative
architectures such as Cui et al.38 who compare the perform-
ance of shallow neural networks with deeper ResNet-like
networks for solubility prediction. These efforts generally rely
on small data sets, ranging from 100 to 1297 molecules, with
the exception of Cui et al.,38 which leverages a data set with
around 10,000 molecules.
Despite these developments, the prediction of solubility

remains challenging.39 Several of the major challenges for this
task include the complexity of the solvation process, the
existence of measurement noise and data quality issues, the
diversity and scale of the molecular structure space, and the
broad range of solubility values which span many orders of
magnitude. Many of the described challenges and limitations
are driven by the limited size of available data sets, which do
not have the needed diversity or capacity for models to learn

the complex relationships between structure and solubility.
Another direction for addressing these challenges is through
the development of improved molecular representations and
the application of models with the capacity to learn complex
structure−property relationships.
In this work, we explore the predictive capacity of different

commonly used molecular representation approaches and deep
learning model variants on the largest and most diverse
collection of organic solubility measurements to date. We do
not aim to develop a novel modeling architecture, but instead
aim to evaluate the effect of commonly employed modeling
choices on our unprecedentedly large and diverse data set.
Toward this aim, we make several key contributions.
First, we perform a comparison across all commonly used

representations and modeling approaches on the same data set
to determine which are best suited to extract the underlying
structure−property relationships. This contrasts with previous
efforts which typically focus on a single modeling approach
compared with simple baselines, making it difficult to perform
comparisons of different representations and architectures. We
demonstrate that feed-forward networks leveraging molecular
descriptors outperform other approaches. While it is
challenging to make a direct comparison with previous efforts,
due to differences in the evaluation data sets, we find that the
combination of our models and training data set lead to
equivalent or improved performance on most previously used
solubility prediction data sets, demonstrating the impact of
large training sets on model generalizability.
Second, we perform detailed exploration of the errors made

by the resulting models to understand the types of molecular
structures for which the prediction is successful and the types
for which it is more challenging. We analyze the importance of
different feature types to support accurate solubility prediction
and find that 2D molecular descriptors provide the best
predictive signal which is not strongly improved by the
inclusion of 3D information, experimental melting points, or
Sterimol parameters. We introduce a novel evaluation
approach to specifically probe the ability of models to
distinguish the solubility of isomer groups and identify the
prediction of solubility within these groups as a key challenge
for future development. Finally, we demonstrate the impact of
data set size on the predictive capabilities of the model through
a transfer learning evaluation and an exploration of perform-
ance on smaller data subsamples. We find that doubling the
data size is associated with a reduction in the root-mean-square
error (RMSE) of 0.06 orders of magnitude and that using

Figure 1. Distributions of log solubility, molar mass (g/mol), and number of atoms for molecules in our data set.
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transfer learning provides a performance boost for models that
leverage raw molecular structure as inputs but not those that
rely on precomputed descriptors.
Data. In order to train our deep learning models we

leverage a large data set compiled by Gao et al.40 containing
data for 11,868 molecules collected from various data sources
(including OChem,41 Beilstein,42 and Aquasol43) combined
with data made available by Cui et al.38 and a commercial data
set obtained from Reaxys.42 Molecules for which RDKit Mol
objects could not be successfully created were discarded from
the data set. The final data set consists of 17,149 molecules
with sizes ranging from 1 to 273 atoms and with molecular
masses ranging from 16 to 1819. The measured aqueous
solubilities of these molecules range from 3.4 × 10−18 to 45.5
mol/L. The distributions of log solubility values, molecular
mass, and number of atoms are shown in Figure 1. Throughout
this paper, log S stands for base 10 logarithm value of solubility
S, which is in the units of mol/L, where L stands for the
volume of the solvent in liters.
In order to study the relationship between solubility and

molecular properties as well as to develop features for input to
the models, we generate several different sets of features
derived from the molecular structuretwo-dimensional (2D)
molecular features, three-dimensional (3D) molecular features,
functional group features, and density functional theory
(DFT)-based quantum descriptor features. First, we employed
2D molecular descriptors as implemented in the Mordred
package.44 In total, this package can generate 1613 descriptors
derived from 2D molecular structures. However, the descriptor
generation failed for some molecules in our data set, and we
therefore relied on 743 features which could be successfully
generated for all the molecules (these are listed in Tables S1
and S2). This set of features will be referred to as 2D
descriptors in the remainder of the text.
Additionally, we calculated a set of features describing the

3D structure of the molecules (which we will refer to as 3D
descriptors). Atomic coordinates for these calculations were
generated using the Pybel package.45 The coordinates are
optimized using MMFF94 force fields with 550 optimization
steps. There were 36 molecules for which coordinate
generation failed, which we dropped from the data set. Using
the approximated coordinates, we calculated counts of atoms
within six concentric layers around the centroid of the
molecule as described in Panapitiya et al.46 to be used as
features. Another set of features that contain information about
the distribution of atoms has been proposed by Ballester and
Richards.47 To calculate these features, the distances to all the
atoms with respect to three locations in the molecule
(centroid, closest atom to the centroid, and farthest atom to
the centroid) are calculated. Next, we calculate the statistical
moments of the atomic distance distributions from order 1 to
10. These features encode information about the shape of the
molecule. We also calculated the volume enclosed by all the
atoms in a molecule using the ConvexHull function
implemented in the SciPy package.46,48 In total, there are 37
resulting 3D descriptors.
In addition to the molecular descriptor features, we included

counts of molecular fragments and functional groups present in
the molecules. First, we identified a set of fragments to use as
features. We used RDKit49 to identify molecular fragments
attached to benzene-like structures (hexagonal ring with six
atoms) in our data set. From the resulting fragments, we
selected the 52 most common fragments in addition to seven

other functional groups commonly found in chemical
compounds. These 59 fragments are shown in Figure S1.
Combining the 2D descriptors, 3D descriptors, and fragment
counts, there are 839 molecular descriptors used as features.
Finally, in order to assess the impact of features derived from

