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Abstract

Mathematical modeling is invaluable for advancing understanding and design of synthetic 

biological systems. However, the model development process is complicated and often unintuitive, 

requiring iteration on various computational tasks and comparisons with experimental data. 

Ad hoc model development can pose a barrier to reproduction and critical analysis of the 

development process itself, reducing potential impact and inhibiting further model development 

and collaboration. To help practitioners manage these challenges, we introduce GAMES: a 

workflow for Generation and Analysis of Models for Exploring Synthetic systems that includes 

both automated and human-in-the-loop processes. We systematically consider the process of 

developing dynamic models, including model formulation, parameter estimation, parameter 
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identifiability, experimental design, model reduction, model refinement, and model selection. We 

demonstrate the workflow with a case study on a chemically responsive transcription factor. The 

generalizable workflow presented in this tutorial can enable biologists to more readily build and 

analyze models for various applications.
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Introduction

Dynamic mathematical models can be used to enable understanding, prediction, and control 

of biological systems. At a fundamental level, this type of model is a mathematical 

description of the components and interactions in a system. These models have proven 

useful for investigating the behaviors of genetic programs—sets of biological parts such as 

genes and proteins that are designed to implement specific functions1-5. Efforts to date have 

often used ordinary differential equations (ODEs), which describe the time evolution of the 

concentrations of system components and provide a framework for representing continuous 

dynamic systems. These models have been used to explain and predict behaviors of genetic 

programs that perform a growing array of functions including regulating gene expression3-7, 

implementing logic gates5, 6, and implementing feedback control8-13.

Models can generally be employed for explanation, in which the objective is to help the 

user understand a set of experimental observations, or for prediction, in which the objective 

is to simulate the response of a genetic program to a previously untested experimental 

condition or design choice (terms in italics are summarized in a glossary in Supplementary 

Information). When employed for explanation, models can help one understand how 

genetic programs work by identifying mechanisms that are necessary to describe a set of 
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observations, or training data6, 11, 12. These models can help uncover mechanistic insight by 

testing whether a proposed model formulation is consistent with experimental observations, 

which may include data of different types and collected in separate experiments. Models 

employed for prediction build upon explanatory models (that are assumed to be accurate, at 

least locally) and aim to predict outcomes of a previously untested experimental condition 

or design choice, called test data. These models can guide genetic program design by 

predicting how relevant parameters and/or conditions can be adjusted to produce an intended 

response and by exploring how different well-characterized parts can be combined to carry 

out specific functions 3, 4, 7, 14, 15. Both usages can accelerate the “design, build, test, learn” 

cycle that is a paradigm in synthetic biology.

Although the value of model-guided design is generally recognized, the process of 

model development remains challenging, particularly for those without extensive training 

in investigating complex, multi-dimensional design spaces, dealing with unconstrained 

parameter spaces, and mapping experiments to simulations. The modeler must propose, 

implement, analyze, and refine candidate models until a suitable model is identified by 

making comparisons between model simulation outcomes and experimental observations. 

This iteration is often accomplished through intuition-guided exploration rather than 

through a reproducible and generalizable procedure. Ad hoc model development makes it 

challenging for both the modeler and any reader to evaluate how choices made during model 

development impact the utility of the model, and a lack of clarity makes it challenging to 

reproduce or extend this process to new applications. The lack of generally agreed-upon 

model development procedures might also contribute to the major challenge of limited 

reproducibility in biological models16, 17.

To help address these challenges, and to lower the barrier to entry for synthetic and 

systems biology researchers, we present a systematic workflow for model development. We 

focus our discussion on genetic programs, for which these approaches are well-developed, 

although the concepts extend to other settings. We demonstrate the workflow using a tutorial 

describing a simulation-based case study, which is a demonstration executed using simulated 

data that serve as a stand-in for experimental observations, and in which the model structure 

and parameters are known. This case study is based upon a hypothetical but realistic genetic 

program and a set of associated mechanistic assumptions, which are described in detail 

below. We include example code, which is written in the free and widely used programming 

language Python and available on GitHub, that executes each step of the workflow for the 

case study (Methods, Supplementary Information).

This tutorial is written with the assumption that the reader has familiarity with (1) 

identifying compelling biological questions to investigate through modeling and translating 

these questions into modeling objectives; (2) formulating ODE-based models that describe 

biomolecular systems based on mass action kinetics; and (3) collecting or otherwise 

obtaining supporting experimental data. For additional introduction to model formulation, 

we refer the reader to existing resources18, 19. Here we focus on topics that address 

the limitations of ad hoc model development, including methods for evaluating both the 

robustness of a parameter estimation method and the goodness and uniqueness of model fits 

to experimental data.
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Results

While there exists a deep body of knowledge that can guide the model development process, 

from model formulation 18, 19 and parameter estimation 19-25, to model selection23, 26, 27, 

parameter identifiability analysis25, 28-37, and experimental design7, 29, 31, 38, 39, navigating 

these tasks can be slow and cumbersome, posing a barrier to entry. This challenge 

is heightened by the fact that published studies often focus on a final optimized 

model rather than the process by which the model was generated, which is often 

through laborious iteration that is understandably difficult to fully capture in a report. 

A generalizable workflow to make model development more objective would improve 

rigor and reproducibility and lower the barrier to entry for synthetic and systems biology 

researchers. Towards this goal, we describe and demonstrate a rigorous process for 

developing and analyzing dynamic models, walking through methods and interrelated 

considerations for the steps of model formulation, parameter estimation, parameter 

identifiability analysis, experimental design, model reduction, model refinement, and model 

comparison and selection.

A systematic, conceptual workflow for ODE modeling in synthetic biology

Workflow description.—GAMES (Generation and Analysis of Models for Exploring 

Synthetic systems) describes the model development process as a set of five tasks, or 

modules (Figure 1). We introduce the overall logic of this workflow and then elaborate on 

key concepts and approaches within each module in subsequent sections. The modeler first 

uses Module 0 to initiate the process by defining the modeling objective, formulating one 

or more base case models, and collecting training data. In Module 1, a proposed parameter 
estimation method (PEM) is evaluated using simulated data from the model structure defined 

in Module 0. The PEM is then used in Module 2 to fit parameters to the training data. In 

this way, Module 1 ensures that the parameters are estimated using an appropriate method 

and computational implementation. If adequate agreement with the training data is obtained 

in Module 2, then parameter identifiability is assessed in Module 3. If all parameters 

are identifiable (capable of being uniquely estimated within a finite confidence interval), 

then candidate models can be compared in Module 4. Results from intermediate steps can 

motivate iteration (Figure 1, dotted lines) between experiments and simulations either to 

improve the agreement between experimental and simulated data or to constrain parameter 

estimates. The GAMES workflow helps the modeler track why and how parameters are 

tuned during model development and evaluate the extent to which this tuning is supported by 

data.

Case study description.—In the following sections, we demonstrate the GAMES 

workflow using a case study of a simple genetic circuit based upon a canonical synthetic 

biology part: a chemically responsive transcription factor (crTF) that regulates gene 

expression in mammalian cells. crTFs confer external control over the expression of a target 

gene in the presence of a chemical inducer. crTFs have been built using various mechanisms 

and genetic parts5, 6, 40, 41, and these systems can also confer titratable control over the 

expression of clinically relevant genes41. Typically, crTF protein-protein interactions are 

mediated by the association of cognate dimerization domains5, 6, 40, 41. Our hypothetical 
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crTF has two protein parts, one containing a DNA-binding domain and the other containing 

an activation domain. In the presence of a ligand, these parts reconstitute at the interface 

of the dimerization domains. For simplicity, the term “DNA-binding domain” refers to the 

DNA-binding domain fused to one of the dimerization domains, and the term “activation 

domain” refers to the activation domain fused to the other dimerization domain. The 

reconstituted transcription factor can then activate a target promoter, leading to transcription 

and translation of a reporter protein that can be measured. We know that the doses of 

all three components affect the amount of reporter protein expressed with and without 

ligand, but the mechanism and parameters for the intermediate states are unknown and not 

measured. For the purpose of this case study, crTFs are a useful representative example of 

the types of states and interactions necessary to build a model of a genetic program, and the 

mechanism is simple but sufficiently nontrivial to demonstrate the utility of the workflow.

We first pose a reference model that reasonably describes a crTF system, so that we can 

run simulations of this reference model and generate data that serve as a stand-in for 

experimental observations. We refer to these reference model-generated data as training 

data in this tutorial to link this demonstration to the practical use of GAMES. We know 

the structure and parameters of the reference model, which includes reasonable mechanistic 

descriptions and physically plausible but essentially arbitrary reference parameter choices. 

In practice, one would have an experimental system rather than a reference model from 

which to collect data, and the model structure and parameters would be unknown. In these 

applications, the model structure would represent a set of mechanistic hypotheses about how 

the system works. To illustrate the workflow, we will use GAMES and the training data to 

perform parameter estimation and refinement on candidate models. We can then compare 

resulting parameter sets and simulated data to the known parameters of the reference model 

and the training data. We will first demonstrate the ideal workflow in which each module is 

successfully completed on the first try, then we will discuss common failure modes for each 

module and suggested actions for remediation along with general paths for iteration between 

modules.

