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DNA Methylation and Blood Pressure Phenotypes: A Review

of the Literature

Marguerite R. Irvin,"® Alana C. Jones,' Steven A. Claas,? and Donna K. Arnett?

Genetic studies of DNA have been unable to explain a significant
portion of the variance of the estimated heritability of blood pres-
sure (BP). Epigenetic mechanisms, particularly DNA methylation,
have helped explain additional biological processes linked to BP
phenotypes and diseases. Candidate gene methylation studies
and genome-wide methylation studies of BP have highlighted im-
pactful cytosine-phosphate-guanine (CpG) markers across different
ethnicities. Furthermore, many of these BP-related CpG sites are also
linked to metabolism-related phenotypes. Integrating epigenome-
wide association study data with other layers of molecular data
such as genotype data (from single nucleotide polymorphism
arrays or sequencing), other epigenetic data, and/or transcriptome
data can provide additional information about the significance and

High blood pressure (BP) is a common condition faced by
over a billion people worldwide.! It is a serious risk factor
for multiple cardiovascular and renal disorders.> A 20 mm
Hg increase in the systolic BP (SBP) in patients within the
40-49 year age group doubles the risk of mortality from
stroke and other vascular diseases.’ Likewise, achieving
a 10 mm Hg lower SBP (through lifestyle changes and/or
antihypertensive treatment) within the same age group has
been associated with a 41% decreased risk of stroke or other
vascular disease.* Effective antihypertensive treatments
exist, but unfortunately only about ~50% of those treated
for high BP achieve treatment goals.> High BP has no clear
cause but is thought to be linked to genomics, poor diet,
lack of exercise, and obesity. While lifestyle factors affecting
high BP are well understood, the genomic factors linked
to high BP are still under intense study.® Importantly, it is
becoming clear that strictly studying DNA sequence varia-
tion does not fully account for the complex mechanisms of
regulation of gene expression.” Epigenetic mechanisms, in-
cluding DNA methylation, histone modification, and var-
ious RNA-mediated processes, are major contributors to
gene expression and respond to both genetic (underlying
DNA variants) and environmental effects (e.g., smoking,
alcohol, stress). The most commonly studied epigenetic
modification is the addition of a methyl group to the cyto-
sine of a cytosine-phosphate-guanine (CpG) dinucleotide
pair (see Figure 1). DNA methylation is a component of
the 1-carbon metabolism pathway and is dependent upon

complexity of these relationships. Recent data suggest that epige-
netic changes can be consequences rather than causes of BP vari-
ation. Finally, these data can give insight into downstream effects
of long-standing high BP (due to target organ damage (TOD)).
The current review provides a literature overview of epigenetic
modifications in BP and TOD. Recent studies strongly support the
importance of epigenetic modifications, such as DNA methylation,
in BP and TOD for relevant biological insights, reliable biomarkers,
and possible future therapeutics.
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several enzymes (S-adenosyl methionine is converted to
S-adenosyl homocysteine by DNA methyltransferases) and
dietary micronutrient cofactors, including folate, choline,
and betaine. Functionally, hypermethylation of cytosine
at CpG sites, particularly in the gene promoter region of
genes, most often leads to gene silencing by altering DNA
structure and/or by inhibiting transcription factor binding.
Thus, epigenetic markers play a crucial role in defining the
genetically active or inactive regions of the genome.®? As
DNA methylation is a stable, covalently bound mark, it is
consistently measurable in fresh and archived tissue and
biofluid samples with various polymerase chain reaction,
array, and sequencing methods.!® High-density regions
of CpG dinucleotides are found in the regulatory regions
of about 60% of known genes.!! Over the last decade, the
availability of DNA methylation (at CpG sites) arrays has
led to an explosion of studies characterizing new markers
for cardiovascular diseases (CVDs, including high BP).12-15
Notably, not all mammalian cell types show the same degree
of methylation, which can result in the expression of diverse
phenotypes (which is especially important during develop-
ment). In comparison to genetic epidemiology studies, epi-
genetic epidemiology studies are complicated by tissue type
and the population distribution of epigenetic differences
(especially among age, sex, and ethnic groups'®-!%). Despite
this heterogeneity, statistically significant findings have
been generally easier to replicate in genetic epidemiology
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studies of CVDs (even across ethnic groups).!®* This may
be because many epigenetic variations associated with CVD
traits are suspected to be environmentally driven as deter-
mined by Mendelian randomization studies (which report
methylation variations at CVD trait associated CpG sites
are the consequence of the trait rather than the cause).?:?2
Additionally, CpGs associated with continuous CVD traits at
the cross-sectional level have been associated with incident
disease (e.g., methylation sites associated with blood lipids
are associated with future coronary heart disease; see Figure
2).2% Given the strong findings in this field, methylation is
a recognized target for the continuation of advancements
in individualized risk assessments and even therapeutic
targets.”* Here, we describe published studies of methyla-
tion and BP traits, including a section on target end organ
damage (TOD), which have focused on candidate genes as
well as hypothesis free (i.e., genome-wide) investigations.