DFT, we leveraged a set of quantum descriptors, including the
solvation energy (kcal/mol), molecular volume (Ang3),
molecular surface area (Ang2), dipole moment (Debye),
dipole moment/volume (Debye/A3), and quadrupole mo-
ments as calculated using the NWChem package.59 Due to the
high computational resources it takes to optimize large
molecular structures using DFT quantum descriptors, only
7764 molecules containing at most 83 atoms have been used.
Therefore, in our primary analysis we exclude these features
but perform a study of their impact on the models in the
Feature Analysis section.
In order to compare the performance of our models with the

results of previous efforts, we perform an evaluation using 13
previously existing data sets, including those from Delaney,50

Huuskonen,52 Boobier et al.,51 Tang et al.,18 Llinas̀ et al.,53 Cui
et al.,38 Llinas et al.,39 and Boobier et al.54 A summary of
different properties of these data sets are given in Tables 1 and

S3 and Figure S2. Except for the Cui data set, the others
consist of molecules containing at most eight rings. While the
Cui data set does contain complex molecules, our data set
introduces even further diversity. Because the data sets contain
duplicate entries with potentially differing solubilities, for the
purposes of our analysis, we treat duplicate entries across these
data sets according to a method similar to what is used in

Table 1. Comparison of the Diversity of Different Data Sets,
Showing the Range of Values Observed in the Data Setsa

data set N log S atoms AromAtom rings

ours 17,149 −17.5 to
1.7

1−273 0−64 0−33

Delaney50 1100 −11.6 to
1.6

4−119 0−28 0−8

Tang18 1310 −11.6 to
1.6

5−94 0−23 0−7

Cui38 9979 −18.2 to
1.7

1−216 0−60 0−16

Boobier51 100 −8.8 to
2.0

10−67 0−20 0−7

Huuskonen52 1011 −11.6 to
1.6

5−94 0−23 0−7

Sol. Challenge
153

114 −7.7 to
−1.1

13−76 0−19 1−5

Sol. Challenge 2
SET139

100 −6.8 to
−1.2

15−196 0−26 1−7

Sol. Challenge 2
SET239

32 −10.4 to
−1.2

21−123 0−30 1−8

water set wide54 900 −12.8 to
1.6

4−80 0−26 0−6

water set
narrow54

560 −4.0 to
1.0

4−61 0−17 0−6

Hou SET155,56 21 −8.1 to
0.4

18−57 0−18 0−4

Hou SET255,57 120 −10.4 to
1.0

6−57 0−18 0−5

Wang58 1640 −11.6 to
1.6

4−119 0−28 0−8

aN, log S, atoms, AromAtom, and rings refer to the number of
molecules, log solubility (mol/L), number of atoms, number of
aromatic atoms, and number of rings, respectively.
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Sorkun et al.43 (described in detail in the Supporting
Information).
To support the prediction of solubility, we also explore the

use of transfer learning by leveraging large molecular data sets
(QM9 and PC9), which do not include solubility labels, but do
contain significantly more molecules than our solubility data
set. The QM9 data set contains 133,885 small molecules with
sizes up to nine atoms and composed of only H, C, N, O, and
F atoms.60 For each molecule, the data set contains 17
energetic, thermodynamic, and electronic properties along with
the SMILES structure corresponding to B3LYP relaxation.60

The PC9 data set contains 99,234 unique molecules that are
equivalent to those in QM9 in terms of the atomic
composition and the maximum number of atoms, but the
data set is designed to improve upon the chemical diversity in
comparison with QM9.61

Solubility Prediction. We aim to develop deep learning
models that can infer the solubility of a molecule by exploiting
the patterns that exist between structural molecular properties
and measured molecular solubility. We include an exploration
of such patterns in our data set in the Supporting Information.
In order to train models that can automatically recognize such
patterns, there are various ways of representing a molecule for
computational purposes along with associated deep learning
architectures designed to learn from such representations. Of
these, representing a molecule as a vector of structural/electro-
chemical features, as a SMILES string, as a molecular graph,
and as a set of 3D atomic coordinates are widely used methods.
We use these four representations and associated deep learning
architectures to explore which representations and models are
best suited toward high-accuracy solubility prediction.
The first representational approach relies on a large suite of

molecular descriptors which quantify the structural and
electro-chemical properties of the molecule. We leverage a
fully connected neural network to predict the solubility, given
this set of features. The feature set we use includes the 2D
descriptors, 3D descriptors, and fragment counts. Before
training the models, the features in the training, validation,
and test sets were scaled to zero mean and unit variance using
transformation parameters based on the training set. We refer
to this model as the molecular descriptor model (MDM).
Our second model is based on using the SMILES string

representation of each molecule as an input to a character-level
long short-term memory neural network,62 which is designed
to process sequential data such as the character sequences that
comprise SMILES strings. We refer to this model as the
SMILES model.
Our third model is a GNN. In the material science domain,

GNNs have been widely used for material property prediction
and inverse material design.3,15,18,63,64 Our model relies on a
molecular graph representation, where the atoms and bonds
become nodes and edges of a graph, respectively, and a graph
convolutional network, which consists of graph convolutional
and edge convolutional layers. Each node is initially assigned
with a set of features. For this work, we used the features
defined in the “atom_features” function of the DeepChem
library65 which include atomic symbol, degree, implicit
valence, total number of hydrogen atoms, and hybridization
of the atom as a one-hot encoded vector, whether the atom is
aromatic or not as a boolean feature, and the formal charge of
the atom (refer to the Supporting Information for more
details). The GNN then learns to update the node and edge

features through an iterative process called message passing.
We refer to this model as the GNN model.
Finally, we apply a model designed to learn from the full 3D

atomic coordinate representation of the molecules called
SchNet, originally developed to predict molecular energy and
interatomic forces.35 The SchNet architecture is built upon
three types of sub-networks: atom-wise layers, interaction
layers, and continuous filter-networks, which learn atom-level
representations based on the observed distances between
atoms. We refer to this model as the SchNet model.
The average time (in seconds) required to generate input

representations for a single molecule for the MDM, SMILES,
GNN, and SchNet models are 0.52, 0.0004, 0.0029, and 0.03
using a Dual Intel(R) Xeon(R) CPU (E5-2620 v4 @ 2.10
GHz) with 64 GB memory. The code for all the models is
accessible at https://github.com/pnnl/solubility-prediction-
paper.