Module 0: Collect data and formulate model(s)

Motivation and general method.—The first challenge in model development is to 

identify the modeling scope (a choice of which aspects will be described or omitted based 

on the modeling objective(s)) and to use this choice to guide collection of base case training 

data and formulation of a base case model (Figure 2a, Module 0.1). Statistician George Box 

is credited with coining, “All models are wrong, but some are useful.” Defining the objective 

at the outset enables the modeler to identify what would make the model useful rather than 

trying to develop an unnecessarily complex model that may be difficult or even impossible 

to interpret.

The modeling objective will guide decisions on the collection of training data (Figure 

2a, Module 0.2) and formulation of one or more base case models (Figure 2a, Module 
0.3). Together, the modeling objective, training data, and base case model define the 

modeling problem. Models differ in biological assumptions, mathematical implementation 

of assumptions, and/or the definition of free and fixed parameter values or bounds. In 
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this way, different models can represent different mechanistic hypotheses19. If there exists 

prior knowledge on physically realistic bounds for any parameters, this information should 

be included prior to parameter estimation. For example, if a model includes a first-order 

rate constant describing the rate of protein degradation as a free parameter, one could use 

knowledge from literature (depending on the organism and protein) to determine realistic 

bounds for this parameter.

Case study.—We define the modeling objective to describe the effect of each input (ligand 

dose, DNA-binding domain plasmid dose, AD plasmid dose) on the readout (reporter protein 

expression) (Figure 2b). In other scenarios, the objective might be both to explain a set of 

observations (training data) and to predict another set of observations (test data). We limit 

the scope of this example to an explanatory objective.

The reference model (Equations 1-8, Figure 2c) describes transcription, translation, and 

binding of the inputs, activation of the reporter promoter, and transcription and translation 

of the reporter. Constitutive transcription and translation of the DNA-binding domain and 

the activation domain are described by mass action kinetics with rate constants ktxn for 

transcription and ktrans for translation. Basal degradation of the DNA-binding domain and 

activation domain are described by first-order rate constants kdeg,m for mRNA species and 

kdeg,p for protein species. Transcription, translation, and degradation rate constants for states 

of the same type (e.g., mRNA or protein) are constant and equal except for the degradation 

rate constant of the reporter protein (Supplementary Table 1).

Abbreviations — DBD: DNA-binding domain, AD: activation domain, L: ligand, m: 

mRNA, p: protein, txn: transcription, trans: translation

d[DBDm]
dt = ktxn ⋅ doseDBD − kdeg,m ⋅ [DBDm] (Equation 1)

d[DBDp]
dt = ktrans ⋅ [DBDm] − kdeg,p ⋅ [DBDp] − kbind ⋅ [DBDp] ⋅ [ADp] ⋅

[L]
(Equation 2)

d[ADm]
dt = ktxn ⋅ doseAD − kdeg,m ⋅ [ADm] (Equation 3)

d[ADp]
dt = ktrans ⋅ [ADm] − kdeg,p ⋅ [ADp] − kbind ⋅ [DBDp] ⋅ [ADp] ⋅ [L] (Equation 4)

d[L]
dt = − kdeg,L ⋅ [L] − kbind ⋅ [DBDp] ⋅ [ADp] ⋅ [L] (Equation 5)

d[TF]
dt = kbind ⋅ [DBDp] ⋅ [ADp] ⋅ [L] − kdeg,p ⋅ [TF] (Equation 6)
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d[Reporterm]
dt = ktxn ⋅ f − kdeg,m ⋅ [Reporterm] (Equation 7)

d[Reporterp]
dt = ktrans ⋅ [Reporterm] − kdeg,reporter ⋅ [Reporterp] (Equation 8)

The ligand dose is multiplied by a parameter e (a lumped parameter representing a 

conversion factor between the ligand dose in experimental units and arbitrary units used 

in the model and also the effective diffusion rate of the ligand into a cell) and then used as 

the initial condition for the ligand state, as described by Equation 9.

[L]effective(t = 0) = [L] ⋅ e (Equation 9)

Ligand degradation is described by a first-order reaction with a rate constant kdeg,L. This 

formulation includes the assumption that the three inputs (DNA-binding domain protein, 

activation domain protein, and ligand) bind in an irreversible, trimolecular reaction (a choice 

that simplifies the model for the purposes of this tutorial) described by the rate constant 

kbind.

The reconstituted transcription factor, TF, can then induce promoter activation. The DNA-

binding domain is a competitive inhibitor of TF binding to DNA, as the DNA-binding 

domain and TF each bind to the same promoter region. A modified Hill function that is 

commonly used to represent a transcriptional activator and a transcriptional inhibitor acting 

at the same promoter42 (Equation 10) was used to lump together transcription factor and 

DNA (TF-DNA) binding (with the possibility of cooperativity in binding) and subsequent 

transcription of the reporter. This function, f, takes into account the promoter states: active 

(bound by TF), inhibited (bound by DNA-binding domain), and inactive (unbound).

f([DBD], [TF]) =
b + m [TF]

km
n

1 + [TF]
km

n + [DBD]
km

n (Equation 10)

Background promoter activation, without activator or inhibitor present, is described by b. 

Maximal expression from the promoter, at a saturating amount of TF, is described by m. The 

activation coefficient km for the crTF is assumed equal to the inhibition coefficient for the 

inhibitor. The Hill cooperativity n applies to cooperative TF-DNA binding. Reporter mRNA 

is generated according to the promoter activation function described above multiplied 

by a first-order rate constant ktxn, and degradation is described by a first-order rate 

constant kdeg,m. Reporter protein is generated based on a first-order rate constant ktrans, 

and degradation is described by a first-order rate constant, kdeg,reporter.

There are six free parameters—e, kbind, b, m, km, and n—and the other parameters are fixed 

based on literature values (Supplementary Table 1). Reference parameter values were chosen 
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arbitrarily from within a plausible range (Supplementary Table 2). The bounds for each free 

parameter except n were set to three orders of magnitude in either direction of the reference 

value. The bounds for n (the Hill coefficient for cooperative TF-DNA binding) are 1 and 4, 

which are considered relevant values42. A useful resource for choosing parameter estimates 

is BioNumbers43, a database of salient biological numbers curated from the literature.

To generate a set of training data akin to experimental data, we considered a scenario in 

which ligand dose (independent variable) was varied between 0–100 nM (11 datapoints 

including 0, and 10 logarithmically spaced datapoints between 1–100 nM) while holding 

plasmids encoding DNA-binding domain and activation domain constant at 50 ng each per 

well of transfected cells. The dependent variable is the reporter protein at 24 h after ligand 

treatment (Methods). Training data were generated by simulating the reference model with 

the reference parameters for these conditions (Figure 2d). Each datapoint was normalized to 

the maximum value within the data set (Methods).

In constructing the training data set, we separately incorporated the effects of technical 

error and biological variation. To represent biological variation, error bars were added to 

each data point. The error bars represent a distribution of values one might observe if the 

experiment were repeated many times with different biological replicates. Error bars on all 

plots represent the standard deviation, which was set to a constant arbitrary value for each 

data point. To represent technical error, randomly generated noise was added to each data 

point based on normally distributed error described by N(0, σSEM
2), where σSEM is the 

standard error of the mean. This error is the inaccuracy associated with the measurement 

of each data point in an analogous experiment. Representing error and variation in this 

way approximates phenomena in experimental training data. Now that we have a modeling 

objective, a training data set, and a base case model (that matches the reference model in 

formulation for the purpose of the case study but is not yet parameterized), we are ready to 

apply the GAMES workflow.

Module 1: Evaluate parameter estimation method

Motivation.—Given a base case model and training data, we next aim to identify the 

set of parameters that produce the best agreement between this model and data set. This 

objective can be accomplished using a parameter estimation method (PEM): an algorithm 

for identifying the set (or sets) of parameters that yield the best agreement between 

training data and simulations of a model of interest. Maximizing agreement is analogous 

to minimizing a predefined cost function that accounts for the difference between each 

training data point and the corresponding simulated value. The parameter set yielding the 

lowest cost is the calibrated parameter set. In addition to defining the cost function, several 

PEM covariates and hyperparameters must be appropriately defined. A covariate is an 

aspect of the model development process, which results from choices made by the modeler, 

and that is not of primary interest but can impact the interpretation of results. Covariates 

include the choices of scale and constraints of parameters, ODE solver, optimization 

algorithm, and user-friendliness of the code20. Algorithm-specific hyperparameters must 

be specified to set up, execute, and interpret a PEM20. For example, for a global search (a 

high-dimensional sweep over defined regions of parameter space), the number of parameter 
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sets is a hyperparameter, and for a multi-start optimization algorithm, the number of initial 

guesses is a hyperparameter.