CANDIDATE GENE ASSOCIATION STUDIES

Many candidate gene studies of epigenetic determinants
of BP have examined genes associated with the renin-angi-
otensin-aldosterone system (RAAS). Key RAAS genes asso-
ciated with methylation alterations in humans or human cell
models have included AGT (angiotensinogen), AGTRI (angi-
otensin II type 1 receptor), ACE (angiotensin-converting en-
zyme), NOS3 (for eNOS, endothelial nitric oxide synthase),
and SCNNIA and SCNNIB (epithelial sodium channel
(ENaC) alpha and beta subunits). In one study, 3 different
stimulatory signals (interleukin 6 (IL6), excess circulating
aldosterone, and high salt intake) led to changes in DNA
methylation of AGT around a transcription factor binding
site and a transcription start site (in 3 different tissue-
based models).?® Specifically, in cultured human H295R
cells, IL6 stimulation caused DNA demethylation around
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Figure 1. DNA methylation. (Panel a) Hypermethylation of cytosine

(C) at CpG sites often leads to gene silencing by altering DNA structure
and/or by inhibiting transcription factor binding. Abbreviations: A, ade-
nine; G, guanine; M, methyl group; T, thymine. (Panel b) S-Adenosyl me-
thionine (SAM) is converted to S-adenosyl homocysteine (SAH) by DNA
methyltransferases (DNMT), thereby donating the methyl group (CH,) to
the fifth-position carbon of cytosine.
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a CCAAT/Enhancer Binding Protein (CEBP) binding site
accompanied by increased CEBP-f recruitment and chro-
matin accessibility of the AGT promoter. In a second model
in human visceral adipose tissue, excess circulating aldos-
terone upregulated AGT expression and was accompanied
by DNA hypomethylation around a CEBP binding site.
Finally, high salt intake led to upregulation of AGT expres-
sion, DNA hypomethylation around the transcription start
site, and decreased DNA methylation activity in rat visceral
adipose tissue.?* Similarly, studies from rat (lungs and liver)
and in vitro models (such as human liver (HepG2), colon
(HT29), microvascular endothelial (HMEC-1), and lung
(SUT) cell lines) demonstrated that hypermethylation of the
ACE gene promoter resulted in transcriptional repression,
indicating potential epigenetic regulation of ACE-mediated
hypertension.?

