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Abstract

During laparoscopic surgery, the Veress needle is commonly used in pneumoperitoneum 

establishment. Precise placement of the Veress needle is still a challenge for the surgeon. In this 

study, a computer-aided endoscopic optical coherence tomography (OCT) system was developed 

to effectively and safely guide Veress needle insertion. This endoscopic system was tested by 

imaging subcutaneous fat, muscle, abdominal space, and the small intestine from swine samples 

to simulate the surgical process, including the situation with small intestine injury. Each tissue 

layer was visualized in OCT images with unique features and subsequently used to develop a 

system for automatic localization of the Veress needle tip by identifying tissue layers (or spaces) 

and estimating the needle-to-tissue distance. We used convolutional neural networks (CNNs) in 

automatic tissue classification and distance estimation. The average testing accuracy in tissue 

classification was 98.53±0.39%, and the average testing relative error in distance estimation 

reached 4.42±0.56% (36.09±4.92 μm).
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Veress needle is used in pneumoperitoneum establishment during laparoscopic surgery. Precise 

placement of the Veress needle is still a challenge. In this study, a computer-aided endoscopic 

optical coherence tomography (OCT) system was developed to guide Veress needle insertion. 

Different tissue types can be distinguished and recognized from the OCT images. Additionally, 

convolutional neural networks (CNNs) were utilized in automatic tissue classification and 

estimating the distance between needle tip and tissue.
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1. Introduction

Laparoscopy is a modern and minimally invasive surgical technique used in the diagnosis 

and therapeutic purposes [1–3]. With the development of video camera and other medical 

auxiliary instruments, laparoscopy has become a procedure widely used in various surgeries 

such as cholecystectomy [4], appendectomy [5], herniotomy [6], gastric banding [7] or 

colon resection [8]. In the first step of the laparoscopic procedure, a trocar/Veress needle 

is inserted into the patient’s abdominal cavity through a small skin incision [9]. The 

Veress needle penetrates subcutaneous fat and muscle before reaching the abdominal cavity 

[10]. Once entry to the peritoneal cavity has been achieved, gas insufflation is used to 

establish pneumoperitoneum for the next surgical process [11, 12]. The pneumoperitoneum 
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establishment step does not take a long time; however, more than 50% of all laparoscopic 

procedure complications occur during this step [13, 14]. In most of the current practices, 

the Veress needle is blindly inserted, and appropriate needle positioning is largely dependent 

on prior experience from the surgeon. Complications such as subcutaneous emphysema 

and gas embolism, or injury to internal organs during abdominal entry could happen when 

the Veress needle is not appropriately inserted [15]. While the average incidence rate of 

severe needle injury is below 0.05%, there are more than 13 million laparoscopic procedures 

performed annually worldwide. Thousands of patients suffer from needle insertion injuries 

each year [16–18]. The most common injuries are lesions of abdominal organs, especially 

small intestine injuries[19].

Imaging methods have been proposed in guiding the Veress needle insertion. For instance, 

ultrasound has been used to visualize the different layers of abdominal wall in guiding the 

Veress needle insertion [20, 21]. Magnetic resonance (MRI) imaging has been utilized to 

assist accurately measure the Veress needle insertion depth [22]. In addition, virtual reality 

technique has been proved to be a useful tool for Veress needle insertion [23]. Nevertheless, 

these techniques cannot accurately locate the needle tip because of the limited resolution 

and tissue deformation during needle insertion [24, 25]. Therefore, new techniques that can 

better guide the Veress needle is critically needed.

Optical coherence tomography (OCT) is an established biomedical imaging technique that 

can visualize subsurface tissue [26]. OCT provides high axial resolution at ~10 μm and 

several millimeters’ imaging depth [27], thus OCT has the potential for providing better 

imaging quality in Veress needle guidance. However, benchtop OCT cannot be directly used 

for Veress needle guidance due to the limited penetration depth. Endoscopic OCT systems 

has been applied in many surgical guidance procedures such as the investigation of colon 

cancer [28], vitreoretinal surgery [29] and nasal tissue detection [30]. In our previous work, 

we developed OCT endoscope based on gradient-index (GRIN) rod lens and demonstrated 

its feasibility in real-time percutaneous nephrostomy (PCN) guidance [31] and epidural 

anesthesia guidance [32].