It is important to select a PEM that is well-suited to the parameter estimation problem, 

which is defined by the training data, model, and cost function (Figure 3a). The cost function 

landscape, which represents the relationship between parameter values and the cost function, 

is unique and unknown a priori. The PEM explores this landscape to find an optimal 

parameter set or sets. The simplest cost function landscapes in 1D parameter space have 

a single local minimum. However, as either the number of local minima or number of 

dimensions in parameter space increase, the cost function landscape becomes more difficult 

to explore and the global minimum (or minima) is harder to find. Cost function landscapes 

with flat regions, in which the model is unresponsive to changes in parameters, are also 

difficult to explore, as the algorithm can get lost wandering around these regions and fail to 

converge on the global minimum44. Flat cost functions are common in biological systems 

modeling because systems are often only partially accessible, meaning that only a few states 

are observed and used as training data, and therefore timescales of intermediate reactions are 

often not well-constrained31.

When analyzing parameter estimation results, it can be difficult to distinguish the scenarios 

of nonconvergence and having an unacceptable model. If the optimization algorithm is 

successful, then the cost function trajectory will converge to a global minimum (Figure 3b). 

If that global minimum is below the threshold set to define an acceptable model, then the 

model is considered sufficient. However, if the optimization converges to a local minimum 

with a cost above the defined threshold, then the optimization is not successful. The global 

minimum is not known a priori, and therefore it is often not possible to distinguish the 

scenarios of nonconvergence and having an unacceptable model (Figure 3c). This challenge 

arises because the cost function trajectories for each of these scenarios may look nearly 

identical, and it is only with knowledge of the global minimum (knowledge that we do not 

have in practice) that the two cases can be distinguished. Therefore, it is wise to perform 

consistency checks where the global minimum is known to assess whether a candidate PEM 

is appropriate for the given problem and is implemented properly, enabling identification 

a global minimum of the model-specific cost function. The consistency check serves as a 

positive control for parameter estimation, paralleling common positive controls used in wet 

lab experiments to ensure that an assay was functional and was correctly executed. Below, 

we consider how a consistency check can be performed and interpreted for a proposed PEM.

General method

Parameter estimation method.—In the absence of knowledge about features of the 

cost function landscape, a reasonable choice of PEM is multi-start optimization using the 

Levenberg-Marquardt optimization algorithm45 (Figure S1). We implemented this method 

as follows: 1) execute a Latin hypercube global search over parameter space46 to generate 

nsearch parameter sets; 2) filter the results by cost function and choose the top ninit parameter 

sets; 3) run ninit optimization simulations using the Levenberg-Marquardt algorithm47, 48, 

each time using a different parameter set as an initial guess. The parameter set with the 
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lowest cost function after optimization is considered the best parameter set. We use the 

error-weighted χ2 as the cost function (Equation 11).

χ2(θ) = ∑
k = 1

d yk
exp − yk(θ)

σk

2
(Equation 11)

Here, d is the total number of datapoints in the training data set, yk
exp is the kth datapoint in 

the experimental data with associated measurement error (standard deviation) σk, and yk(θ) 

is the simulated value of the kth datapoint using the parameter set θ. This cost function is 

appropriate for error that is approximately normally distributed; if the standard deviation 

is not normally distributed, then a different metric such as the root mean squared error 

can be used instead. For this PEM, covariates include the global search and optimization 

algorithms and the choice of cost function, and hyperparameters include nsearch and ninit. A 

different PEM might be required depending on the model structure, training data, and cost 

function. For example, if multiple objectives are specified, such as for fitting data describing 

more than one species or for multiple independent experiments of different types, and as 

contrasted with a single objective in Equation 11, then one option is to use an evolutionary 

algorithm to conduct multi-objective optimization49.

Consistency check.—We can test the proposed PEM by performing a consistency check 

to assess whether the PEM finds the global minima when the parameters are known20. 

We use the model structure defined in Module 0 and choose a set of parameter values to 

generate a PEM evaluation data set. PEM evaluation data are generated for the specific and 

limited purpose of assessing whether the PEM and hyperparameters selected are suitable 

in general for fitting models that have the same structure as the model defined in Module 

0. The PEM evaluation parameters should be chosen such that PEM evaluation data sets 

qualitatively match the training data, if possible. Finding PEM evaluation parameters can 

be accomplished by performing a global search over the free parameter space, calculating 

the cost function with respect to the training data for each parameter set, and choosing the 

parameter sets with the lowest cost functions as PEM evaluation parameters. Synthetic noise 

similar to the expected measurement error in the training data should also be applied, and 

data should be re-normalized, if applicable, afterwards. We then evaluate the performance 

of the PEM based on whether the method can identify parameter sets yielding acceptable 

agreement between the simulated data and each PEM evaluation data set (Figure 4a, Module 
1.1). PEM evaluation problems are useful because we know that in each case, an acceptable 

solution (a high-performing parameter set) does exist. Therefore, if the PEM cannot identify 

an acceptable solution for a PEM evaluation problem, then we assume that the method will 

also be unable to identify an acceptable solution when applied to the training data. It is 

good practice to include multiple PEM evaluation data sets to represent a variety of plausible 

model time courses and local minima, each of which might pose unique challenges for 

parameter estimation.
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The consistency check is evaluated by a quantitative criterion, such as the coefficient 

of determination, R2, to measure the ability of the method to solve the PEM evaluation 

problems (Equation 12).

R2(θ) = 1 −
∑k = 1

d (yk
exp − yk(θ))2

∑k = 1
d (ȳexp − yk(θ))2 (Equation 12)

In the formula, d is the number of data points in the training data set, yk
exp is the kth data 

point in the experimental data with associated measurement error (standard deviation) σk, 

yk(θ) is the simulated value of the kth data point using the parameter set θ, and ȳexp is the 

mean of the training data set. R2 is used to evaluate the correlation between normalized 

training data values and normalized model-simulated values (Figure S2a). If the criterion 

meets some pre-determined threshold, then the method is considered appropriate. Here, the 

PEM evaluation criterion is satisfied if any parameter set yielding an R2 of at least 0.99 

(defined as R2
pass) can be identified for each PEM evaluation problem (Figure 4a, Module 

1.2). The criteria should be stringent enough to determine if the known PEM evaluation 

parameters were found within the known noise that was added to make the PEM evaluation 

data similar to the training data. For example, the R2 between each PEM evaluation data 

set with and without noise can be calculated, and R2
pass can be set to the mean of these 

values. If the PEM evaluation criterion is satisfied, then the modeler can move on to Module 

2. If the criterion is not satisfied, then the modeler should look for technical errors such 

as in the implementation of the PEM, tune the hyperparameters and/or covariates, or try a 

different PEM until the criterion is satisfied. For example, if R2 < R2
pass, then it is possible 

that a local minimum has been identified, which suggests that different hyperparameters or 

covariates should be used to reach a global minimum. The PEM evaluation criterion should 

be determined for each new version of the model, because changes in model structure (i.e., 

formulation) or choice of training data could impact the ability of the PEM to identify an 

acceptable solution.

Quantifying goodness of fit with R2 has some limitations, as the metric quantifies the 

correlation between training data and simulated values, not direct agreement between the 

experimental and simulated data, so the correlation between R2 and χ2 should be validated 

by simulation studies and by visual inspection. One limitation is that R2 can be used to 

quantify the PEM evaluation criterion only in regimes in which R2 and χ2 are correlated, 

which can be validated by plotting R2 and χ2 values for simulations using randomly 

generated parameter sets (Figure S2b). Observing such a correlation enables the modeler 

to use R2 as a goodness of fit metric. If the correlation is not observed, the modeler would 

not be able to assume that parameter sets yielding high R2 values would also yield low χ2 

values and could therefore not use R2 as a goodness of fit metric. The modeler should also 

visually inspect the best model fits to the PEM evaluation data to check whether parameter 

sets yielding high R2 values produce simulations that match the training data. Although it is 

possible to use χ2 to define the consistency check, in practice one would need to adjust the 

value of χ2
pass on a case-by-case basis, as the range of possible χ2 values is dependent on 

the number of data points, the normalization strategy, and the measurement error. If R2 and 
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χ2 are not correlated, the PEM evaluation criterion could be defined by χ2, which could be 

defined by evaluating the χ2 values associated with agreement between the PEM evaluation 

data with and without simulated noise, as described for R2 in the previous paragraph.

Case study.—Module 1 was executed, and the PEM evaluation criterion was satisfied. A 

global search with 1000 randomly chosen parameter sets was filtered by χ2 with respect to 

the reference training data, and the 8 parameter sets with the lowest χ2 values were used 

to generate 8 unique sets of PEM evaluation data (Figure 4b, Figure S3). To ensure the 

PEM evaluation data are as similar as possible in structure to the training data, biological 

and technical variation were added to each PEM evaluation data point using the method 

described in Module 0. The hyperparameters nsearch and nopt were set to 100 and 10, 

respectively. For each PEM evaluation problem, the resulting 10 optimized parameter sets 

were used to evaluate the PEM evaluation criterion. R2
pass was determined by calculating 

the mean R2 between each PEM evaluation data set with and without noise (R2
pass = 0.999, 

rounded down to R2
pass = 0.99). At least one parameter set yielding an R2 > R2

pass was 

identified for each PEM evaluation problem so the PEM evaluation criterion was satisfied 

(Figure 4c).

Our simulation study shows that R2 and χ2 are correlated only for relatively small values of 

χ2 (Figure S2b). At high values of χ2, high R2 values are sometimes still attainable when 

simulations are flat lines (no change in reporter expression with changes in ligand dose). 