Several small case—control studies of essential hyperten-
sion (EH, the most common form of high BP) have also
shown methylation differences in RAAS-related genes.
In a study with ~200 EH cases vs. normotensive controls,
Fan et al. found that 2 of 5 CpGs in the promoter of ACE2
(angiotensin-converting  enzyme 2, chrx:15579156-
15620192) were associated with EH after accounting for
confounding (P < 0.05).%” ACE2 plays a key protective role
in high BP. In a related study from the same author group,
a CpG island in the promoter region of AGTRI (human
GRCh37/hgl9 assembly: chr3:148,415,443-148,415,932)
was assayed. The methylation level in 1 of 5 successfully
measured CpGs was significantly lower in the cases (cases
vs. controls: 6.74 + 4.32% vs. 9.66 + 5.45%, adjusted P =
0.007).28 Moreover, in a case—control study that compared
both incident and prevalent EH cases to non-EH controls,
the mean methylation level of SCNNIA (in the gene body
chr12: 6473058-6473092) was highest among incident
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Figure 2. Epigenetic factors can contribute to cardiovascular diseases
(CVDs) in dynamic ways. One possible pathway is that environmental
factors contribute to CVD, and DNA methylation changes are a con-
sequence of elevated CVD traits. Those methylation variations could
potentially be used as risk markers or therapeutic targets to prevent
CVD-related organ damage.
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cases compared with the non-EH controls (16.15 + 4.51 vs.
13.66 + 4.08, P = 0.041) and prevalent EH cases (16.15 +
4.51 vs. 13.77 + 3.90, P = 0.002). Logistic regression anal-
ysis showed that higher SCNNIA methylation was a risk
factor for EH compared with non-EH (odds ratio = 1.157, P
=0.01), as well as for incident EH compared with prevalent
EH (odds ratio = 1.149, P = 0.013). The authors suggested
that the differences in methylation of SCNN1A between the
prevalent and incident hypertension cases may be due to
antihypertensive treatment but suggested more research was
needed as information on the class and duration of treat-
ment was not collected in that study.?® In a similar study
that included non-EH controls and prevalent and incident
EH cases, Zhong et al. observed significant elevated meth-
ylation at 2 of 6 CpGs in the promoter region of SCNNI1B
(chr16: 23313436-23313460)—the beta subunit of ENaC.*
Among those 6 sites, a significant difference in CpG1 and
CpG2 methylation levels was detected between controls and
incident cases (CpGl: B-standardized = 0.17, adjusted P =
0.015; CpG2: B-standardized = 0.41, adjusted P = 0.001).
Additionally, a significant difference was detected in CpGl
methylation levels between incident and prevalent cases
(B-standardized = 0.25, adjusted P = 3.77 X 107%).%°

Epigenetic processes have been demonstrated to play im-
portant roles in the cell-specific expression of eNOS in the
vasculature.’! In one study, chromatin immunoprecipitation
demonstrated the presence of transcription factors Sp1, Sp3,
and Etsl at the native NOS3 promoter in endothelial cells
but not in vascular smooth muscle cells.* Finally, robust ex-
pression of eNOS mRNA was induced in nonendothelial cell
types following inhibition of DNA methyltransferase activity
with 5-azacytidine, demonstrating the importance of DNA
methylation-mediated repression.*> Overall, these studies
suggest methylation at genes involved in the RAAS may
contribute to the genomic determinants of BP and EH risk.
However, these results also highlight the complexity of these
relationships at the molecular level, especially the potential
for variability across tissues and duration of disease. While
the RAAS has the major role in BP regulation, studies are still
discovering new pathways that influence BP. Genome-wide
analyses of CpGs are advancing knowledge and continue to
highlight other mechanisms involved in BP regulation and
relevant disease processes.

EPIGENOME-WIDE ASSOCIATION STUDIES

Large, epigenome-wide studies have revealed several
genes that contribute to the variation in both SBP and dias-
tolic BP (DBP). For example, in genome-wide DNA methyl-
ation meta-analysis from the Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE) for SBP
and DBP—including individuals of European (EA), African
(AA), and Hispanic ancestries—(N ~ 17,000) DNA methyl-
ation was measured in peripheral blood samples using the
Ilumina Methyl450 array in all cohorts (targeting across
gene regions with sites in the promoter region, 5" untrans-
lated region (UTR), first exon, gene body, and 3'UTR).!?
In each cohort, race-stratified linear mixed effect models
were used to estimate CpG associations adjusting for age,
sex, estimated blood cell counts, body mass index, smoking,