In this study, we adapted the OCT endoscope for Veress needle guidance. To simulate 

the laparoscopy procedure, the endoscopic OCT system was used to image different tissue 

layers including subcutaneous fat, muscle, abdominal space, and small intestine from swine 

abdominal tissue. These tissues can be recognized based on their distinct OCT imaging 

features. To assist doctors, convolutional neural networks (CNNs) [33, 34] were developed 

for recognizing the different types of tissues and estimating the exact distance between 

needle tip and the small intestine from OCT images. OCT images were taken from four 

tissue layers (Subcutaneous fat, muscle, abdominal space, and small intestine) along the path 

of the Veress needle. These images were then used to train and test a classification model 

for tissue layer recognition and a regression model for estimation of the distance from the 

tip of the needle to the small intestine. The CNN architectures used for the classification 

and regression tasks included ResNet50 [35], InceptionV3 [36], and Xception [37]. Results 

from these three architectures were analyzed and benchmarked [38–40]. To the best of our 

knowledge, this is the first report to combine endoscopic OCT system with CNN as a novel 
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imaging platform for guiding the Veress needle procedure and these preliminary results 

demonstrated the feasibility of this novel imaging strategy.

2. Methods

2.1 Experimental setup

The endoscopic OCT system was established on a swept-source OCT (SS-OCT) system 

which applied the laser source with 1300nm-center wavelength and 100nm-bandwidth [31]. 

Its schematic was shown in Figure 1. The laser source provided output power of around 

25 mW. The system had the axial scanning (A-scan) rate of up to 200 kHz. The light was 

initially split by a coupler into two different parts, one of which accounted for 97% of 

the total power and the other one took the rest 3%. A Mach-Zehnder interferometer (MZI) 

received the rest 3% power and generated a frequency-clock signal to trigger the imaging 

sampling process. The 97%-light was further transmitted to an optical circulator. When the 

light exited from port 2, it was split evenly into the sample arm and reference arm of the 

OCT system. Polarization controllers were assembled in each coherence arm to control the 

noise levels. The interference signal of the backscattered light from sample arm and the 

reflected beam from reference arm was sent to the balanced detector (BD) for further noise 

reduction, and then to the data acquisition (DAQ) board and computer for post processing. 

Cross-sectional OCT images from different imaging depths of the sample can be provided 

through Fourier transform.

To build the endoscopic system, we used gradient-index (GRIN) rod lens as endoscopes. 

One GRIN lens was stabilized in front of the galvanometer scanner as demonstrated in 

Figure 1. The GRIN lens transmitted the imaging information from the distal end to the 

proximal end with the spatial resolution remained constant. We placed the proximal surface 

of the GRIN lens at the focal point of the OCT scanner to acquire the tissue images in front 

of the GRIN lens. To compensate for light dispersion, we placed another identical GRIN 

lens into the light path of the reference arm. The GRIN lenses in our experiment had the 

length of 138 mm and diameter ~1.30 mm. Stainless steel tubes were assembled to protect 

them. Lateral field-of-view (FOV) of our system reached ~1.25 mm, and the sensitivity was 

calibrated to be ~92 dB. The endoscopic OCT achieved ~11 μm-axial resolution and 20 

μm-transverse resolution.

2.2 Data acquisition

The OCT images of subcutaneous fat, muscle, abdominal space, and small intestine were 

taken from eight pigs. For each sample, 1,000 2D OCT cross-sections were selected. A 

total 32,000 images were utilized for CNN tissue classification model development. For the 

distance estimation task, there were a total of 8,000 OCT images of abdominal space used, 

and distance between the GRIN lens end and the small intestine varied in these images. The 

flow diagram of data acquisition and process was demonstrated in Figure 2.

The original size of each image was 320 (transverse/X axis) × 480 (longitudinal axis/depth/Z 

direction). The pixel size on both axes were 6.25μm. To decrease the computation burden, 

the size of the 2D images was reduced by cropping the unnecessary part of the images’ 
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edges. They were cropped to 216×316 (X by Z) for tissue classification and 180×401(X by 

Z) for distance estimation.