This is because the R2 evaluates the difference between how well the simulated data from 

the model describe the experimental data (Equation 12, numerator) and how well the mean 

of the experimental data describes the experimental data (Equation 12, denominator). To 

ensure that R2 is evaluated only in a regime in which R2 and χ2 are correlated, we evaluate 

R2 only for parameter sets yielding χ2 values in the bottom (best) 10% of χ2 values (pink 

dotted line in Figure S2b) achieved in the initial global search with the training data. Visual 

inspection of the model fits to the PEM evaluation data (Figure 4b) shows that each data set 

is appropriately described.

Module 2: Fit parameters with training data

Motivation.—We can now use the selected and evaluated PEM to fit parameters to the 

training data and determine whether the resulting model adequately matches the training 

data. Based on the consistency check in the previous module, we have confidence that this 

approach will yield a parameter set corresponding to a global minimum of the cost function. 

If the model is acceptable, this global minimum will correspond to a good fit to the training 

data. If the model is not acceptable, this global minimum will not correspond to a good fit to 

the training data.

General method.—To evaluate the best fit (or fits if multiple optimized parameter sets 

yield similar χ2 values), the training data and corresponding simulations are visually 

inspected to assess whether the model sufficiently fits each relevant feature of the training 

data (Figure 5a). The modeling objective determines which features must be captured in 

a sufficient fit (and, if applicable, which features need not be captured). For example, if 

the goal is to qualitatively recapitulate a set of observations, and the model is not expected 
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to yield near-perfect agreement with the training data (perhaps because the modeler is not 

attempting to represent a very granular mechanism), then perhaps some quantitative features 

of the data can be ignored. At this stage, the dynamic state trajectories should also be plotted 

and inspected for physical plausibility. For example, if any trajectories have negative values, 

there is likely a numerical instability or implementation error that should be addressed 

before proceeding.

If the model fails to meet either the visual inspection criterion or physical plausibility 

criterion, the model is not a reasonable candidate. If the model fails the visual inspection 

criterion, the modeler can propose an updated model structure to reflect a new mechanistic 

hypothesis and return to Module 0 with the new model. If the model fails the physical 

plausibility criterion, the modeler can check the model implementation and consider options 

for resolving numerical instability, such as rescaling equations, trying a stiff ODE solver, or 

changing integration error tolerances 20, 50. This cycle is repeated, and once both criteria are 

satisfied, the modeler can proceed to Module 3.

Case study.—Module 2 was executed for the case study, and the fitting criteria were 

satisfied. The parameter set with the lowest χ2 yielded an R2 value of 0.999. Inspection 

of the simulated training data showed that the model passed the visual inspection criterion 

because all features of the data, including the background reporter expression (without 

ligand treatment), steepness of the response curve, and saturating ligand dose are well-

described (Figure 5b). The internal model state dynamics at the highest ligand dose (100 

nM) satisfy the physical plausibility criterion, as each trajectory is physically realistic and 

does not include numerical instabilities or negative state variables (Figure 5c).

Module 3: Assess parameter identifiability

Motivation.—The modeler now has an estimate of parameter values that yield good 

agreement between the training data and the model. However, these values might not 

be unique, as other parameter sets might produce similar agreement. This ambiguity is 

a recurring challenge in ODE model development because if the parameters are not well-

constrained, then it is also possible that downstream model predictions and conclusions will 

not be well-constrained. This issue arises when the training data do not fully constrain the 

parameters, such as if there are timescales that are too fast to measure, intermediate states 

are not observed, or the model is too complex given the available data. Unconstrained 

parameters often cause problems when making predictions because changes in a free 

parameter θi might not affect the fit of the model to the training data, but the changes 

could affect predictions (i.e., simulated test data). For example, 8 of the 10 optimized 

parameter sets from the previous module (Module 1 case study) yield R2 > 0.99 and, and 

by visual inspection each of these optimized parameter sets fit the training data similarly 

well (Figure 6a); however, plotting the distribution of optimized values for each parameter 

shows that the values for most of parameters are not unique (Figure 6b). Therefore, many 

different parameter values yield similar agreement with the training data This result suggests 

that most of the parameters are unidentifiable—a phenomenon associated with flat cost 

function landscapes in which changes in a parameter θi do not affect the value of the 

cost function in some or all regions of parameter space (Figure 6c). Ideally, the model 
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will be at an appropriate level of complexity to describe the data, resulting in a model 

without unidentifiable parameters. In this module, we first focus on evaluating parameter 

identifiability before considering how to handle unidentifiable parameters should a model 

not exhibit the aforementioned ideal behavior.

General method.—A systematic way to determine whether parameter values are 

well-constrained given the training data is the parameter profile likelihood (PPL), 

which classifies parameters as identifiable, practically unidentifiable, or structurally 

unidentifiable30, 31, 34, 38, 51 (Box 1). Specifically, the PPL determines whether each 

parameter is appropriately constrained given the training data and measurement error. The 

PPL is determined individually for each parameter θi by fixing θi, re-optimizing all other 

free parameters θj≠i, and calculating the minimum achievable χ2 (Box 1 Figure B1a). In 

this way, χ2 is kept as small as possible along θi. This process is repeated for different 

values of θi (Box 1 Figure B1a) until a confidence threshold χPL
2= Δ1−α is reached (Box 1 

Figure B1b). The confidence threshold enables determination of the range of parameter 

values supported by the training data by accounting for measurement error associated 

with the training data. Parameter sets yielding PPL values below Δ1−α are considered not 

significantly different from one another in terms of agreement with the training data. The 

shape of each individual PPL is used to classify each parameter as identifiable, structurally 

unidentifiable, or practically unidentifiable (Box 1 Figure B1c). Identifiable parameters 

reach Δ1−α in both the positive and negative directions, practically unidentifiable parameters 

do not reach Δ1−α in at least one direction, and structurally unidentifiable parameters have 

flat PPLs. Following classification of each parameter, one can explore the relationship 

between each unidentifiable parameter and other parameters, and the relationship between 

each unidentifiable parameter and internal model states, predictions, or other relevant 

observables defined in the modeling objective (Box 1 Figure B1d). We use the term 

“model predictions” from this point forward for relevant observations made using the model, 

regardless of whether test data are considered. After each parameter is classified, the PPL 

approach includes paths for model reduction and experimental design30, 31, 34, 38, 51 to 

propose and evaluate refinements to the model to improve identifiability. The steps for 

assessing parameter identifiability using the PPL are summarized in Figure 7a.

In general, structural unidentifiability refers to inherent unidentifiability arising from the 

model structure itself, while practical unidentifiability captures additional identifiability 

issues arising from limited or noisy experimental measurements51. In practice, it is often 

difficult to distinguish between these two types of unidentifiability because issues with 

data quality or structural issues (or both) can lead to practical unidentifiability. Flat 

PPLs are unambiguous indicators of structural unidentifiability, but parameters classified 

as practically unidentifiable by their PPLs can still be affected by structural issues. For 

example, if a parameter has a PPL that crosses the threshold in only one direction, the 

parameter would be classified as practically unidentifiable, but it is possible that the PPL 

does not cross the threshold in the other direction because of a structural issue, such as 

a reaction timescale that is much faster than others in the model. Therefore, while the 

classification of parameters as practically or structurally unidentifiable can be helpful, it is 
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also important for the modeler to determine the cause of each unidentifiability by exploring 

parameter relationships along each PPL.

As an a posteriori method, the PPL assesses local identifiability of parameters because 

it infers structural identifiability based on the model fits to the training data, as opposed 

to a priori methods, which perform the analysis using the equations only and assess 

global structural unidentifiability49. Regardless of this limitation, the PPL is an appropriate 

general method for assessing practical and structural identifiability simultaneously, can 

be visually interpreted, and provides information that can guide model refinement to 

improve unidentifiability. Other methods for assessing parameter identifiability are reviewed 

elsewhere37, 51. For large models, it may be necessary to use a more computationally 

efficient algorithm or method to assess parameter unidentifiability30, 52, 53. Potential failure 

modes of the PPL approach and suggested remediation strategies are detailed in Figure S4.

Case study: We executed Module 3 and observed that the base case training data 

set did not enable identification of most of the free parameters. Using the calibrated 

parameters chosen in Module 2, we evaluated the PPL individually for each of the six free 

parameters using a 99% confidence threshold (Figure 7b). The threshold was determined 

to be 2.4 for this model and set of training data based on a simulation study (Figure S5, 

Supplementary Note 1). The results demonstrate that only one parameter, e, is identifiable 

given this model structure and training data. Based on the PPL results, all other parameters 

appear to be either locally practically unidentifiable (kbind, n, km) or locally structurally 

unidentifiable (b, m). The PPL for kbind reaches the threshold in the negative direction, 

but this parameter is unidentifiable in the positive direction, while the PPLs for the other 

practically unidentifiable parameters, n and km, do not reach the threshold in either the 

negative or positive directions, but are not flat. The PPLs for b and m are flat, suggesting 

that these parameters are structurally unidentifiable.