Optimization. For the purposes of model development
and training, we split our full data set into three components
for training, validation, and testing. Prior to splitting, the
solubility values were binned into 6 folds as shown in Figure
S10. Next, 85, 7.5, and 7.5% of the data were chosen using
stratified sampling from the bins for the training, validation,
and testing splits, respectively. This procedure ensures that
high and low solubility molecules are sampled into each of the
three splits. Hyperparameter tuning was carried out using the
hyperopt python package.66 Due to the different training times
required by the different models, we were able to perform a
larger search of the hyperparameter space for some of the
models. For the MDM and GNN models, we considered 1000
different unique combinations, whereas for the SchNet and
SMILES models, only 50 and 20 combinations, respectively,
were evaluated. Details on the tuned hyperparameters, their
explored ranges, and the final selected parameter values can be
found in the Supporting Information.
All the models were trained while monitoring the mean

squared error of the validation set and saving the model
parameters corresponding to the lowest validation error.
Training was stopped if the validation error did not improve
for 25 consecutive steps. This early stopping procedure ensures
that the models are not over-fitted.

■ RESULTS AND DISCUSSION

We evaluate the performance of each of our representation and
modeling approaches using two error metrics, RMSE and mean
absolute error (MAE), and two correlational metrics, R2 and
Spearman correlation. The error metrics allow us to evaluate
the mean levels of error observed in the model predictions,
while the correlational metrics allow us to observe if the
models perform well at ranking the molecules in terms of
solubility, even if the exact predictions are not correct. The
performance results for each of the models are given in Table 2

Table 2. Evaluation Results for the Four Models on the Test
Set

RMSE MAE

model R2 Spearman (log S) (log S)

MDM 0.7719 0.8787 1.0513 0.6887
GNN 0.7628 0.8708 1.0722 0.7256
SMILES 0.7337 0.8603 1.1360 0.7609
SCHNET 0.6883 0.8337 1.2291 0.8892
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for a fixed test set and Table 3 using a cross validation
approach. The predicted versus actual solubility values for all
four models are shown in Figure 2 (left). We find that the best
performance is achieved by the MDM model, showing that the
models which leverage raw structural information alone are not
able to outperform the predictions using pre-derived molecular
features on this predictive task. The cross validation results
show that the performance differences between models are
robust and reproducible across test set sampling.
Of the three models that rely on raw molecular structure

information, we find the GNN model achieves the highest
performance, almost equaling the performance by the
molecular feature model. This shows that GNNs have the
capability to learn almost all the information embedded in the
molecular features using only a relatively small number of
atomic properties.
We also study the strengths and weaknesses of the different

representations and modeling approaches by observing
whether the different models make similar errors. In Figure 2
(right), we show the correlation in the predictions and errors
for each pair of the models. The high correlation values of the
predictions (>0.9) and errors (>0.65) show that although the
models are using different features and representations of the
molecules, they are making very similar predictions. This
indicates that the molecules which are easy and hard to predict
are largely held in common across the different models, rather
than different models excelling for different groups of
molecules.

Comparison with Previous Results. To validate the
predictive ability of our models, we compared the performance
of our modeling approaches with the results obtained in
previous solubility prediction studies using 13 different data
sets. These comparison efforts are complicated by the use of
differing data sets across many different previous studies, by
the fact that previous efforts largely used significantly smaller
data sets and by the overlap of the molecules across the
different data sets. In this comparison, we are aiming to
evaluate the impact of both the modeling approach as well as
the use of a large and diverse training set of solubility values.
The previous studies used two different strategies for model

validationa fixed test/train split approach and a cross-
validation approach where performance is averaged across
multiple random splits. For comparison purposes, we replicate
the evaluation approach used by each paper. When the external
data sets consist of separate train and test sets, we leverage
their training set in combination with ours and test the
resulting model performance on the external test set. For
external data sets where the previous authors did not provide
separate train/test sets, we used 10-fold cross validation to
obtain test results for external data sets. The folds were
generated by randomly splitting the external data in 10
portions and adding 9 of the portions to our training data and
using the remaining split as the test set. The final results were
calculated by cycling through all 10 folds as the test set and
averaging the results. We do not perform any new hyper-
parameter tuning for these models but rely on the parameters
determined by optimizing on our data set alone.

Table 3. Evaluation Results (Mean and Standard Deviation) Using Fivefold Cross Validation

RMSE MAE

model R2 Spearman (log S) (log S)

MDM 0.7676±0.0067 0.8797±0.0038 1.0841±0.0312 0.7173±0.0132
GNN 0.7539 ± 0.0103 0.8713 ± 0.0043 1.1156 ± 0.0378 0.7504 ± 0.0196
SMILES 0.7369 ± 0.0083 0.8643 ± 0.0035 1.1536 ± 0.0381 0.7843 ± 0.0268
SCHNET 0.6946 ± 0.0105 0.8411 ± 0.0046 1.2429 ± 0.0327 0.8702 ± 0.0273