2.3 CNN method for tissue classification

CNNs were used to accomplish the task of identifying the layer of tissues in which an 

image was taken. The four layers analyzed for classification include fat, muscle, abdominal 

space, and intestine. For each subject, there were 1,000 images taken from each tissue 

layer, and the layer in which the image was taken was manually annotated and represented 

the ground truth label for the classification task. The CNN model architectures used for 

model development included ResNet50 [35], InceptionV3 [36] and Xception [37], which 

contained 25.6 million, 23.9 million and 22.9 million parameters, respectively. Training 

took place over 20 epochs with a batch size of 32. The cross-entropy optimizer was 

used with Nesterov momentum, a learning rate of 0.9, and a decay rate of 0.01. The 

loss function was sparse categorical cross-entropy and accuracy was used as the primary 

evaluation metric for the tissue classification task. ResNet50, Xception, and InceptionV3 

were used because of their demonstrated performance on similar image prediction tasks and 

relatively comparable network depths [35–37]. Initially, a wide range of architectures were 

selected and tested, including EfficientNet (B3, B4, and B5), InceptionV3, NasNetLarge, 

NasNetMobile, ResNet50, ResNet101, and Xception. On average, the ResNet50, Xception, 

and InceptionV3 architectures supported the best performing models in regard to accuracy 

and efficiency.

The accuracy was calculated as:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

where TP: true positive; TN: true negative; FP: false positive; FN: false negative.

Nested cross-validation and cross-testing were used to select an optimal model and evaluate 

the performance [31]. For nested cross-validation and testing, images were separated 

into eight folds based on the subject in which the images were taken. With nested cross-

validation, the performance of the three model architectures were compared, and the 

architecture with the highest accuracy was selected for the corresponding testing phase. 

Once the optimal model architecture was determined for a given nested cross-validation 

fold, the cross-testing phase required training a new model with all images except those 

from the corresponding testing fold, and the new model’s accuracy on the unseen testing 

images was recorded. This process was illustrated in Figure 3. Training and testing took 

place on ten compute nodes containing GPUs on the Summit supercomputer at Oak Ridge 

National Laboratory.

2.4 CNN regression for distance measurement

Regression CNNs were used to estimate the distance from the Veress needle lens to the 

intestine. The distance from the needle tip to the intestine represented the ground truth label 

and was manually annotated.
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CNN regression models were constructed with the same three architectures used for 

classification, which includes ResNet50, InceptionV3, and Xception, and the same 

nested cross-validation and cross-testing approach was used for training and performance 

evaluation. For the regression model architecture, the final output layer was changed to 

a single neuron with an identity activation function. Training involved using the SGD 

optimization algorithm, a learning rate of 0.01, decay rate of 0.09, and Nesterov momentum. 

Training took place over 20 epochs with a batch size of 32. The loss function was the mean 

absolute percentage error (MAPE). Regression model development was accomplished on 

a private workstation containing two NVIDIA RTX 3090 GPUs. Here, MAPE and mean 

absolute error (MAE) were utilized to evaluate the estimation accuracy of the distance. They 

can be described as:

MAPE( % ) = (100 % /n)∑i = 1
n Y i − Xi /Y i (2)

MAE = (1/n)∑i = 1
n Y i − Xi (3)

Where Xi was the estimated value, Yi was the ground truth value (manually labeled), and n 
was the number of the images.

3. Results

3.1 Imaging results of endoscopic OCT system

We used the subcutaneous fat, muscle, abdominal space, and small intestine tissues from 

eight different swine samples to mimic the practical tissue layers that the Veress needle 

traverses. Fat and muscle were both taken from the abdominal areas. In the experiment, 

the GRIN lens in the sample arm was inserted into the three different tissues for imaging. 

Moreover, to replicate the condition when the needle tip was in the abdominal cavity, we 

kept the needle tip at different distances in front of the small intestine and took the OCT 

images as the abdominal space layer.

Figure 4 showed the examples of 2D OCT results of the three different tissues and 

abdominal space. The 2D results demonstrated clear differences between each other: 

Abdominal space could be easily recognized from the gap between the tip of the GRIN 

lens and the small intestine tissue on the bottom. Among the three tissues, muscle had 

clear transverse fiber structures which was shown as different light and dark layers on the 

OCT image and had the largest penetration depth. The imaging result of small intestine 

showed homogeneous tissue density and brightness. Regarding the subcutaneous fat images, 

some granular structures occurred because of the existence of adipocytes. The corresponding 

histology results were also included. Different tissues presented distinct cellular structures 

and distributions and correlated well with their OCT images. These results proved the 

potential of using OCT to distinguish different tissue layers.
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3.2 Multi-class classification

There were 32,000 total images with the size of 216×316 (X by Z) pixels taken from eight 

subjects used for training and testing the tissue classification model. Three CNN models: 

ResNet50 [35], InceptionV3 [41] and Xception [42] were applied. The average nested 7-fold 

cross-validation accuracies for tissue-layer classification were shown in Table 1. All models 

achieved 90% accuracy or higher on the validation set. For InceptionV3 and Xception 

models, the average accuracies were both higher than 97%.