To investigate the relationships underlying each unidentifiable parameter, we first plotted 

the parameter trajectories along the profile likelihood associated with m (Figure 7c). The 

results show either flat (e, n), nearly flat (kbind), or bumpy (b, km) relationships between 

all parameters. The flat relationships between m and the parameters e and n indicate that 

these parameters do not compensate for changes in m and therefore do not contribute to the 

unidentifiability of m. The nearly flat relationship between m and kbind indicates that kbind 

does not compensate for changes in m; this relationship might be impacted by noise, causing 

the relationship not to be exactly flat.

The bumpy, seemingly correlated relationships between m and the parameters b and km 

suggest that each of these parameters might compensate for one another. In other words, 

there might be many sets of b, m, and km values that yield similar fits to the training data, 

such that it would not be possible, given the model structure and training data, to uniquely 

identify these parameters. If only two parameters directly compensate for one another, the 

resulting relationship between the parameters is expected to be smooth, as changes in one 

parameter are compensated for by another parameter. The complex relationship between m 
and the parameters b and km make it difficult to assess exactly how these three parameters 

depend on one another from a two-dimensional plot. Indeed, when we plotted the values 
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of m, b, and km along the unidentifiability associated with m in three dimensions using the 

same data generated when evaluating the PPL (Figure 7a, b), the surface was smooth. This 

result indicates that these parameters compensate for one another as m is changed and no 

other parameters are involved in the unidentifiability (Figure S5b). We note that parameter 

relationships in more than two dimensions cannot always be unambiguously recovered using 

this approach, as only one parameter is fixed at a constant value30.

Next, to further analyze the consequences of the unidentifiability of m, we plotted the 

internal model states along the profile likelihood associated with m (the set of fixed m 
values and other re-optimized parameter values considered equally plausible based upon 

the analysis in Figure 7b) at saturating ligand dose (Figure 7d). All states upstream of 

promoter activation are indistinguishable along the profile likelihood (model states shown 

in blue for a scale of fixed m values). The dynamic trajectories for both the reporter RNA 

and reporter protein states along the profile likelihood of m are similar in shape but differ 

in scale. Therefore, the unidentifiability of m does affect the dynamic trajectories of the 

internal model states. We note that the profile likelihood of m may also be related to 

the data-driven normalization scheme used in which both the training data set and each 

simulated data set are both divided by their respective maximum values before comparison 

and no other readouts are measured in units that are comparable to the reporter protein. 

Although not investigated here, we note that the normalization strategy should also be 

explored and investigated in a context-specific way when refining parameter identifiability 

(Supplementary Table 3). Normalization can be thought of as a feature of the model 

structure; if parameters are not identifiable, one should consider changing the normalization 

based on intuition and evaluating that change via the PPL.

Refinement of parameter identifiability using experimental design and model reduction

Motivation.—If the parameters are not identifiable given the training data, then the model 

is considered overly complex, and there should exist a simpler model that explains the data 

equally well. Alternatively, additional training data could be collected to further constrain 

parameter estimates. The choice of model reduction or additional data collection depends on 

whether simplifying the model reduces the explanatory or predictive power of the model. 

Specifically, if an unidentifiable parameter does not affect predictions, then the model can be 

reduced to remove the parameter, but if an unidentifiable parameter does affect predictions, 

then additional training data should be incorporated to constrain the parameter and therefore 

the predictions31. Multiple rounds of refinement may be necessary to arrive at a fully 

identifiable model.

General method.—After each parameter is classified based on the PPL, one can use 

model reduction and experimental design to refine the model and improve identifiability 

(Figure 7a Module 3.4). The type of unidentifiability and the shape of the PPL are used 

to determine a promising model refinement strategy. We consider three cases outlined in 

Figure 7a to illustrate this approach. In Case 1, if at least one parameter is unidentifiable 

and model predictions are impacted, additional training data are proposed and evaluated via 

proposition, collection, and incorporation of these data in Module 0. This step can include 

collecting experimental data with reduced noise, with additional independent variables or 
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observables, or with different sampling procedures. In Case 2, if at least one parameter 

is unidentifiable, but model predictions are not impacted, additional training data are not 

necessary, and the model is instead reduced by returning to Module 0 and proposing 

a reduced model (i.e., a revised set of ODEs that describe an appropriately simplified 

mechanism). If the parameter is structurally unidentifiable, the parameter can be fixed to a 

constant value34. If the parameter is practically unidentifiable, a model reduction strategy 

based on the shape of the PPL (e.g., whether there is a bound in the positive direction, 

negative direction, or both) can be pursued34. In cases for which the modeler cannot use 

intuition to choose a model reduction strategy, semi-automated model reduction strategies 

can identify parameter combinations and suggest how to remove unnecessary model terms 

and variables by taking asymptotic limits54. In Case 3, all parameters are identifiable, and 

the modeler proceeds to Module 4 in which competing candidate models are compared to 

one another. Through systematic iteration between models and experiments, the PPL enables 

the modeler to assess whether the final model is appropriately complex given the available 

data.

Case study.—We hypothesized that incorporating additional information about how the 

plasmid doses of the DNA-binding domain and activation domain components impact 

reporter expression would resolve the unidentifiability of b, m, kbind, n, and km. To test 

this hypothesis, we generated additional training data (using our reference model, for the 

purposes of this tutorial) varying the dose of plasmid encoding DNA-binding domain in 

combination with two doses of plasmid encoding activation domain (20 ng, 10 ng) and the 

saturating ligand dose of 100 nM (Figure 8a). The additional training data were added to 

the original ligand dose response data set (Model A) to define Model B. The dependence 

of reporter expression on DNA-binding domain plasmid dose is non-monotonic, which is 

physically plausible as excess DNA-binding domain (at high DNA-binding domain plasmid 

doses) acts as an inhibitor of promoter activation. Before evaluating the PPL, the parameter 

estimation method chosen in Module 1 was evaluated under the new conditions (including 

the additional training data), hyperparameters were tuned, and a new calibrated parameter 

set with an R2 of 0.999 was identified (Figure S6). The new calibrated parameter set was 

used to initialize simulations for the PPL (Figure 8b).

Incorporating the additional training data enabled the identification of two previously 

unidentifiable parameters (km and n), and the remaining parameters appear either locally 

structurally unidentifiable (b) or locally practically unidentifiable (m and kbind). While the 

PPL for m with Model A indicated that m was structurally unidentifiable, the PPL for m 
with Model B indicated that the parameter is practically unidentifiable, with an increase in 

χPL
2 at high values of m; these high values of m were not explored in the PPL for Model A 

because the calibrated value of m was much lower in Model A, and therefore the maximum 

number of PPL steps was reached before such a high fixed m value was reached. To 

investigate this inconsistency, we plotted parameter relationships along the profile likelihood 

associated with m (Figure 8c). For most values of m considered, the value of b depended 

on the value of m, indicating that the values of these parameters can compensate for one 

another without changing the simulated training data. kbind is still practically unidentifiable, 

but this parameter is not involved in the structural unidentifiability of b and m, as the 
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relationship between m and kbind is nearly flat. Now that only two parameters are involved 

in the unidentifiability, a two-dimensional visualization shows the relationship between b 
and m in a clear way that was not possible in the parameter relationship plots for Model 

A. At very high values of m (above 104), b remains constant at its maximum bound and 

can no longer increase to compensate for increases in m. This result shows the cause of the 

unidentifiability and resulting dependencies of m and b.

These results illustrate a limitation in that PPL evaluates local identifiability rather than 

global identifiability, leading to inconsistent PPL classifications across models. The results 

support the need to consider both parts of the identifiability analysis (PPL plots and 

parameter relationships) to investigate unidentifiable parameters and make model refinement 

decisions. For our case study, we used this investigation to justify the inconsistent PPL 

classifications. If inconsistencies cannot be justified by the suggested investigations, such as 

for larger, complex models in which many parameter values compensate for one another, 

the modeler may need to incorporate a global, a priori method for parameter identifiability 

analysis37, 51. Overall, Model B is an improvement over Model A in terms of the number 

of identifiable parameters, but it did not meet the requirement for all parameters to be 

identifiable. This case study illustrates the common experience that more than one round of 

refinement may be necessary to arrive at a final model.

To resolve the unidentifiability related to b and m, we reduce the model by estimating the 

relative magnitude of b and m rather than each value separately (Figure 8d). The value of b 
was arbitrarily set to 1, and we introduce and fit a new parameter, m*, that describes the fold 

induction of promoter activation (maximum value at a saturating amount of crTF divided 

by background value with no crTF). This substitution reduces the total number of free 

parameters from six in Models A and B to five in Model C. Before evaluating the PPL, the 

parameter estimation method was evaluated under the new conditions (new model structure), 

hyperparameters were tuned, and a new calibrated parameter set with an overall R2 of 

0.999 was identified (Figure S7). The new calibrated parameter set was used to initialize 

simulations for the parameter profile likelihood (Figure 8c). The model reduction scheme 

in Model C obviates the need to constrain b (which is now a fixed parameter) and enables 

identification of m*. Now the only remaining unidentifiable parameter is kbind, which is 

practically unidentifiable.

