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Background
Multiplex molecular techniques, such as multiplex polymerase chain reaction [1] and 
digital multiplex ligation assay (dMLA) [2], are methods for detecting and quantify-
ing multiple genomic targets in a single experiment. These techniques have enabled 
the development of various screening methods in the fields of pathogen detection and 
human genetics and utilise sets of primers or probes that can detect hundreds of targets 
[3–7].

Abstract 

Background:  Designing oligonucleotide primers and probes is one of the key steps of 
various laboratory experiments such as multiplexed PCR or digital multiplexed ligation 
assays. When designing multiplexed primers and probes to complex, heterogene-
ous DNA data sets, an optimization problem can arise where the smallest number of 
oligonucleotides covering the largest diversity of the input dataset needs to be identi-
fied. Tools that provide this optimization in an efficient manner for large input data are 
currently lacking.

Results:  Here we present Prider, an R package for designing primers and probes with 
a nearly optimal coverage for complex and large sequence sets. Prider initially prepares 
a full primer coverage of the input sequences, the complexity of which is subsequently 
reduced by removing components of high redundancy or narrow coverage. The prim-
ers from the resulting near-optimal coverage are easily accessible as data frames and 
their coverage across the input sequences can be visualised as heatmaps using Prider’s 
plotting function. Prider permits efficient design of primers to large DNA datasets by 
scaling linearly to increasing sequence data, regardless of the diversity of the dataset.

Conclusions:  Prider solves a recalcitrant problem in molecular diagnostics: how to 
cover a maximal sequence diversity with a minimal number of oligonucleotide primers 
or probes. The combination of Prider with highly scalable molecular quantification 
techniques will permit an unprecedented molecular screening capability with immedi-
ate applicability in fields such as clinical microbiology, epidemic virus surveillance or 
antimicrobial resistance surveillance.
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Designing primers or probes for optimal detection of multiple targets in complex and 
large sets of DNA sequences is a set coverage problem which aims to find a minimal 
set of primer sequences that cover the input DNA sequences [8]. Various tools have 
been created for multiplex primer and probe designing, such as the command line 
based PriMux [9], the web-application PrimerDesign [10], the R package DECIPHER’s 
DesignPrimers and DesignProbes [11], the GUI PrimerMapper [12] and the R package 
openPrimeR [13]. However, most of these tools no longer appear to be available or func-
tional and/or require significant user intervention via requiring an external options file 
for the parameters or a file conversion from a FASTA file and/or scale poorly to large 
input data. The key features of these tools are compared with Prider in the Additional 
file 1.

Here we present an R package Prider, which computes a near-optimal primer coverage 
for input FASTA file and scales linearly to increasing sequence data. Prider is a flexible 
tool which permits designing primers and probes for highly scalable molecular screen-
ing and quantification applications [2–5]. The key features of Prider are its suitability 
for scripting, capability of approximating near-optimal set coverage with minimal user 
intervention, linear scalability to increasing data, and inbuilt capability to visualise the 
estimated coverage. These features improve the scalability of multiplex molecular tech-
niques and have immediate applicability in fields such as clinical microbiology, epidemic 
virus surveillance or antimicrobial resistance surveillance.

Implementation
Input and parameters

Prider was developed on R version 4.0.5 [14] with the package Rcpp 1.0.7 [15] using 
C++11. The input to Prider is a single FASTA file containing the sequences to which 
primers/probes are to be designed. Users can change the primer length, the minimum 
primer and sequence group sizes and the number of cumulative coverage decimals, 
explained below. Furthermore, optional filtering removes the primers with propor-
tional G and C base contents outside the user-specified range. Another optional filter-
ing removes the primers exceeding a user-defined difference in proportional GC content 
between the two halves of the primer. This filtering is aimed primarily for designing 
adjacent probes that during Prider processing are considered to be one oligonucleotide.

Cluster preparation and filtering

The first step of primer cluster preparation is the division of each DNA sequence from 
the input FASTA file into sub-sequences—primer candidates—of user-specified length 
using a sliding window function. During the process, the primer candidates remain asso-
ciated with their respective FASTA headers. Subsequently, primer candidates shared 
by multiple input sequences are used to group together sequences with shared motifs. 
These sequence groups are further grouped together, linking different primer candidates 
together and producing a data frame of all sequence clusters and primer clusters which 
cover them.

To optimize the number of primer candidates needed to cover the input FASTA, the 
primer clusters with target sequence coverage or sequence cluster size below the user-
defined cut-offs are excluded. The primer clusters are subsequently ordered by their 
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size, and the cumulative contributions of each cluster to the total sequence coverage are 
calculated and rounded based on a user-defined value. Finally, primer clusters with the 
same cumulative coverage are grouped together and only the clusters with the largest 
sequence and primer group sizes are kept. This step reduces the number of primer clus-
ters that share equal or very similar sequence coverage.

Prider output

The output of Prider is an S3-decorated list with five elements accessible with Prider’s 
S3 methods, indexing, or the “$” operator. Detailed functionality of the S3 methods is 
explained in the reference manual at https://​CRAN.R-​proje​ct.​org/​packa​ge=​prider. The 
output elements are:

(1)	 Description; summarises the contents of the input FASTA and the produced Prider 
list.

(2)	 Conversion table; a data frame containing the original FASTA headers, full DNA 
sequences and the sequence ids.

(3)	 Primer candidates; a data frame containing the primer group DNA sequences, an 
identification number for each primer group, the sequence ids associated with the 
primer clusters, primer cluster and sequence group sizes and the cumulative cover-
age values.