Cross-testing was further performed to provide an unbiased evaluation of the classification 

performance on the set of test images (i.e., images that were not used during nested cross-

validation). The architecture associated with the highest nested cross-validation accuracy in 

each cross-validation fold was used to train a new model for the corresponding cross-testing 

fold. During cross-testing, a new model was trained with images from seven subjects (7,000 

images) in both the training and validation folds and tested with images from one subject 

(1,000 images) in the test fold. The testing results along with inferencing times were shown 

in Table 2. The best testing accuracy on the testing images was 99.825% in the S6 testing 

fold. There was a tie for the lowest testing accuracy (97.200%) in the S2 and S3 testing fold. 

The classification inferencing time is the amount of time it took for the classification model 

to predict the tissue layer on a single image. The inferencing time for Xception was slightly 

greater than that of InceptionV3.

From the classification cross-testing benchmarking results, the Xception architecture was 

used in 7 out of the 8 cross-testing folds, and the InceptionV3 architecture was used once 

(selected via cross-validation). The aggregated ROC curve across all eight testing folds (i.e., 

32,000 images) was shown in Figure 5, and the ROC curves for each of the eight subjects 

developed during cross-testing were included in Figure 1 of supplementary document. The 

ROC curve showed that the models were able to classify the images pertaining to each 

tissue-layer with high accuracy. The average ROC AUC score was 0.998967 and the r2 value 

was 0.9839.

To visually explain the model predictions of the different tissue layers, a tissue classification 

activation heatmap from sample 1 based on Xception was illustrated in Figure 6. The 

activation distributions differed in position and size among the four tissue layer types. In 

subcutaneous fat and small intestine, the activation was mainly concentrated in the bottom 

of the images. However, the size of the activated area on the image of subcutaneous fat 

was larger than the activated area on the image of the small intestine, and there was also 

increased attention given to the area right below the needle tip. For muscle and abdominal 

space, the activated areas on the image were near the top, but there was greater focus given 

to the area just under the needle tip in muscle images. In contrast to the muscle images, the 

activated areas of the abdominal space images were more concentrated over the needle tip.

After the performance of our model development procedure was benchmarked by the cross-

testing, a final model was generated using this procedure in two steps. First, an architecture 

was selected using 8-fold cross-validation. As expected, the Xception architecture provided 

higher accuracy on average (98.37±0.59%) than ResNet50 (95.92±1.40%) and InceptionV3 

(97.46±0.75%). Results of 8-fold cross-validation for architecture selection were shown in 
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Supplement Table 1. Then, a final model was trained using all 8 folds with the Xception 

architecture.

3.3 Distance estimation

There were 8000 images in total used for the regression task (1000 images per subject). The 

images of the abdominal space were taken at a range of distances between approximately 0.2 

mm and 1.5 mm from the needle tip to the intestine. To estimate the distance values between 

the needle tip and the surface of small intestine, the same three architectures (ResNet50, 

InceptionV3, and Xception) were also utilized for the regression task. The MAPE was 

used to evaluate the distance estimation error. Nested cross-validation and cross-testing 

were performed in the same fashion as done the tissue-layer classification task. Table 

3 showed the average nested cross-validation MAPE with standard error in each nested 

cross-validation fold. The distance estimation nested cross-validation results indicated that 

the InceptionV3 achieved the lowest average error in six out of eight folds, and Xception 

achieved the lowest average error in the other two folds.

Similar to tissue classification, cross-testing was used to get an unbiased evaluation of the 

performance on the distance estimation task, and results were shown in Table 4. InceptionV3 

provided the highest MAPE of 6.66% with MAE of 56.1 μm in fold S2, and the lowest 

MAPE of 2.07% with MAE of 16.7 μm in fold S7. Overall, the MAPEs were all under 

7% and the MAEs never exceeded 60 μm. Examples of comparisons between the manually 

labeled results (ground truth value) and predicted results were shown in Figure 7(a). Violin 

plots from sample one was shown in Figure 7(b) to show the error distribution based 

on distance; violin plots for the other seven samples were included the Figure 2 of the 

supplementary document.