To resolve the unidentifiability of kbind, we defined Model D and incorporated a simple 

model reduction in which kbind was arbitrarily set to 1. This choice, similar to the others 

in this section, is one of many appropriate strategies for model reduction or experimental 

design that could be pursued. For example, we could propose additional training data 

with which to constrain kbind rather than setting it to an arbitrary value; this would be 

the preferable option if there were model predictions affected by the unidentifiability of 

kbind. The PPL results, in which kbind has a bound in the negative direction but not in the 

positive direction, indicate that kbind can take any value as long as it is sufficiently large, 

representing fast binding between crTF components. As long as the rate constant for binding 

is large enough, the components will bind very quickly, and no increase in this rate will 

affect the model agreement with the training data. Although kbind is classified as practically 

unidentifiable by the PPL, the results indicate that the cause of this unidentifiability is 
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structural and can be attributed to a separation of timescales between the crTF component 

binding reaction and other reactions in the model. Therefore, in this case study, fixing kbind 

to an arbitrarily large value is appropriate. We note that the utility of a model reduction 

strategy can be assessed by comparison of information criteria that take into account both 

the fit to training data and the number of free parameters26. Given a set of candidate models, 

comparison of information criteria can determine which model most likely matches the data; 

this approach is addressed in Module 4.

Before evaluating the PPL for Model D, the parameter estimation method was evaluated 

under the new conditions (new set of free parameters), hyperparameters were tuned, and 

a new calibrated parameter set with an overall R2 = 0.993 was identified (Figure S8). 

The new calibrated parameter set was then used to initialize simulations for the parameter 

profile likelihood (Figure 8c). The PPL indicated that all free parameters were identifiable in 

Model D, and therefore no further rounds of model reduction or experimental design were 

necessary.

Module 4: Compare candidate models

Motivation.—Different models may yield similar agreement with experimental data. The 

final challenge is to compare these models and choose the best candidate.

General method.—Models can be compared based upon the information criterion (Figure 

9a Module 4.2) and based upon model agreement with training and test data (Figure 9a, 

Module 4.1, 5.3).

The Akaike information criterion (AIC)26, 27, 55 is a metric that is used to quantitatively 

compare models (Equation 12). The AIC is defined as:

AICk = 2dk + χ2(θm) (Equation 12)

where dk is the number of free parameters in model k with calibrated parameter set θm. 

The AIC ranks models accounting for both the model complexity (first term) and the fit 

to training data (second term). Lower AIC values indicate greater parsimony. The intent of 

including a term to penalize complexity is to prioritize models that are generalizable over 

those that have unnecessary mechanisms or unidentifiable free parameters. Given a set of 

nested candidate models (with one being a special case of another, as is the case here), 

the best model chosen based on the information criterion should by definition be the same 

as the model that is chosen based on the identifiability analysis. However, in cases where 

candidate models are not nested and multiple models are fully identifiable, the AIC is a 

useful metric for making comparisons. The AIC must be calculated for each model using 

the same data. Therefore, if two models were trained with different data sets, the error in fit 

must be recalculated using a consistent data set to determine the AIC.

To compare relative AIC values between competing models, the AIC difference (ΔAICk) for 

model k is calculated as:
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ΔAICk = AICk − min(AIC) (Equation 13)

Where (AIC) is the minimum AIC value among the candidate models26. A small AIC 

difference for a model k (ΔAICk ≤ 2) indicates substantial support for the model, meaning 

that both model k and the model with the minimum AIC are supported by the information 

criterion analysis. Moderate differences (2 ≤ ΔAICk ≤ 10) indicate less support, and large 

differences (ΔAICk > 10) indicate no support56. We note that these guidelines do not always 

hold, especially when experimental observations are not independent.

If upon further experimental investigation (i.e., to generate empirical test data), none of the 

competing models provide adequate predictions, then the modeler can return to Module 0 

and either propose new mechanistic assumptions or collect new training data. If the model 

predictions cannot be experimentally recapitulated, then it might be necessary to incorporate 

the original test data into the training data set, generate new candidate models, and test them 

against new experimental test data.

Case study.—We use the previously generated Models A, B, C, and D to demonstrate 

the model comparison process and select the best candidate. The AIC values are compared 

separately for the two datasets (ligand dose response and DNA-binding domain plasmid 

dose response) and for the combination of datasets (Figure 9d). For the ligand dose response 

only, the model with the lowest AIC is Model D, while Model C is supported by the 

information criterion analysis (ΔAIC~2), and Models A and B are less supported (Figure 

9d, left). For the DNA-binding domain plasmid dose response only, the model with the 

lowest AIC is again Model D, while Model C is again supported by the information criterion 

analysis, and B is less supported (Figure 9d, middle). For both training data sets, only 

Models B, C, and D (which were each trained with both data sets) can be compared. 

Similar to the previous results, Model D has the lowest AIC, Model C is again supported 

by the information criterion analysis (ΔAIC~2), and Model B is less supported (Figure 

9d, right). The results from this module are consistent with the results of the parameter 

identifiability analysis (Module 3), which indicate that Model D is the best model. Formally, 

the information criterion analysis does not justify rejection of Model C, but we can justify 

the choice of Model D over Model C because Model D is the only one with no unidentifiable 

parameters. Model D is an example of a fully identifiable final model that is the ideal output 

of GAMES.

Module failure modes and suggested remediation

Each module has a unique set of failure modes that can be addressed by altering specific 

workflow choices (Supplementary Table 3, Figure S4). The case study in this tutorial 

represents an ideal version of the workflow without any module failures. We note that the 

GAMES workflow refers to the overall, conceptual workflow used to step through the model 

development process, not the specific methods used in this example, which may need to be 

adjusted for different modeling problems. In practice, alterations such as those described in 

Supplementary Table 3 and Figure S4 may be necessary to arrive at a model that satisfies a 

given modeling objective and that has identifiable parameters.
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Iteration between computational tasks and experiments—The model development 

process is iterative, and different modules can be combined to accomplish separate, 

complementary goals (Figure 10). Parameter estimation yields a parameter set or sets that 

confer the best agreement between the training data (normally, experimental data) and 

simulations for a given model structure. Model refinement includes an option for iteration 

between modeling and experiments if a good fit is not obtained using the initial model. 

Experimental design employs parameter identifiability analysis to propose and validate the 

use of additional training data to constrain parameters. Model reduction employs parameter 

identifiability analysis to drive the selection and validation of appropriate strategies to 

simplify the model. Model selection employs the first four modules to produce a set 

of competing models and then compares the resulting best-case versions. Finally, model 
validation compares simulated test data (predictions) with experimental test data and can 

involve model refinement to improve this agreement as needed.

Summary and discussion

GAMES is generalizable and can be adapted for different goals, independent of the specific 

biological and biochemical parts under investigation. By considering each of the modules 

described here, researchers can increase the power and utility of their modeling efforts by 

using the model development process to gain understanding about a system of interest, 

rather than focusing only on generating a single calibrated model, for which parameter 

uncertainty and predictive utility may not have been systematically evaluated. The workflow 

in this tutorial introduces and uses aspects of model development that should improve 

the rigor and reproducibility of modeling in synthetic biology, which represents an open 

opportunity and need16, 17. We also anticipate that this tutorial could be used as an 

educational tool.

To support access for researchers, educators, and students, the GAMES code (Methods) 

was written in the freely available programming language Python. The code can be 

assessed on GitHub, enabling reproducibility and reusability. We anticipate that GAMES 

could be adapted to previously developed software packages such as Data2Dynamics57, 

PottersWheel58, COPASI59 (a Complex Pathway Simulator), and BMSS60, 61 (an automated 

Biomodel Selection System) to accomplish specific computational tasks, and that this 

adaptation could improve computational efficiency compared to the code in this tutorial. 

Our code is intended primarily to provide an example of how to implement GAMES. The 

utility of starting from scratch without relying on software packages is a greater flexibility 

for customization. However, there is a tradeoff between customizability and the time and 

effort to be considered by the modeler, as building a code base from scratch can be time-

consuming and prone to error.

GAMES provides a systematic model development process, avoiding brute force 

consideration of all possible options, such as model structures, parameter estimation 

methods, or sets of training data, which may be infeasible in many cases. For example, 

if a modeler does not know which parameter estimation method is well-suited to the 

problem of interest, one could test many different methods, without careful consideration 

of the theory behind each method, until a method that passes the PEM evaluation criterion 
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is identified. However, this approach is not encouraged. Instead, we recommend that the 

modeler use this workflow to test hypotheses as to whether or not a given method is suitable 

for a modeling objective. The modeler should formulate a hypothesis as to why a given 

method is appropriate for an objective and then use the workflow to test that hypothesis, 

for example, “We hypothesize that the cost function has multiple minima and therefore a 

multi-start Levenberg Marquardt algorithm with the following specified hyperparameters 

would be appropriate for balancing global parameter exploration and speed for finding local 

minima.” GAMES enables the modeler to evaluate whether this hypothesis holds and either 

tune hyperparameters or try a different algorithm if it does not. Similarly, this principle 

can be applied to model formulation. One could imagine comparing a large, somewhat 

randomly determined set of models without considering the biological relevance of each 

one. However, a preferred path is for the modeler to formulate a hypothesis as to how the 

system works, such as “Even though true trimolecular interactions are rare in nature, we 

hypothesize that the interaction of these three components can be suitably described by a 

single, irreversible, trimolecular reaction,” and then rigorously test that hypothesis using 

GAMES. This approach is different than considering all possible combinations of reactions 

that could potentially occur, which has additional training data requirements and has become 

possible only recently by using specialized sparse-optimization methods62-64.