and genetic ancestry, as well as fixed and/or random effects
for technical covariates to control for batch effects. Effect
estimates from all cohorts were combined using inverse
variance fixed effects meta-analysis. Heterogeneity of ef-
fect estimates between ethnic strata, sexes, and methylation
tissue source among discovery cohorts was evaluated (using
a 1 degree of freedom chi-square test for effect differences
between strata) and no heterogeneous effects were observed.
In the 2-stage discovery (N ~ 10,000) and replication (N ~
7,000) meta-analyses, 13 of 31 identified CpGs replicated for
association with SBP or DBP, and these CpGs were located
in 8 intragenic regions and 3 intergenic regions. Further, an
overall meta-analysis of the discovery and replication cohorts
identified 126 CpG sites associated with BP. A methylation
profile score based on the replicated CpG sites explained an
additional 1.4% and 2.0% of the interindividual variation in
SBP and DBP, respectively, beyond age, sex, and BMI among
additional samples (N = 1,516, Third Generation Cohort)
not included in the discovery or replication set. Expanding
the DNA methylation risk score to include the 126 CpGs
that were significant in the overall meta-analysis did not ex-
plain additional phenotypic variance in any ancestry group.
The top 2 CpGs for both SBP and DBP were at the PHGDH
(phosphoglycerate dehydrogenase) locus, cg14476101 (SBP:
0.03% decrease in DNA methylation per 1 mm Hg increase
in BP, P = 2.7 X 107%; DBP: 0.04% decrease in DNA meth-
ylation per 1 mm Hg increase in BP, P = 2.1 X 107!), and
the SLC7AII (solute carrier family 7 member 11) locus,
cg06690548 (SBP: 0.02% decrease in DNA methylation per
1 mm Hg increase in BP, P = 1.6 X 107%% DBP: 0.03% de-
crease in DNA methylation per 1 mm Hg increase in BP, P =
7.9 X 1072°). Cg14476101 is located on chromosome 1 in the
first intron of PHGDH, which encodes a phosphoglycerate
dehydrogenase that catalyzes the rate-limiting step of
serine biosynthesis.*® A contribution of PHGDH to cancer
cell metabolism has been well studied, but more recently a
role for PHGDH in lipid homeostasis in normal tissues has
been identified.** Located on chromosome 4, cg06690548
is in the first intron of SLC7A11, which encodes a sodium-
independent cysteine/glutamate antiporter that aids in pro-
tection from oxidative stress and ferroptotic cell death.3* In
whole-blood gene expression analyses, 4 of the 13 replicated
CpG sites were found to have 1 or more cis-located genes
(TSPAN2 (tetraspanin 2), SLC7AII, UNC93BI (unc-93
homolog B1, TLR signaling regulator), CPT1A (carnitine
palmitoyltransferase 1A), PTMS (parathymosin), and
LPCAT3 (lysophosphatidylcholine acyltransferase  3))
where transcription levels were associated with both CpG
methylation and SBP, DBP, or hypertension. The direction
of effects for all 6 gene transcripts was consistent with the
negative associations of BP with DNA methylation at each
CpG. Among all transcripts tested, expression of TSPAN2
showed the strongest associations with both CpG methyl-
ation (cg23999170) and BP. TSPAN2 is involved in signal
transduction, and it is not only highly expressed in vascular
tissues but also implicated in the contractile ability and dif-
ferentiation of vascular smooth muscle cells.*® Sequence
variation mapped to TSPAN2 has previously been associ-
ated with large artery atherosclerosis-related stroke,*® mi-
graine,*”*® and anti-inflammatory pathways in the central
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nervous system.* Other notable top hits from the CHARGE
meta-analyses were linked to metabolic traits, particu-
larly lipids and adiposity (CPT1A, cg00574958; PHGDH,
cg16246545/cg14476101; TXNIP (thioredoxin interacting
protein), cg19693031; SLC7A11, cg06690548), in previous
epigenome-wide associations studies (EWAS). An effect
of triglycerides on methylation at cg00574958 has been
identified,?4-* which supports the authors” hypothesis that
an underlying cardiometabolic disease process related to BP
and lipids alters DNA methylation at CPT1A.

In a follow-up to the CHARGE analysis, Huang et al.
conducted a meta-EWAS in 4,820 EA and AA individuals
across 14 cohorts (including 2 youth cohorts).* The EWAS
meta-analysis identified 39 BP-related CpGs with P < 1 X
107, In silico replication in the CHARGE consortium of
~17,000 individuals validated 16 of the CpGs, of which 13
showed novel association with BP. Conversely, of the 126
CpGs identified as being associated (P < 1 X 1077) with BP in
the CHARGE consortium, 21 were replicated in the Huang
et al. study. Methylation levels of 34 CpGs (13 from the
Huang et al. study and 21 cross-validated from CHARGE)
were heritable and 6 showed association with gene expres-
sion. Additionally, 9 CpGs also had an association with BP
with P < 0.05 and were consistent in the direction of the ef-
fect in a meta-analysis of the Finnish Twin Cohort and the
Netherlands Twin Register. Interestingly, bivariate quantita-
tive genetic modeling of the twin data demonstrated that the
phenotypic correlations between methylation levels of the
CpGs and BP could be explained by shared, unique environ-
mental characteristics rather than genetic factors.