Figure 2. Left: scatter plots of predicted versus actual log solubilities obtained by four models considered in this study. Right: Pearson correlation
of errors (top) and predictions (bottom) between different pairs of models.
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The resulting model accuracies for the 13 external data sets
are given in Figure 3. Note that due to data cleaning and
duplicate removal steps carried out in this work, the number of
molecules that we used to obtain the prediction accuracies for
these data sets may be different than the number of molecules
the above authors used to obtain their results. For example,
Delaney and Huuskonen data sets used by Lusci et al.15

contain 1144 and 1026 molecules, whereas our cleaned sets
consist of 1100 and 1011 molecules, respectively. When a data
set contains duplicates, it can cause train-test contamination
that leads to artificial inflation of the measured performance.
For example, when we evaluate our model on a non-
deduplicated version of the Delaney data set we find that
our MDM R2 improves from 0.92 to 0.93 and our RMSE
improves from 0.6 to 0.55 which are better than the previous
best results of 0.92 and 0.58. However, such results are
misleading due to the train-test contamination introduced by
the repeated molecules. Therefore, our cleaned and dedupli-
cated data set versions are more reflective of the true expected
performance of the model on unseen molecules but may not be
directly comparable to the previously existing results on these
data sets. The number of molecules in our cleaned sets are
given in Table 1.
We can see that the accuracies obtained for other data sets

are similar to or better than previous results for most of the
data sets. In particular, for the three data sets which appear the
easiest (Delaney, Huuskonen, and Tang), with low RMSE and
high R2 values already previously achieved, our models roughly
equal the previously existing performance. This could indicate
that there is limited room for predictive performance
improvement on these simpler data sets which may already
be limited by measurement uncertainties. In contrast, we find
that we achieve significant performance improvement for the
more challenging Boobier and Cui data sets which have

previous R2 results of only 0.71 and 0.42, respectively. These
results indicate the potential of a large, diverse data set in
combination with highly expressive deep learning models to
learn generalizable structure−property patterns applicable
across many different data sets.
The solubility challenge data sets have proven to be the most

difficult for our models. For Solubility Challenge 1, we find
that the molecules for which our models have the highest error
are those for the which the challenge competitors also had low
accuracy and that these molecules are very insoluble in water.68

This is consistent with our observation that machine learning
models generally find it difficult to accurately predict low
solubilities, which agrees with our results shown in Figures 6
and S14. Solubility Challenge 2 consists of two test sets. SET1
consists of highly accurate solubility values of 100 drugs whose
log S ranges from −1.2 to −6.8 with interlaboratory
reproducibility of approximately 0.17 in log units. SET2
consists of molecules whose log S values range from −1.2 to
−10.4 with a interlaboratory reproducibility of 0.62 log unit.
Our GNN model outperforms the mean performance of the
competitors for both data sets, achieving an RMSE of 0.91 on
SET1 and 1.17 on SET2 compared with a mean of 1.14 and
1.62, respectively, for the competitors. Our model would rank
5th for SET1 and 4th for SET2 (in terms of RMSE) among the
competitors whose train sets have been confirmed not to be
contaminated with the competition’s test molecules. Also,
when finding our rank, we did not assign separate ranks for
competitor entries whose accuracies were identical. That is, all
the competitors with the same prediction accuracy get the
same rank. The best RMSE values achieved by any competitor
for these sets are 0.78 and 1.06, respectively. It is interesting to
note that our GNN model outperforms our MDM model for
these two data sets, which is in contrast with the model
performance on most data sets.

Figure 3. RMSE (top) and R2 (bottom) values of predictions obtained by MDM and GNN for different data sets using different data set splitting
methods. The data sets on a white background were evaluated using cross-validation and those on a blue background were evaluated using a fixed
train-test split. Letters (a−i) correspond to the previous work that report current/previous best prediction accuracies for these data sets. (a): Tang
et al.,18 (b): Lusci et al.,15 (c): Wu et al.,67 (d): Boobier et al.,54 (e): Cui et al.,38 (f): Boobier et al.,51 (g): Llinas et al.,39 and (h): Hopfinger et al.68
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Error Analysis. Next we perform detailed analysis of the
errors made by the models to understand the factors leading to
improved and reduced predictive performance. We perform
several different analyses of the errors, including manual
examination of easy and difficult molecules and performance
comparison on molecules of different types.
Qualitative Examination. First, we observe the molecules

for which the models have exceptionally low or high error
values to illustrate the general types of molecules that are well
and poorly predicted. Figures 4 and 5 show the top 10
molecules with lowest and highest error for each model. We
find that the low error predictions of the MDM model are for
molecules with log solubilities in the range of −2.26 to −5.1,

showing that the greater data availability for this range of
solubilities may improve predictions. While there are no
common molecules among the low error instances across all
four models, we do observe a significant overlap in the
molecules that proved most difficult for the different models.
By examining the set of high error molecules, we can identify

several potential data labeling issues in the data set. For
example, we find that the original reference solubility for
molecule 4 (Figure 5) from the high MDM errors is actually
the solubility of the decomposed aldehyde product rather than
the solubility of the full molecule. For molecule 6 from the
high MDM errors, there are two values that exist in the
literature, log S = −1.44,69 which is the value in the current

Figure 4. Ten lowest error molecules for each model. For molecules from the commercial database Reaxys, we list error values (true-predicted)
rather than providing the true solubility measurement.

Figure 5. Highest error molecules with absolute errors greater than 4 log S. For molecules from the commercial database Reaxys, we list error
values (true-predicted) rather than providing the true solubility measurement.
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database, and log S = −4.54,70 which is in better agreement
with the model prediction.
When collecting measurement data from multiple online

sources to compile a large database, the existence of some level
of noise and errors in the data cannot be easily avoided. The
process of manual validation of measurements is time-
consuming and would not be tractable to perform on a
database with 17K molecules. The qualitative examination
performed here shows that errors made by the predictive
models can be used as a signal to identify potential issues
arising in the data, informing improvements to future versions
of the database. By showing that low performance on some of
these molecules can be attributed to data issues rather than
true model errors, we also increase confidence in the predictive
capabilities of the models.
Errors by Solubility. Next, we observe whether there is

any relationship between model error and measured solubility
of the molecules. We binned the molecules into solubility
ranges and calculated mean and standard deviation of model
errors on the test set in each bin, as shown in Figure 6. The

corresponding number of training data points for each range is
also shown. We find that generally solubility ranges with more
data are easier to predict, showing the impact of training data
size on model performance. We also find that the models
generally have worse errors for low solubility molecules, with
higher solubility molecules being easier to predict. However,
we should also keep in mind that the predictive task is
performed on log solubility, which means that an absolute
error of 2 orders of magnitude represents a much smaller

actual error for low solubility bins than it does for high
solubility bins. It is also known that experimental limitations
make it challenging to measure very low solubility values71 and
these measurements are likely associated with high uncertain-
ties.
To further investigate whether the inclusion of low solubility

inhibits the performance of our models, we retrained MDM
and GNN models using the molecules corresponding to log S
greater than −10, −7, −5, −4, and −2. As shown in Table 4,
for both MDM and GNN, we observe a significant improve-
ment in the RMSE and MAE for predictions made on high
solubility data compared to low solubility ones, indicating that
there is likely less absolute uncertainty in the high solubility
molecules. However, we find that the correlational metrics gets
worse as the data are filtered, showing that the relative
solubility of the low solubility molecules still provides a useful
signal to the models to learn to distinguish high solubility
molecules from low solubility molecules.