The field of synthetic biology is well-positioned to utilize ODE models due to the wide 

range of potential experiments that can be designed to interrogate or perturb synthetic 

systems. There are often many tunable handles, including experimental conditions (e.g., 

amounts of each component in a genetic program), design choices (e.g., substitution of parts 

with the same functionality but different quantitative performance), and topologies (different 

interactions between components). Performing comprehensive experiments to investigate the 

effects of each tunable handle, individually and in combination with each other handle, is 

infeasible. For this reason, ODE models have proven invaluable by decreasing the number 

of experiments needed to better understand or predict the response of a genetic program 

to these perturbations5, 7. GAMES enables these investigations by providing an accessible, 

systematic, and reproducible method to ensure that a set of experimental observations and 

model structure are together appropriate to generate useful predictions.

We anticipate that the core GAMES framework may be improved and extended in future 

iterations. Opportunities for improvement include developing user-friendly software based 

on the example code and incorporating more method options for specific types of problems, 

such as parameter estimation methods designed to handle noisy data23 or to improve PEM 

efficiency when parameter unidentifiability leads to nonconvergence45. Opportunities for 

extension include: (1) utilizing the method in this tutorial to build, analyze, and employ 

other synthetic biology systems; (2) improving predictive design; and (3) integrating 

automated computational design methods and human decision-making (e.g., using GUIs 

or automation of processes such as model selection62-64 or in silico experimental design). 

We hope that continually improving the accessibility and rigor of computational modeling 

will facilitate the ongoing evolution of synthetic biology as a technical discipline.
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Methods

Approximation of dynamics for case study

Custom Python scripts (Python 3.7.3) and Python’s odeint solver were used to run 

simulations. Equations were solved using two sequential simulations analogous to the 

experimental procedure associated with transient transfection, a common DNA delivery 

method used to prototype genetic programs5, 6. The first simulation modeled the system 

trajectory from the time of transfection (when plasmids for the DNA-binding domain, 

activation domain, and reporter are delivered to cells) until the time of ligand treatment (18 

h). The final time point concentration of each state from the first simulation was then used 

to initialize a second simulation that modeled the system trajectory from the time of ligand 

treatment to the time of fluorescence quantification by flow cytometry (24 h). Transient 

transfection delivers varied plasmid amounts to cells in a cell population, and although 

this population heterogeneity can be described with a statistical model6, for simplicity, 

consideration of population heterogeneity was omitted in this tutorial and the simulations.

Normalization strategy

Data-driven normalization was used to make comparisons between training data 

(representative of the process one usually employs for experimental data) and simulations. 

For each experiment, each data point was divided by the maximum value in the experiment. 

The same normalization strategy was applied to each simulated data set such that each 

data point was divided by the maximum value in the simulated data set. In this manner, 

independent experiments can be qualitatively but not quantitatively compared. In the case 

study, we assume that the ligand dose response and the DNA-binding domain plasmid 

dose response were completed in separate experiments and therefore each data set is 

independently normalized. The effect of normalization procedures on model development 

and parameter estimation has been examined in another study24.

Error metrics

The standard error of the mean (SEM) encompasses biological and technical variation. The 

standard deviation for each simulated datapoint was set to a constant, arbitrary value of 0.05 

arbitrary units (U). The SEM is calculated based on the standard deviation of measurements, 

which here are in triplicate (nreplicates = 3):

σSEM = σSD
nreplicates

(Equation 14)

Parameter estimation method

A multi-start local optimization algorithm was used to estimate parameters (Figure S3). 

The algorithm was implemented using custom Python scripts along with Python packages 

SALib65 for global search and LMFit66 for optimization.
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Parameter profile likelihood

All confidence intervals in this study are α = 0.01. Custom Python scripts were used to 

calculate the PPL based on the algorithm described previously30, 31. Further explanation is 

in Supplementary Note 1.

Parallelization of computational tasks

Simulations were parallelized across eight independent cores (chosen based on the number 

of cores available in the hardware used to run the simulations) to improve computational 

efficiency. Custom Python scripts were used to implement parallelization. An analysis of the 

effect of parallelization on computational time has been conducted in another study67.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1:

Parameter identifiability analysis via evaluation of the parameter profile 
likelihood

Figure B1. Steps in the parameter profile likelihood approach.
(a) Calculating the PPL involves iterations of parameter estimation for each free 

parameter. θ is the set of free parameters and θi is an individual free parameter. (b) The 

confidence threshold determines the range of parameter values supported by the training 

data based on the measurement noise. (c) The shape of the PPL determines whether 

a parameter is identifiable, structurally unidentifiable, or practically unidentifiable. (d) 
Unidentifiable parameters can be investigated by analyzing parameter relationships and 

internal model states and predictions.

• The profile likelihood χPL
2 is determined individually for each parameter 

by systematically varying the parameter value θi, re-optimizing all other 

parameter values θj≠i, and determining the lowest possible value of the cost 

function χ2 (Figure B1a). The choice of step for each new PPL calculation 

(each of which is represented by an open circle in the figure) should be 

chosen such that the step is small when the PPL is steep and large when the 

PPL is flat. Using an adaptive stepping method facilitates appropriate step 

sizes and improves computational efficiency (Supplementary Information). 

The PPL approach assumes that the starting point for PPL calculations (the 

value of the calibrated parameter) resides at a global minimum.

• The confidence threshold Δ1−α enables determination of the range of 

parameter values supported by the experiment by accounting for measurement 

noise associated with the training data (Figure B1b). Parameter sets yielding 

χPL
2 values below Δ1−α are considered not significantly different from 

one another in terms of agreement with the training data. Instead, any 

improvement upon the PPL below the confidence threshold is due to fitting 

the noise in the training data and is not indicative of an improvement in the 

description of the physical system. The choice of threshold is determined by 

a simulation study in which a number r of noise realizations of the training 
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data are generated, representing the variance in training data values that 

would be expected if the experiment were repeated r times (Supplementary 

Information). Each noise realization is defined by adding noise to each 

datapoint in the original training data set, such that each noise realization 

is consistent with the original training data but is quantitatively different. For 

each noise realization, χ2(θref) is determined by calculating the cost function 

associated with the noise realization (training data) and the simulated data 

using the set of reference parameters. χ2(θfit) is determined for each data set 

by re-optimizing all free parameters with respect to the data set associated 

with the noise realization. The difference between these values, χ2(θref) − 

χ2(θfit), represents the amount of overfitting for each data set and can be 

plotted as a histogram for all noise realizations. Δ1−α is chosen such that 

1−∝% of the χ2(θref) − χ2(θfit) values are below Δ1−α. In our case study, 

we use ∝ = 0.01. In practical cases in which θref is not known, θref can be 

approximated as θcalibrated, as long as the calibrated parameter set yields good 

agreement with the training data.

• The shape of the profile likelihood determines whether the parameter is 

structurally unidentifiable, practically unidentifiable, or identifiable (Figure 

B1c). Identifiable parameters do not need refinement, but each unidentifiable 

parameter should be individually investigated and refined until all parameters 

are identifiable.

• Unidentifiable parameters can be investigated in two ways (Figure B1d). 

First, the relationships between each unidentifiable parameter and the other 

parameters can be analyzed. By re-optimizing all other parameter values 

along the given parameter, the PPL approach enables identification of 

relationships between parameters. For example, a change in one parameter 

might be compensated for by a change in another parameter without changing 

the value of the cost function. The identification of such relationships is 

an advantage of the PPL approach over other parameter analysis methods, 

such as a traditional sensitivity analysis where the effect of changing only an 

individual parameter is evaluated. Second, internal model states and model 

predictions can be evaluated along each unidentifiable parameter. The impact 

of each unidentifiable parameter on model predictions and other conclusions 

can be examined and used to make downstream model reduction and 

experimental design decisions. For example, if a parameter is unidentifiable 

and changing the parameter does not change the model predictions, then 

the parameter can be set to an arbitrary value and the modeler can move 

on. However, if a parameter is unidentifiable and the model predictions 

change depending on the value of the parameter, then new training data are 

required to constrain the unidentifiable parameter. Based on the shape of 

the PPL (e.g., structurally or practically unidentifiable), directionality of the 

unidentifiability (e.g., in the positive direction, negative direction, or both), 

and other factors, there is exists a process that has been described for refining 

each unidentifiable parameter51. We note that parameter relationships should 
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be investigated for all unidentifiable parameters to gain information about the 

sources of unidentifiability before choosing strategies for model reduction or 

experimental design.
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Figure 1. A systematic workflow for ODE modeling.
Dotted lines represent iteration between modules, as further described in Figure 10.
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Figure 2. Collect data and formulate model(s).
(a–d) This figure and subsequent figures present the overall workflow (a) and then examine 

its application to the case study (b–d). (a) Module 0 workflow for collecting training data 

and formulating model(s). (b–d) Module 0 case study for a hypothetical crTF. (b) Case 

study modeling objective. The crTF has a DNA-binding domain and an activation domain 

that reconstitute in the presence of a ligand. The DNA-binding domain and activation 

domain are each fused to a heterodimerization domain. The reconstituted crTF induces 

transcription of a reporter gene, and the mRNA translated into a protein that is measured. 