After the regression model development procedure was benchmarked by cross-testing, this 

procedure was repeated to produce a final model. Because no data needed to be held back 

for testing, all 8 folds were used in the cross validation for final architecture selection. 

The models trained with the InceptionV3 architecture provided lower error on average 

(4.44±0.43%) than ResNet50 (5.29±0.56%) and Xception (4.77±0.58%) (Supplement Table 

2). After the architecture was selected, because no data needed to be held back for validation 

or testing, all 8 folds were used to train the final model.

4. Discussion

In this study, we demonstrated the feasibility of our forward-view endoscopic OCT system 

for Veress needle guidance. Compared to conventional imaging methods, OCT can provide 

more structural details of the subsurface tissues to help recognize the tissue type in front of 

the needle tip. Four tissue layers following the sequence of the tissues that Veress needle 

passing through during the surgery were imaged by our endoscopic OCT system, including 

subcutaneous fat, muscle, abdominal space, and small intestine. The OCT images of these 

four layers could be distinguished by their unique imaging features. By fitting the rigid OCT 

endoscope inside the hollow bore of the Veress needle, no additional invasiveness will be 

introduced from the OCT endoscope. The OCT endoscope will provide the images of the 
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tissues in front of the Veress needle during insertion, thus indicating the needle tip location 

in real time and facilitating the precise placement of the Veress needle.

Deep learning was used to automate the OCT imaging data processing. Three CNN 

architectures, including ResNet50, InceptionV3 and Xception, were cross-validated for 

both tasks. These three architectures were used because of their demonstrated performance 

on similar image prediction tasks and relatively comparable network depths [35–37]. 

Initially, a wide range of architectures were selected and tested, including EfficientNet 

(B3, B4, and B5), InceptionV3, NasNetLarge, NasNetMobile, ResNet50, ResNet101, and 

Xception. On average, the ResNet50, Xception, and InceptionV3 architectures supported 

the best performing models in regard to accuracy and efficiency. Among these three 

architectures, the best architecture was found to be Xception for tissue layer classification 

and InceptionV3 for estimating the distance from needle tip to small intestine surface. 

However, all three architectures provided very high prediction performance and had only 

insignificant performance differentials among them. We used a nested cross-validation and 

cross-testing to provide an unbiased performance benchmarking of our model development 

procedure from architecture selection to model training. The average testing accuracy of 

our procedure was 98.53 ± 0.39% for tissue layer classification. The average MAPE of our 

procedure was 4.42% ± 0.56% for the distance estimation.

For the classification task, the training time per fold over 28,000 images was ~98 minutes 

on average for the Xception architecture and ~32 minutes for the InceptionV3 architecture 

during cross testing. The average inferencing time (i.e., the time it took for a trained model 

to make a prediction on a single image) for the Xception models during cross-testing 

was 1.75 milliseconds, while the InceptionV3 model had an interpretation time of 1.26 

milliseconds. The classifiers were trained and tested using NVIDIA Volta GPUs. For the 

regression task, the average training time for the InceptionV3 model during cross-testing 

was ~367 minutes, which took place over 7,000 images. The average training time for the 

Xception model was ~1,244 minutes. The average interpretation time for the InceptionV3 

models was 1.30 milliseconds. And the average interpretation time for the Xception model 

was ~1.86 milliseconds. Regression model training and testing took place on NVIDIA RTX 

3090 GPUs.

Our current study has shown the feasibility of using endoscopic OCT and deep learning 

methods in Veress needle guidance. Next, we will apply our system in the in-vivo swine 

experiments. It is worth mentioning that blood flows exist during in-vivo experiments. 

Except for the lesions of abdominal organs, injury to the blood vessels is also a major 

complication in the Veress needle insertion [43]. Major vascular injuries, especially to aorta, 

vena cava or iliac vessels, are risky to patients’ lives [44]. The mortality rate can reach 

up to 17% when injury to large vessels happen [45]. Doppler OCT is an extension of our 

current OCT endoscope that can help detect the flows [46, 47]. Doppler OCT endoscope 

has been used for detecting the at-risk blood vessels within sheep brain in real time [48], 

in colorectal cancer (CRC) diagnosis [49], management of pulmonary nodules [50], and 

human GI tract imaging and treatment [51]. Therefore, the proposed OCT endoscope has 

potential to solve the problem of blood vessel injury during Veress needle insertion. As to 

hardware, we will redesign the OCT scanner to make it easier for surgeons to operate. We 
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will continue to accelerate the models through knowledge distillation and weight pruning. 