Errors by Molecule Type. Next, we aim to determine
whether certain types of molecules are more challenging for
the model to predict. We select several subsets of our data set
by molecule type, such as chiral molecules and inorganic
molecules and analyze the model performance for these
subsets. The results of this analysis are shown in Table 5. It is

interesting to note that chiral compounds can be predicted
with better than average accuracies given that the input
molecular representations may be less sensitive to stereo-
chemistry. We also find that molecules in our data set that fall
into groups of isomers are relatively easy to predict. However,
we will show in the Molecule Group Evaluation section that it
is difficult for models to distinguish the solubility of molecules
within individual groups of isomers. Even though there are
2580 salts and organo-metallic compounds in the training set,
the model has found it difficult to learn a generalized mapping
function for this group of compounds as we see reduced
performance of this group compared with chiral molecules and
isomers. It should also be noted that 99% of molecules in this
subset are composed of multiple fragments.

Figure 6. Test set error by solubility range (in log S) for the four
models with the number of test molecules in each bin annotated on
the plot, showing the mean and standard deviation per bin.

Table 4. Change in the Test Set Performance as the Low Solubility Molecules are Filtered out of the Data Seta

MDM GNN

log S thresh R2 RMSE Spearman MAE R2 RMSE Spearman MAE

−10 0.7654 1.0604 0.8763 0.6975 0.7627 1.0663 0.8740 0.7333
−7 0.7461 0.9580 0.8644 0.6351 0.7289 0.9899 0.8576 0.6846
−5 0.7093 0.8423 0.8343 0.5790 0.6910 0.8684 0.8244 0.6153
−4 0.6817 0.7597 0.8106 0.5447 0.6620 0.7828 0.7955 0.5759
−2 0.5206 0.6134 0.6850 0.4564 0.5101 0.6201 0.6572 0.4707

aResults given in each row were obtained using molecules with log S > “log S thresh”.

Table 5. Test Set Errors by Molecule Typea

MDM GNN

group N R2 RMSE R2 RMSE

all 0.77 1.05 0.76 1.07
chiral 142 0.85 0.92 0.81 1.03
salts and org.M 230 0.77 1.08 0.76 1.11
isomers 90 0.90 0.76 0.87 0.89
all other 857 0.74 1.08 0.74 1.08

aN is the number of molecules of each type in the test set; org.M
stands for organo-metallic compounds.
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Cluster Analysis. To better understand what might be
driving the patterns in which molecules are easier and harder
to predict, we expand our analysis beyond these predefined
molecular classes. We would like to analyze whether particular
molecular properties influence the predictive ability of the
models. We first checked whether the model errors are
correlated with any of the molecular features and found that
the highest Pearson correlation coefficient was fairly low at
around 0.3.
To move beyond analysis at the individual feature level, we

aim to determine groups of similar molecules and compare the
achieved error levels on these groups. To identify groups of
similar molecules, we apply k-means clustering and manually
selected 15 clusters to obtain a small set of molecule groups to
analyze. We scaled all the features to zero mean and unit
variance to ensure the differing magnitudes of different features
does not cause certain features to be more influential in the
clustering. We drop six of the resulting clusters that contain
less than 10 members. The test errors of the remaining nine
clusters are plotted in Figure 7 in ascending order of mean

absolute errors of the MDM and GNN models. For each
cluster, the 10 molecules closest to the cluster center are
shown in Figure S12. We note that for the majority of clusters,
the two different modeling and representation approaches
show very similar error patterns across the groups. This
reinforces our earlier conclusion that despite the difference in
information available to the two models, they are able to learn
similar structure−property relationship patterns.
We observe that there are significant mean error differences

across the different clusters and seek to explain which
molecular properties of clusters can best explain observed
differences in their error levels by looking for correlations
between the average errors across clusters and the average
molecular descriptors across clusters. Correlation values of
highly correlated features with the error are given in Figure
S13. Scatter plots of averaged property values with respect to
averaged error are shown in Figure S14. We first observe that
the cluster errors do not appear to be driven primarily by
molecular size, with a correlation of only 0.48 between average
error and number of atoms. We do find a moderate negative
correlation of mean cluster error with mean cluster solubility
(−0.65). This observation reinforces results in Figure 6, which

shows molecules with low solubilities are more difficult to
predict.
The descriptors *C(C)O and cenM9 show the highest

correlation with the average cluster errors, with Pearson
coefficients of 0.95 and 0.92, respectively. *C(C)O is the
count of *C(C)O fragments in the molecule. cenM9 is a
descriptor that quantifies the shape of the molecule and is
defined as the 9th statistical moment of the distribution of
distances between the centroid and all the atomic positions of
a molecule. Another descriptor that has a high positive
correlation with the cluster error is SRW05, which is defined as
the number of self-returning walk counts of length 5 in the
molecular graph. Such self-returning walks can only exist in the
presence of three- or five-membered rings, with higher values
for molecules with a greater number of such rings. The features
cenM9 and SRW05 can be thought of as measures of the
complexity of a molecule. Therefore, it seems that the more
complex the molecular structure, the more difficult it is to
make predictions for such molecules.