(4)	 Excluded sequences; a data frame containing the sequences not associated with any 
primer cluster due to filtering criteria.

(5)	 Primer matrix; a TRUE–FALSE table where each row is a primer group and each 
column a single sequence id. This is the input for the S3 plotting function for the 
Prider objects.

Prider provides S3 methods primers and sequences to access the primer clusters and 
their sequence coverage, respectively, and a method for plotting (Fig. 1).

Results and discussion
Processing speed of Prider was evaluated using two randomly generated FASTA file sets; 
one with increasing number of bases per file (300 sequences each) and one with increas-
ing number of sequences per file (465,000 bases each). The sets consisted of 310 and 
300 files, respectively, and 10 replicates of each number of bases or sequences. To make 
sure that even the smallest files could be processed, the parameter minimum_sequence_
group_size was set to 1. Similar test with a subset of the FASTA file set with increasing 
number of bases per file was performed with the R package openPrimeR. No other tools 
were tested due to reasons listed in Additional file 1.

The processing time of Prider, determined by the user.self value of the base R func-
tion system.time, was linearly dependent on the number of input bases, with 3e4 bases 
taking approx. 0.5 s and 9.03e6 bases taking approx. 310 s (Fig. 2A) on a Macbook Pro 
(M1, 8 GB, 2020, macOS Big Sur). The number of sequences the bases were distributed 
on had a minor, decreasing effect on the processing time (Fig.  2B). The test data and 
the code used for the tests are available at Zenodo (https://​zenodo.​org/​record/​64831​71#.​
YmaiE​vNBxAc). The full benchmarking results are available as Additional files 2 and 3. 

https://CRAN.R-project.org/package=prider
https://zenodo.org/record/6483171#.YmaiEvNBxAc
https://zenodo.org/record/6483171#.YmaiEvNBxAc
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Fig. 1  Heatmap of the distribution of the primer clusters designed for the example FASTA file. Each 
Sequence Id represents a sequence in the input FASTA file and each Primer cluster represents a set of primers 
designed by Prider. Black areas of the heatmap indicate coverage of Sequence Id(s) by a Primer cluster

Fig. 2  Prider processing time (dot) and standard deviation (line) for A varying numbers of bases in 
the benchmarking files (each file containing 300 sequences), B varying numbers of sequences in the 
benchmarking files (each file containing 465,000 bases)
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The comparison of the processing speeds of Prider and openPrimeR shows that Prider 
processes files many times faster than openPrimeR. Full comparison is available as an 
Additional file 4. The benchmarks reveal that Prider scales well to large sequence data 
and has low variation between the processing times of the replicates.

Conclusions
Design of multiplexed primers and probes to highly diverse DNA data is a problem 
commonly encountered in various screening applications [2–5]. For instance, in patho-
genicity detection, clinical virology and antimicrobial resistance surveillance one needs 
to account for the extremely high diversity of relevant genes [16–18]. Such screening 
applications greatly benefit from Prider since its linear scalability allows for the process-
ing of large and complex sequence data required for comprehensive probe design. Thus, 
combination of Prider with highly scalable molecular quantification techniques such as 
dMLA will permit an unprecedented molecular screening capability with immediate 
applicability in fields such as clinical microbiology, epidemic virus surveillance or anti-
microbial resistance surveillance.

Availability and requirements

Project name: Prider.
Project home page: https://​github.​com/​tammi​nenlab/​prider; https://​CRAN.R-​proje​
ct.​org/​packa​ge=​prider
Operating systems: Platform independent.
Programming languages: R, C++11.
Other requirements: R version ≥ 4.0.0, C++11.
License: BSD 3 clause.
Any restrictions to use by non-academics: None

Abbreviation
dMLA: Digital multiplex ligation assay.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04710-1.

Additional file 1: Comparison of multiplex primer and probe designing tools. The table compares the following 
features of the multiplex primer/probe designing tools PriMux, PrimerDesign, DECIPHER, PrimerMapper, openPrimeR 
and Prider: the type of tool, project status, the required sequence input file format, and if external dependencies are 
required. The table also contains notes and a link for each tool. 

Additional file 2: Table of Prider benchmark test files’ metadata and system.time output for the increasing number of 
nucleotides dataset. The data includes the number of sequences, the number of bases, the mean number of bases 
per sequence and the base standard deviation as well as the system.time function output values user.self, sys.self, 
elapsed, user.child and sys.child of each Prider processed FASTA file for the increasing number of nucleotides dataset. 

Additional file 3: Table of Prider benchmark test files’ metadata and system.time output for the increasing number 
of sequences dataset. The data includes the number of sequences, the number of bases, the mean number of bases 
per sequence and the base standard deviation as well as the system.time function output values user.self, sys.self, 
elapsed, user.child and sys.child for each Prider processed FASTA file of the increasing number of sequences dataset. 

Additional file 4: Table of Prider and openPrimeR benchmark test files’ metadata and system.time output for the 
increasing number of nucleotides dataset. The data includes the number of sequences, the number of bases, the 
mean number of bases per sequence and the base standard deviation as well as the system.time function output 

https://github.com/tamminenlab/prider
https://CRAN.R-project.org/package=prider
https://CRAN.R-project.org/package=prider
https://doi.org/10.1186/s12859-022-04710-1
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values user.self, sys.self, elapsed, user.child and sys.child of each openPrimeR and Prider processed FASTA file for the 
increasing number of nucleotides dataset. 
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