In a third EWAS of BP,* samples from 364 EA and 348
South Asian men (first generation migrants to the United
Kingdom) from the Southall And Brent REvisited cohort
were assayed using the Illumina Methyl450 array. In a trans-
ancestry analysis, DBP was associated with methylation at
1 CpG site (cg07598370 near OR5AP2 (olfactory receptor
family 5 subfamily AP member 2)) below the Bonferroni-
corrected threshold. A genetic variant near the OR5AP2 has
been previously reported to be associated with hematolog-
ical phenotypes?; in addition, olfactory receptors are known
to regulate BP via their renal expression.*” The SBP and
hypertension analyses did not uncover statistically signifi-
cant CpGs after adjustment for confounders (estimated cell
counts, and ancestry principal components). The authors
also examined the 126 associations reported earlier in the
CHARGE analysis.'? The evidence of association from these
sites was generally weaker, potentially due to the smaller
sample size, except for cgl19693031 (near TXNIP) and
cg18120259 (in gene body LOCI100132354). These CpG sites
were consistent in direction of effect with the previous anal-
ysis with a slightly larger magnitude of association in the
Southall And Brent REvisited cohort study.

TARGET END ORGAN DAMAGE STUDIES

TOD is the resultant injury (often vascular) to organ sys-
tems associated with long-standing hypertension including
left ventricular hypertrophy, renal disease, retinopathy,
and vascular dementia.*® Damage to these organs typically
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manifests as coronary heart disease, heart failure, stroke,
other CVDs, or end-stage kidney failure. Importantly, di-
sease progression and severity may be influenced by DNA
methylation alterations that are associated with high BP
itself. Alternatively, the vascular and metabolic dysfunc-
tion due to high BP could alter DNA methylation patterns
in affected organ systems.*” Overall, human cohort studies
are limited to access high BP-affected tissue samples (e.g.,
cardiomyocytes) from subjects at risk, making peripheral
blood the only accessible tissue. However, Kato et al. reported
on blood and cross-tissue DNA methylation, suggesting that
blood and other tissues (liver, muscle, subcutaneous and vis-
ceral fat) often exhibit comparable patterns.>® These results
suggest DNA methylation in peripheral blood can capture
information about disease processes and gene expression
changes underlying TOD. In one study, the associations be-
tween epigenome-wide DNA methylation and 5 measures of
TOD traits (estimated glomerular filtration rate (eGFR), uri-
nary albumin-creatinine ratio (UACR), left ventricular mass
index (LVMI), relative wall thickness (RWT), and white
matter hyperintensity (WMH)) were assessed in 961 AAs
from the Genetic Epidemiology Network of Arteriopathy
(GENOA) on the Illumina Infinjum MethylationEPIC
BeadChip (which assays >850,000 CpGs in genes and reg-
ulatory regions). A multivariate model of eGFR, UACR,
LVMI, and RWT identified 7 CpGs near 4 genes associ-
ated with at least 1 of the traits (cg21134922, cg04816311
near C7orf50; ¢g09155024, cgl10254690 near OAT (orni-
thine aminotransferase); cg07660512, cgl12661888 near
IFT43 (intraflagellar transport 43); and cg02264946 near
CATSPERD (cation channel sperm associated auxiliary sub-
unit delta)) with false discovery rate q < 0.1. Adjusting for
BP, body mass index, and type 2 diabetes attenuated the asso-
ciation for 4 CpGs (cg21134922, cg04816311 near C7orf50;
cg09155024, cgl10254690 near OAT). When analyzing in-
dividual CpG sites, 4 of the 7 (cg04816311, cg09155024,
cg07660512, cgl2661888) were significantly associated
with 2 TOD traits (P < 0.007), while the other 3 were as-
sociated with only LVMI. None of the 7 CpGs were asso-
ciated with WMH, which was only measured in a subset of
the GENOA participants. Both ¢g04816311 and cg12661888
had a consistent effect in which increased methylation was
associated with worse TOD outcomes (higher UACR, lower
eGFR, and/or higher LVMI). DNA methylation was asso-
ciated with cis-gene expression for all 7 of the CpGs, but
no significant mediation by gene expression was detected.
Mendelian randomization analyses suggested causality of 3