(c) Schematic of the reference model for the case study. Free parameters are in bold and 

other parameters are fixed based on literature values (Supplementary Information). Promoter 

activation is described by a modified Hill function that accounts for these promoter states: 

active (bound by crTF), inhibited (bound by DNA-binding domain), and inactive (unbound). 

Degradation reactions are included for all states and for simplicity are not depicted here. 
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Reference parameter values are in Supplementary Table 2. (d) Case study training data. The 

initial set of training data is a ligand dose response at a constant dose of DNA-binding 

domain plasmid and activation domain plasmid (50 ng of each plasmid per well of cells). 

Training data and reference model data are normalized to their respective maximum values. 

Data points and error bars are the simulated training data with added noise. The dotted line 

is the reference model. Data are plotted on symmetrical logarithmic (“symlog”) axes in this 

figure and all subsequent figures for ligand dose response simulations.
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Figure 3. The parameter estimation method should be well-suited to the parameter estimation 
problem.
(a) Relationship between cost function shape and difficulty of parameter estimation. θi is 

a free parameter. In the rightmost plot, the shading corresponds to the value of the cost 

function (z-axis). (b, c) Distinction of nonconvergence and an unacceptable model. (b) A 

cost function trajectory indicates the value of the cost function at each iteration of the 

optimization algorithm. A successful optimization will identify a global minimum, although 

it will not necessarily identify all global minima. An acceptable model (i.e., parameter 

set) will yield a cost function value that is less than or equal to some threshold. (c) 
If the optimization algorithm does not converge (top), then global minima of the model 

(pink) cannot be found and instead a local minimum (gray) is identified. If the model is 

unacceptable (bottom), then a global minimum of the cost function is found (pink), but 

this minimum is too large to meet the cost function threshold predetermined to define an 

acceptable model (black dotted line). In practice, the global minimum is unknown and 

therefore these situations are indistinguishable (or could occur simultaneously).
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Figure 4. Evaluate parameter estimation method.
(a) Module 1 workflow for evaluating the PEM using simulated training data. A model must 

pass the PEM evaluation criterion before moving on to Module 2. (b, c) Module 1 case study 

for a hypothetical crTF. (b) Generating the PEM data. A global search of 1000 parameter 

sets was filtered by χ2 with respect to the training data and the 8 parameter sets with the 

lowest χ2 values were used as reference parameters to generate PEM evaluation data. For 

each data set, technical error was added using a noise distribution of N(0, 0.0172). Triangle 

datapoints are PEM evaluation data. (c) Determination of the PEM evaluation criterion. For 

each PEM evaluation data set, a global search with 100 randomly chosen parameter sets was 

used to choose 10 parameter sets to use as initial guesses for optimization. The optimized 

parameter sets and cost function from each of the PEM evaluation problems were used to 

evaluate the PEM evaluation criterion. Each parameter was allowed to vary across three 

orders of magnitude in either direction of the reference parameter value, except for n, which 

was allowed to vary across [100, 100.6]. Results are shown only for parameter sets yielding 

χ2 values within the bottom (best) 10% of χ2 values (to the left of the pink dotted line in 

Figure S2b) achieved in the initial global search with respect to the training data (Module 

1.1). Only parameter sets yielding R2 > 0.90 are included on the plot to more clearly show 

data points with R2 values that exceed R2
opt. Both of these filtering strategies apply to all 

plots of PEM evaluation data in this tutorial.
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Figure 5. Fit parameters with training data.
(a) Module 2 workflow for fitting parameters to training data. A model must pass both 

criteria before the modeler proceeds to Module 3. (b, c) Module 2 case study for a 

hypothetical crTF. (b) Visual inspection criterion. A global search with 100 randomly 

chosen parameter sets was used to choose 10 initial guesses for optimization. Each 

parameter was allowed to vary across three orders of magnitude in either direction of the 

reference parameter value, except for n, which was allowed to vary across [100, 100.6]. 

The parameter set with the lowest value of the cost function was chosen as the calibrated 

parameter set and is shown. Calibrated values are in Supplementary Table 2. (c) Physical 

plausibility criterion. Time course trajectories of each state variable in the reference model 

are shown for the highest ligand dose (100 nM). Dotted lines represent time before ligand 

treatment, and solid lines represent time after ligand treatment. Each state variable is in 

distinct arbitrary units, and thus values should not be compared between state variables. 

However, for any state variable, the trajectories can be compared across simulations, e.g., 

with different parameter values.
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Figure 6. Many unique parameter sets describe the training data equally well.
(a) Comparison across 8 optimized parameter sets identified in Module 1 (case study) 

that each yield R2 > 0.99. Simulated data generated with each of these parameter sets are 

shown in shades of gray (simulations overlap). (b) Distribution of each optimized parameter 

value. Each data point is an optimized parameter value. Most parameter values vary widely 

across multiple orders of magnitude while retaining very similar R2 values. (c) Examples 

of cost function landscapes exhibiting parameter unidentifiability. A parameter is considered 

unidentifiable if it cannot be uniquely estimated.
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Figure 7. Assess parameter identifiability.
(a) Module 3 workflow for evaluating and refining parameter identifiability through the 

profile likelihood approach. Depending on the results of the parameter identifiability 

analysis, the next step is either experimental design (Module 0), model reduction (Module 

0), or model comparison (Module 4). (b–d) Module 3 case study for a hypothetical crTF. 

(b) Application of the profile likelihood approach to the model defined in Figure 2. The 

calibrated parameter set from a parameter estimation run with 1000 global search parameter 

sets, and 100 initial guesses for optimization were used as the starting point (represented in 

blue). Parameters were allowed to vary across three orders of magnitude in either direction 

of the reference parameter value, except for n, which was allowed to vary across [100, 100.6]. 

An adaptive step method (Supplementary Note 1) was used to determine each step size. The 

threshold is defined as the 99% confidence interval of the practical χdf
2 distribution (Δ1−α 

= 2.4). (c) Plots of parameter relationships along the profile likelihood associated with km. 

We consider a range of possible values of the unidentifiable parameter (m) and plot these 
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values against recalibrated values of other model parameters (km, e, n, b, kbind). (d) Plots 

of internal model states considering a range of possible values of unidentifiable parameter 

m. Time courses represent the trajectory of each state variable in the model as a function 

of m choice. Each trajectory was generated by holding m constant at the given value and 

re-optimizing all other free parameters (results are from the same simulations used to plot 

the PPL results in b). Data are shown for these conditions: 50 ng DNA-binding domain 

plasmid, 50 ng activation domain plasmid, and a saturating ligand dose (100 nM).
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Figure 8. Refinement of parameter identifiability using experimental design and model 
reduction.
(a) Model B training data. Additional training data for a DNA-binding domain plasmid 

dose response at two plasmid doses of activation domain and a saturating ligand dose were 

generated using the reference parameter set. Noise was added as was done for the ligand 

dose response. Model B has the same model structure as Model A, but Model B incorporates 

this additional training data set and therefore has different calibrated parameters. (b) PPL 

results for Models A, B, C, and D. Results from Model A (Figure 7b) are shown again 

to facilitate comparison between other PPLs for other models. Each column is a different 
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parameter, and each row is a different model. All parameters were allowed to vary across 

three orders of magnitude in either direction of the reference parameter value, except for 

n, which was allowed to vary across [100, 100.6] for all PPL simulations in this figure. 

Calibrated parameter values for Models B, C, and D are in Supplementary Table 2. The 

threshold is defined as the 99% confidence interval of the χdf
2 distribution (Model B: 

Δ1−α = 3.6, Model C: Δ1−α = 3.7, Model D: Δ1−α = 4.9). A green check mark means the 

parameter is identifiable and a red X means the parameter is unidentifiable. (c) Parameter 

relationships along the profile likelihood associated with m. b and m compensate for one 

another along the profile likelihood. (d) Model reduction scheme for Model C. Instead of 

fitting both m and b, the ratio between the two parameters was fit and b was fixed to an 

arbitrary value of 1.
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Figure 9. Compare candidate models.
(a) Module 4 workflow for model comparison. If competing models remain after parameter 

identifiability analysis, then the models are compared on the fit to training data using both 

the AIC and comparison of predictions (if the model aims to be predictive). (b–d) Module 

4 case study for a hypothetical crTF. (b) Comparison of the relative fits to training data for 

Models A, B, C, and D (simulations overlap). (c) Comparison of quantitative fit to training 

data based on R2. A high R2 (max = 1) is ideal. (d) Comparison of AIC differences for using 

AIC calculated with ligand dose response data only (left), DBD plasmid dose response data 

only (middle), and both data sets (right).
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Figure 10. The modeling workflow is iterative and can be deconstructed to accomplish different 
modeling goals.
Model development is deconstructed into different goals. Boxes with check marks indicate 

that a feature is assumed to be known, and boxes with question marks indicate that a feature 

will be identified or determined as part of meeting a specified goal. Arrows indicate cycles 

that are conducted until a condition is met.
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