Molecule Group Evaluation. We next analyze the ability
of the models to accurately distinguish solubilities of
structurally similar molecules. For this analysis, we considered
three sets of molecules: (1) positional isomers, (2) molecules
with same core structures but different functional groups, and
(3) molecules containing same type of functional groups
attached to different core structures. For example, there are
468 groups of molecules in the isomer set, where each such
group consists of n molecules that are isomers of each other.
Correspondingly, there are 176 groups of molecules with the
same core structure (we excluded isomers from this set) and
21 groups of molecules having the same type of functional
groups but different core structures. The details on how these
three sets were determined are given in the Supporting
Information. The median number of molecules in isomer,
same-core, and same-functional-group sets are 2, 4, and 37,
respectively.
For each sub-group of similar molecules, we calculated the

Spearman correlation coefficient between the predicted and
actual solubility values. This measure indicates whether the
models are able to correctly rank the molecules within the
group from highest to lowest solubility. We then average the
Spearman correlation across all sub-groups within each of the
three sets. The averaged Spearman correlation for each set is
shown in Figure 8. We compare the Spearman correlation
observed for these groups of molecules with the correlation
achieved for randomly selected groups of molecules of the
same size. We find that, for the same core and functional group
sets, the MDM model is able to correctly rank molecules
almost as well as it can for random groups of molecules. This is
a particular strength of that model over the other three
architectures.
However, the ability to rank order the solubilities of

molecules in the isomer set is significantly more challenging
compared with the other two sets. This result could potentially
be explained using the fact that the solubilities in the isomer set
do not vary as much as those in a randomly chosen sample
(see Figure S8). However, in Figure 9, we show the Spearman
correlation between predicted and actual solubility values
versus the level of variability within the group of molecules (as
measured by the standard deviation). We see that the
Spearman correlation is significantly lower for groups of
isomers than for groups of random molecules even after
controlling for the level of solubility variation within the group.

Figure 7. Mean errors by cluster. Error bars indicate the standard
deviation across molecules in each cluster.
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This shows that the ability to distinguish the effect of
functional group positioning on solubility is a key area of
improvement for future modeling efforts.
Feature Analysis. We next seek to analyze the importance

of different feature types on the ability of the MDM model to
accurately predict the solubility. We do this by training
alternate versions of the model with certain feature sets added
or removed.
While there is a benefit to the development of models that

do not depend on inputs requiring computationally and
temporally expensive calculations such as DFT, we tested the
effect of adding such inputs to our models using a subset of the
data for which the quantum descriptors were available. Table 6
summarizes the effect of adding these features. It is interesting
to note that by using only eight quantum descriptors, the
model can achieve reasonable accuracies, even though these
accuracies are not as high as those obtained with Mordred-

generated molecular descriptors. However, the combination of
both quantum mechanical and Mordred-generated features
does not result in an improvement compared with the
accuracies obtained using the molecular descriptors alone.
We want to understand the importance of 3D molecular

shape information on supporting solubility prediction. There-
fore, we compare the effect of 2D and 3D descriptors on model
performance. In Table 6, we list the MDM model accuracies
obtained using 2D descriptors alone, 3D descriptors alone, and
the combination of both 2D and 3D descriptors. Even with just
2D descriptors, MDM is capable of outperforming our GNN
model. The 3D descriptors alone do not have significant
predictive power. More surprisingly, we do not see a boost in
performance when 3D descriptors were added to the 2D
model. While we expect 3D structural information to be
relevant to determine solubility, it may be that the
approximated 3D coordinates calculated using force field

Figure 8. Spearman correlation of actual and predicted solubilities in groups of similar molecules compared with groups of random molecules. We
show results for the four main models (GNN, MDM, SMILES, and SchNet) as well as two GNN variants (GNN-3D and GNN-All) discussed in
the Feature Analysis section.

Figure 9. Spearman correlation versus the within-group standard deviation for isomer/same core/same functional groups for the MDM model.
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methods implemented in Pybel do not provide sufficient
accuracy for fully extracting the structure-solubility relation-
ship. If these coordinates, which might not be as accurate as
the ones generated using first-principal’s calculations, do not
correspond to the actual geometry, it could adversely affect the
quality and effectiveness of models trained on these
descriptors. Additionally, the 3D information may provide a
benefit for certain subsets of the solubility prediction task, such
as distinguishing the solubility of very structurally similar
molecules, without providing a significant boost to the overall
predictive performance. Our 3D descriptors only encode
information about the 3D layout of the molecule but are
missing information about the types of atoms in the molecule.
In order to check whether 3D descriptors equipped with atom
type information can improve the prediction accuracy, we
modified two of the current 3D descriptors. Instead of just
considering the number of atoms in concentric layers around
the centroid, we considered different types of atoms in
concentric layers. The descriptors proposed by Ballester and
Richards47 which encode the shape of the molecule were also
modified to consider the distributions of distances to different
types of atoms from the centroid, closest atom to the centroid,
and farthest atom to the centroid. Ten atom types that are
most common in our data set were used to calculate these
descriptors. After removing four descriptors that have only one
unique value, the resultant number of new descriptors is 176.
In Table 6, we show the prediction accuracies obtained when
type-independent 3D descriptors were replaced by type-
dependent ones. The use of type-dependent descriptors
resulted in slightly worse prediction accuracies than what
have been already achieved using the type-independent
counterparts. It is likely that the new descriptors are still not
sufficiently informative and the increase in the total number of
features could have introduced some noise to the data set. In a
future work, we plan to design new complex 3D descriptors
coupled with feature selection to encode more structural
information.
Melting point and solubility are considered to be inversely

proportional.72 Using 4652 molecules for which measured

melting point values are available, we tested the effect of using
the melting point as a feature for solubility prediction.
Interestingly, as shown in Table 6, we do not see a significant
effect due to using melting point as a feature, showing that
using structural information alone provides as much predictive
power as the use of relevant experimental measurements. Not
only does melting point not provide additional predictive
power beyond structural information but it also appears to
provide little predictive power on its own for this data set.
Using melting point as the only feature achieved an R2 of 0.02
and an RMSE of 2.26 which provides little improvement over
the RMSE of 2.28 from simply using the mean log S value as
the prediction.
Motivated by several works that have studied the relation-

ship between steric effects and solvation, we tested the
importance of Sterimol parameters for solubility predic-
tion.73,74 This comparison has been especially frequently
established when discussing sterics as a part of common
organic chemical reactions.75 Sterimol parameters have been
developed to describe the steric effects in molecules.76−78