Furthermore, Since the proposed OCT endoscope system can distinguish different tissue 

types in front of needle tip, it also has potential for guiding other needle-based interventions 

such as percutaneous nephrostomy (PCN) needle guidance in kidney surgery [52], epidural 

anesthesia imaging guidance in painless delivery [32], the tumor tissue detection in cancer 

diagnosis [53], and a variety of needle biopsy procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic of endoscopic OCT system for Veress needle guidance. MZI: Mach-Zehnder 

interferometer, BD: Balanced detector, DAQ: Data acquisition, GSM: Galvanometer 

scanning mirror, FC: Fiber coupler, PC: Polarization controller.
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Fig. 2. 
Process of the data acquisition.
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Fig. 3. 
Introduction of the nested cross-validation, cross-testing, and 8-fold cross-validation 

process.
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Fig. 4. 
Examples of OCT images of different tissue types.

Wang et al. Page 16

J Biophotonics. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Aggregated ROC across all 8 testing folds using Xception model.
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Fig. 6. 
Tissue classification activation heatmap obtained from sample 1. Scale bar: 250μm.
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Fig. 7. 
(A) Examples of abdominal space images with different distances between small intestine 

and needle tip. Yellow value: estimated distance; Blue value: Manually calculated distance. 

(B) Violin plots showing the absolute error and relative error on the testing set for subject 1.
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Table 1:

The average nested 7-fold cross-validation accuracies and standard errors

Fold

ResNet50 InceptionV3 Xception

Accuracy SE* Accuracy SE* Accuracy SE*

S1 92.69% 2.11% 98.31% 0.58% 98.93% 0.40%

S2 97.41% 0.94% 98.45% 0.47% 98.86% 0.38%

S3 94.63% 1.67% 98.15% 0.58% 98.44% 0.73%

S4 96.93% 0.54% 98.54% 0.38% 98.49% 0.40%

S5 91.94% 1.72% 97.84% 0.60% 99.02% 0.33%

S6 95.88% 0.97% 97.07% 1.15% 98.56% 0.51%

S7 90.75% 2.60% 98.01% 0.55% 98.60% 0.46%

S8 96.90% 1.14% 97.95% 0.56% 98.55% 0.38%

*
SE is the standard error of the average accuracy.
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Table 2:

The 8-fold cross-testing accuracies on the testing set in each testing fold

Fold Architecture Inferencing time (ms) Testing accuracy

S1 Xception 1.765 97.95%

S2 Xception 1.743 97.20%

S3 Xception 1.738 97.20%

S4 InceptionV3 1.262 97.98%

S5 Xception 1.758 98.80%

S6 Xception 1.765 99.83%

S7 Xception 1.740 99.80%

S8 Xception 1.745 99.50%

Average 98.53 ± 0.39%
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Table 3.

Average nested 7-fold cross-validation MAPE with standard error

Fold ResNet50 InceptionV3 Xception

MAPE SE* MAPE SE* MAPE SE*

S1 5.25% 0.78% 4.47% 0.79% 5.06% 0.89%

S2 5.01% 0.40% 3.79% 0.39% 4.24% 0.44%

S3 5.43% 0.74% 4.74% 0.65% 5.06% 0.76%

S4 5.42% 0.53% 5.16% 0.76% 5.05% 0.54%

S5 5.47% 0.82% 4.43% 0.44% 4.92% 0.47%

S6 5.62% 0.72% 5.03% 0.60% 5.42% 0.63%

S7 5.89% 0.64% 4.74% 0.60% 5.39% 0.75%

S8 4.91% 0.53% 4.90% 0.64% 4.35% 0.40%

*
SE is the standard error of the mean MAPE.
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Table 4.

MAPE with Standard Error and MAE with Standard Error during 8-fold cross-testing

Testing fold Architecture MAPE MAE (µm) Inference time (ms)

S1 InceptionV3 6.45% 52.9 1.395

S2 InceptionV3 6.66% 56.1 1.392

S3 InceptionV3 5.09% 45.6 1.380

S4 Xception 3.38% 31.7 1.669

S5 InceptionV3 3.78% 26.2 1.395

S6 InceptionV3 3.43% 31.6 1.415

S7 InceptionV3 2.07% 16.7 1.394

S8 Xception 4.46% 27.9 2.044

Average 4.42% ± 0.56% 36.09 ± 4.92
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