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To the Editor - In medicine, digital twin models use real-time data to adjust treatment, 

monitor response, and track lifestyle modifications. Similarly, cancer patient digital twins 

(CPDTs) use emerging computing and biotechnologies to build in silico individual 

representations that dynamically reflect molecular, physiological and lifestyle status across 

different treatments and time. We propose a CPDT framework with a continuous life cycle 

for shared decision-making (Figure 1).

The proposed CPDT framework integrates individual-level data, such as proteome and 

clinical characteristics, with other factors, like clinical trials and population studies, 

to create a multiscale and multimodal data set for model training. To ensure rapid 

and comprehensive data integration, data must be captured under FAIR (Findability, 

Accessibility, Interoperability, Reusability) principles1,2 and across diverse populations to 

ensure all patients equally benefit.3

A revolutionary concept of the proposed CPDT will be its ability to bridge size and time 

scales of biological organization to address changes that span the full patient experience, 
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from the molecular level over nanoseconds to the population levels across decades. As 

the patient’s physical state evolves, their CPDT must incorporate observational data to 

represent the patient’s current state and reliably forecast future state transitions. A range 

of multiscale models exist for various cancer-related processes. The envisioned CPDT will 

need to connect scales and processes by adapting existing techniques for simulation, model 

inference, data assimilation, and high performance computing to build and test real-time, 

dynamic models at scale.4 Throughout development and once complete, technical validation 

and rigorous software engineering best practices will be critical to ensuring that the future 

CPDT system is trustworthy.5

Extending current, focused pilot studies that use mathematical models to predict and plan 

therapy,6 it is envisioned that clinical teams will use future CPDTs to perform virtual 

experiments, by simulating the model forward without treatment, under the current standard 

of care, and under treatment variations. Each simulation will predict a trajectory for the 

patient’s cancer under one of the treatment options. At each clinical encounter, the previous 

forecast for the chosen treatment will be compared to the patient’s newest measurements 

to assess performance of the digital twin. The new measurements will then be assimilated 

to update the patient’s CPDT, and the process will begin anew. CPDTs must be seamlessly 

integrated into medical workflows to achieve clinical utility by helping the doctor and 

patient to explore treatment options with intuitive visualizations. Dashboards need to be 

optimized to not burden the clinician or interfere with patients’ care experiences.

When fully realized, CPDTs will usher in a new age in medicine by increasing the 

probability that the optimal treatment is chosen each time. The optimality criteria will be 

chosen to include the patient’s care goals as well as objective clinical endpoints. Equal 

and equitable CPDT performance across diverse populations is crucial to their successful 

integration into clinical practice. CPDTs are susceptible to biases when learning from 

potentially biased data, reflecting existing healthcare systems that are rife with inequalities.7 

Tight controls and rigorous standards are necessary to ensure CPDTs do not reinforce 

pre-existing biases.8,9

CPDTs start with a patient model template that is based on retrospective data and a 

continuous learning process. Continuous learning maximizes predictive capacity while 

accounting for uncertainty and variability in measurements, missing data, and incomplete 

mechanistic knowledge. The systematic accumulation of CPDTs from real world 

deployment will enable cohorts of hundreds or thousands of CPDTs that may be used for in 
silico clinical trials and population studies. Although key technologies and data are rapidly 

evolving, significant hurdles remain.

An example of a CPDT could be for an acute myeloid leukemia (AML) patient who 

received a hematopoietic stem cell transplantation from an unmatched donor. For patients 

whose disease relapses, the best treatment plan may involve combinations of drugs and 

immunotherapies at multiple time points. The patient’s host and tumor genomic and other 

multi-omic measurements from the bone marrow and peripheral blood collected can be used 

to create updated predictions for various clinical scenarios including drug combinations, 

doses and durations, or a decision for no action, which are then intuitively presented to the 
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patient and doctor. The CPDT continuously accounts for the evolving cancer state and the 

donor (graft) immune system to reduce the uncertainty inherent in clinical decision making, 

thereby improving outcomes and patient-clinician interactions.

In 2019, the National Cancer Institute, the Department of Energy, several government 

national laboratories, and a consortium of academic and industrial partners formed the 

Envisioning Computational Innovations for Cancer Challenges (ECCIC) community at 

the intersection of cancer research and advanced computing to frame forward-looking 

approaches to accelerate predictive oncology – and the CPDT idea began to grow.10 

However, the full realization of CPDTs can only succeed with contributions by the 

experimental, computational, and clinical communities.

Developing CPDTs is a grand challenge for the convergence of advanced computing 

technologies and oncology. Using a CPDT for individualized patient care decision making 

has enormous potential for advancing predictive oncology. With further development, 

refinement, and eventual implementation into clinical practice, CPDTs are poised to 

revolutionize how cancer and a host of other complex diseases are treated and managed.

CPDTs offer far more than individual patient predictions. The accumulated patient 

trajectories, decision making, outcomes, and match or discordance between predictions and 

reality will provide invaluable evidence for research investment, enabling policymakers to 

channel resources into therapies that show the most effectiveness. CPDTs could help to 

structure existing healthcare systems to better respond to real-time public health situations, 

addressing healthcare needs and health disparities as they occur.
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Figure 1. The Cancer Patient Digital Twin Life Cycle.
The CPDT is envisioned to have a real-time, dynamic life cycle with multiscale/multimodal 

data harmonization and integrated model training and inference. Advanced computing will 

be used to create and explore mathematical, statistical, mechanistic and AI models. CPDT 

predictions based on virtual experiments will be integrated into medical workflows for 

patient decision making and continuous learning.
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Table 1.

Key challenges facing the development of CPDTs

Data challenges 

Generating and acquiring high-volume, high-quality, multiscale data

Ensuring multiscale data represent both healthy and diseased states

Ensuring data are derived from diverse populations

Modeling and Integration challenges 

Harmonizing and aggregating new and existing data

Developing multimodal data fusion methods that align and combine information to more accurately characterize disease states

Seamlessly integrating data-driven and mechanistic modeling

Reducing model uncertainty via standardized training and validation

Improving access to data, workflows, and HPC across the workforce

Ethical and community challenges 

Ensuring all stakeholders have a voice in CPDT development

Addressing ethical biases and privacy concerns

Ensuring built-in compliance through CPDT development

Establishing and adhering to regulatory standards for data goverance and usage
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