CpGs on eGFR (cg04816311, cg10254690, and cg07660512).
Replication was attempted in 614 AAs in the Hypertension
Genetic Epidemiology Network (HyperGEN) study, whose
blood was assayed with the Illumina Infinium Methyl450K
array. Out of 3 CpGs available for replication (cg09155024,
cg10254690, cg04816311), cg04816311 near CZorf50 was
significantly associated with eGFR (P = 0.0003), LVMI (P =
0.0003), and RWT (P = 0.002). Cg04816311 near OAT was
associated with eGFR (P =2 X 107*) in HyperGEN in a min-
imally adjusted model (age, sex, smoking, genetic ancestry
principal components, and family relatedness), but not
after further adjustment for SBP, DBP, and antihypertensive
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treatment. Among the top findings, OAT was the most no-
table with respect to biological plausibility for the traits under
study. OAT codes ornithine aminotransferase, a key mito-
chondrial enzyme that converts arginine and ornithine into
glutamate and GABA (found in the liver, intestine, brain, and
kidney).>? Ornithine is involved in the urea cycle and syn-
thesis of nitric oxide.”® Additionally, genetic variants in OAT
have been associated with DBP.>* [FT43, near cg12661888,
encodes a subunit of the intraflagellar transport complex A,
a multiprotein complex involved in cilia assembly and main-
tenance. This subunit is essential in regulating the Sonic
Hedgehog signaling pathway, which is involved in regulating
the growth, differentiation, and patterning of cells, espe-
cially during embryonic development.> CATSPERD, near
cg02264946, encodes an auxiliary subunit of sperm calcium
channel pore-forming proteins required for the motility of
spermatozoa and male fertility.>® The study of TOD in AAs
was a hypothesis-free genome-wide study; thus, the authors
did not further validate previously published associations for
SBP, DBP, or hypertension as part of the analysis. However, a
follow-up study of the HyperGEN population (N = 614 AAs)
did not show association of any of the 13 replicated CpGs
from the CHARGE BP EWAS with echocardiographic traits
(LV mass, midwall shortening, RWT, left atrial systolic di-
mension, LV internal diastolic dimension, ejection fraction).
Still, some of the CpGs trended toward significance (P < 0.1,
data not published), and further validation is needed to de-
termine if BP-related CpGs are further associated with TOD.

CONCLUSION AND FUTURE DIRECTIONS

The study of epigenetic modifications remains a prom-
ising area of research in vascular-related diseases. Current
scientific knowledge does not completely explain the mo-
lecular mechanisms dictating high BP and related diseases.
Epigenetic modifications, such as DNA methylation, might
form an additional path to understanding the relevant di-
sease processes. Despite notable challenges in conducting
epigenetic research in human populations (potential
confounding effects and tissue of study), important findings
have been replicated.

Opverall, the published work related to methylation varia-
tions associated with high BP is promising. Still current re-
search has mostly considered single CpG sites and largely
omitted studies of differentially methylated regions, which
could provide additional insight into groups of nearby CpGs
(e.g., CpG islands) and how they jointly are associated with
relevant traits. Additionally, studies have not integrated
other epigenetic layers (histone modifications and silencing
RNAs) that can provide information on the interplay be-
tween other molecular mechanisms dictating gene expres-
sion. Furthermore, published studies have included multiple
ancestry groups; however, studies of methylation changes
across the life course—in the same individuals—are needed
to give additional insight into when disease processes start
and organ damage related to these conditions occurs. Finally,
functional follow-up studies of confirmed loci will help un-
ravel the precise molecular mechanisms at specific CpG
sites, including the identification of methylation-specific

binding proteins and characterization of their mode of ac-
tion. Only then can these biological insights be translated to
clinical benefits, including reliable biomarkers and effective
strategies for disease prevention.
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