More details on the Sterimol parameters are presented in the
Supporting Information. We find that our MDM model does
not seem to be improved due to adding three Sterimol
parameters, B1, B5, and L1 as features. Additionally, training a
model using only these parameters as input resulted in an
RMSE of 2.09 and an R2 around 0.02.
The node features of our GNN model depend only on the

2D structural representation of the molecule. As an initial test
to check whether incorporating any 3D information have an
effect on GNN model accuracy, we added atomic coordinates
as node features. These coordinates were generated using
Pybel and some molecules were discarded after they failed in
this generation. We find that adding 3D atomic coordinates as
node features does not improve the GNN model performance.
Learning the relevant 3D structural features of the compound
using atomic coordinates alone as node features seems to be
challenging.
An alternate method to add 3D information to the GNN

model is to leverage the 3D descriptors as an additional input

Table 6. Comparison of the Cross Validated Model Performance due to the Inclusion of Different Types of Features in the
MDM and GNN Modelsa

model features R2 RMSE Spearman

MDM DFTb 0.68 ± 0.02 1.23 ± 0.02 0.79 ± 0.01
Mol.b 0.79±0.02 0.99±0.02 0.88±0.01
Mol. + DFTb 0.79±0.02 0.99±0.02 0.88±0.01

MDM 2Dc 0.77±0.01 1.08±0.02 0.88±0.01
3Dc 0.39 ± 0.01 1.76 ± 0.03 0.61 ± 0.01
2D + 3Dc 0.77±0.01 1.08±0.03 0.88±0.01
2D + 3Datom‑type

c 0.76 ± 0.01 1.10 ± 0.03 0.88 ± 0.01
MDM w/o MPb 0.79 ± 0.01 1.04 ± 0.02 0.89 ± 0.00

with MPb 0.79 ± 0.01 1.03 ± 0.02 0.89 ± 0.01
MDM w/o WSb 0.79 ± 0.01 0.96 ± 0.04 0.89 ± 0.01

with WSb 0.79 ± 0.01 0.96 ± 0.03 0.89 ± 0.00
GNN w/o 3D coordinatesb 0.73±0.01 1.15±0.05 0.86±0.01

with 3D coordinatesb 0.71 ± 0.01 1.20 ± 0.04 0.85 ± 0.00
MetaLayer 2Dc 0.74±0.02 1.16 ± 0.04 0.87±0.00

3Dc 0.71 ± 0.03 1.20 ± 0.07 0.85 ± 0.02
2D + 3Dc 0.74±0.02 1.15±0.04 0.87±0.00

a2D denotes 743 2D descriptors and 59 molecular fragments. 3D denotes 37 3D descriptors. 3Datom‑type denotes 3D descriptors containing atom
type information. MP and WS represent melting point and Sterimol parameters. bObtained using the entire data set. cObtained using the molecules
for which the relevant descriptors were available or able to be calculated.
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to the model. Recently, the MetaLayer model79 has been
proposed as a graph neural architecture which is capable of
learning from properties “global” to the entire graph structure,
which allows us to use the molecular descriptors as an
additional input to our GNN model. The results given in Table
6 shows, consistent with the MDM results, that the 2D
descriptors are individually more informative than the 3D
descriptors. However, the addition of the molecular descriptors
is not strong enough to surpass the accuracies obtained by our
original GNN model.
While the MetaLayer model does not improve on the overall

performance, we find that this approach can achieve better
accuracies for groups of similar molecules compared to the
original GNN model, which may suffer from a lack of 3D
information needed to distinguish isomers. These results are
shown in comparison with the original GNN model in Figure
8. We see the MetaLayer model that uses only 3D descriptors
outperforms all the other models in rank-ordering the
solubility values in each isomer group.
Effects of Data Size. While deep learning models have

been shown to excel at learning complex patterns such as those
involved in structure−property relationships, they also typically
have large data requirements to achieve good performance at
these complex tasks. We perform several analyses to study the
impact of data set size on our model performance. First, we
study the impact of transfer learning by pretraining models on
large external data sets before fine-tuning on the solubility
prediction task. Second, we evaluate our models with smaller
subsamples of our data.
Transfer Learning. Transfer learning is a machine learning

technique in which the knowledge a model gains from training
on one task is transferred to improve performance on a second
task. We apply transfer learning to the solubility prediction task
by first pretraining our models on two large data sets, QM9
and PC9. While these data sets do not contain solubility labels,

they are 9 and 7 times larger than our solubility database,
respectively, and can help the model learn patterns that relate
molecular structure to molecular properties. To perform
transfer learning, we first train MDM and GNN models to
predict all the molecular properties included with the QM9
and PC9 data sets and then, starting from weights learned on
the QM9 or PC9 data set, we perform further training using
the solubility data.
In Figure 10, we show the learning curves of the MDM and

GNN models both with and without pretraining, showing how
the RMSE decreases during training. We find that pretraining
with PC9 data improves the initial performance of the models
at the start of training for both the MDM and GNN models.
However, for the MDM model the pretraining on the external
data sets does not seem to improve the ultimate achieved
performance after fine-tuning. The GNN model on the other
hand, benefits from pretraining with both PC9 and QM9
throughout the training process and pretrained models achieve
improved final performance compared with the non-pretrained
model with RMSE dropping from 1.0722 to 1.0656 due to
pretraining. Because the GNN model learns from raw
molecular structure while the MDM model learns from pre-
derived features, the GNN model benefits more from the
additional training data, which can help it learn the complex
relationship between the raw molecular structure and resulting
properties.
We also observe that across the different results, the PC9

data set provides a bigger boost in performance compared with
the QM9 data set. This gives evidence for the assertion in
Glavatskikh et al.61 that the PC9 data set improves upon the
chemical diversity of QM9, leading to better generalization of
the patterns learned from the data set to other data sets and
tasks.

Data Size Sensitivity. To investigate the effect of
increasing the size of our data set, we conducted a data

Figure 10. Learning curves for the MDM model (left) and the GNN model (right) with and without pretraining.

Figure 11. Model performance (RMSE) as a function of training set size for the MDM model (left) and the GNN model (right).
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ablation study by decreasing the size of the training data set,
with a fixed test set, and analyzed the final test accuracy for
each training data set size. The data set sizes were calculated by
taking the full data set and dividing by increasing integer
powers of two, 20, 21, 22, 23, and 24. This results in data sets
that are 100, 50, 25, 12.5, and 6.25% of the total size. We
trained the MDM model and GNN model on each data set
size in three configurationsfrom a random weight initializa-
tion, from the pretrained QM9 weights, and from the
pretrained PC9 weights. Each model and configuration was
trained five times on a given data set size using the Adam
optimizer with a learning rate = 0.001 for 100 epochs.
Figure 11 shows the mean and standard deviation of the best

validation root-mean-squared-error for each data set size both
with and without pretraining. We can see the root-mean-
squared-error is still decreasing as the data set size is increased
from half to full, suggesting that increasing our data set size will
continue to improve results. However, it should be noted that
as the x-axis is the power of two dividing the full data set size,
this improvement in results will have diminishing returns with
respect to the number of data examples added to training. For
example, by extrapolating the observed trajectory, we would
expect to need to double the training set size to reduce the
RMSE below 1 order of magnitude for the MDM model.
This study also shows some interesting patterns with regard

to the combined impact of pretraining and data size. For the
MDM, PC9 appears to have a benefit on performance for small
solubility data sets but not for large ones. In contrast, the
benefit of PC9 pretraining appears for larger data sets using the
GNN model. This difference is likely due to the different
requirements of the two models. The MDM model needs to
learn a transformation from high-level structural descriptors to
the target labels, while the GNN needs to learn a trans-
formation from raw structure information to the target labels.
The GNN may need a larger solubility data set in order to
learn to adapt the patterns that it learned from PC9 to the new
solubility target. Meanwhile, the patterns the MDM must learn
are simpler so it can quickly adapt the learning from PC9 with
a smaller solubility data set, and, given a large enough data set,
it can eventually learn the structure-solubility relationship well
enough that it cannot be improved by pretraining.

■ CONCLUSIONS AND FUTURE WORK
We performed a comparison of different deep learning
modeling approaches and molecular representations for the
prediction of aqueous solubility using the largest set of
solubility measurements to date. Through the use of large,
diverse data sets combined with deep learning methods, we
demonstrate equal or improved performance on many existing
solubility prediction data sets. Overall, we found the best
performing approach leveraged a set of derived molecular
features which comprehensively describe the molecular
structure rather than approaches which leverage raw molecular
structure information directly. This contrasts with previous
studies which have shown the power of deep learning for
learning structure−property relationships directly from raw
structure.18,38 Of the models which did rely on raw structure,
graph-based molecular representation showed the strongest
performance, almost equaling the MDM model in overall
performance but showing reduced ability to distinguish the
solubilities of similar groups of positional isomers.
The superior performance of the MDM model is likely due

to its ability to create a better representation for molecules by

mixing a large number of information-rich structural
descriptors without the need to learn from raw structure.
However, given that the GNN model is the only one that does
not use any 3D information, its achieved performance
accuracies are noteworthy. Additionally, even though SchNet
was designed to harness the structural information from 3D
atomic coordinates, it significantly underperformed the other
modeling approaches. We suspect the small training set size
compared to the data sets originally used for the SchNet model
might have played a role in this result. Computational
requirements also limited the hyper-parameter optimization
we were able to perform with this architecture.
There are also considerations other than model accuracy in

terms of practical implementation of the different models,
including speed and efficiency of computation. In addition to
its high accuracy, the MDM is fast to train compared to the
other modeling approaches which leverage more complex
architectures. However, this model requires the generation of
molecular features, which is slow, and if 3D features are to be
included, then atomic coordinates are required. The best form
of 3D coordinates is the ones obtained experimentally, but this
is not tractable for large data sets. The next best alternative is
to optimize geometries using first-principles calculations.
These calculations are time-consuming and obtaining these
coordinates for large molecules is not practical. Approximated
3D coordinates can be calculated relatively quickly; however,
these coordinates are often not reproducible, which could lead
to inconsistent results.
In addition to the evaluation of the overall performance of

the models, we performed extensive analysis of the errors
observed for different modeling approaches. This error analysis
leads to several key findings. Models with differing data
representations and architectures make highly correlated
errors, showing that they are learning similar structure−
property relationships. Model errors are lower for molecules
with higher solubility and for solubility ranges with larger
amounts of training data and higher for more complex
molecules. The models struggle to infer the effect of small
structural changes, such as functional group position, on the
molecular solubility. Contrary with expectations, 3D informa-
tion about molecular structure has a limited impact on overall
model accuracy. However, it does lead to improved, but still
limited, performance on solubility prediction for isomer
groups.
Our analyses identify several key directions for improving

the predictive performance of solubility prediction models. We
determined that pretraining models with large external data
sets can provide a performance boost for model architectures
which rely on raw structural inputs. While we have initially
explored only two such data sets, there is potential for
significant improvements using even larger supervised or
unsupervised pretraining. We have also confirmed that the
number of data points available for training plays a significant
role in predictive performance, motivating the collection of
additional solubility measurements. However, for some
solubility ranges, such as those in the lower or higher ranges,
gathering more data can be difficult. Targeting data collection
to achieve good coverage in the target solubility ranges of
interest for a given application will be key. It is also clear that
improvements are needed in the prediction of solubilities of
very similar molecules and molecules with multiple fragments,
which is likely related to both limitations of the available
training data and limitations of current molecular representa-
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tions and architectures. The collection of focused data sets
designed to supervise the improved performance on these
molecular types as well as the development of novel
representations and model techniques should be targeted for
achieving performance improvements.
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