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Abstract

The outcomes of computational chemistry and biology research, including drug design, are 

significantly influenced by the underlying force field (FF) used in molecular simulations. 

While improved FF accuracy may be achieved via inclusion of explicit treatment of electronic 

polarization, such an extension must be accompanied by optimization of van der Waals (vdW) 

interactions, in the context of the Lennard-Jones (LJ) formalism in the present study. This 

is particularly challenging due to the extensive nature of chemical space combined with the 

correlated nature of LJ parameters. To address this challenge, a deep learning (DL)-based 

parametrization framework is developed allowing for sampling of wide ranges of LJ parameters 

targeting experimental condensed phase thermodynamic properties. The present work utilizes 

this framework to develop the LJ parameters for atoms associated with four distinct groups 

covering 10 different atom types. Final parameter selection was facilitated by quantum mechanical 

data on rare-gas interactions with the training set molecules. The chosen parameters were then 

validated through experimental hydration free energies and condensed phase thermodynamic 

properties of validation set molecules to confirm transferability. The ultimate outcome of utilizing 

this framework is a set of LJ parameters in the context of the polarizable Drude FF which 
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demonstrated improvement in the reproduction of both experimental pure solvent and crystal 

properties and hydration free energies of the molecules compared to the additive CHARMM 

General FF (CGenFF) including the ability of the Drude FF to accurately reproduce both 

experimental pure solvent properties and hydration free energies. The study also shows how 

correlations between difference in the reproduction of condensed phase data between model 

compounds may be used to direct the selection of new atom types and training set molecules 

during FF development.
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Introduction:

Molecular simulations have become indispensable in the biological and physical sciences, 

including their utilization in computer aided drug design (CADD). Rapid growth in 

computational power and increased efficiency of computational algorithms have allowed for 

simulations on biologically relevant timescales, extending up to milliseconds1. Improved 

computational efficiency has made it possible to address challenging problems in 

computational chemistry, such as accurately calculating ligand-binding affinities,2, 3 the 

use of long timescale MD simulations and utilizing enhanced sampling methods to study 

complex conformational landscapes 4-7. Central to the success of molecular dynamics (MD) 

simulations and related methods is the quality of the underlying force field (FF), dictating 

its ability to capture physically relevant observations in silico. Additive FFs are the current, 

widely used form of FFs, characterized by fixed point charges on each atom and other 

particles in the system. Examples of commonly used FFs in biomolecular systems are 

CHARMM8, AMBER9, GROMOS10 and OPLS-AA11. Although additive FFs have been 

successfully utilized for decades, the fixed charge nature of such FFs limit their ability to 

respond to dynamic changes of the electronic field of the environment12, 13. Polarizable 
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FFs overcome this limitation by including the explicit treatment of electronic polarizability. 

Such FFs may be based on different models, including the classical Drude oscillator14-19, 

fluctuating charge20-31 and induced dipole32-37 approaches. CHARMM’s polarizable FF 

based on the classical Drude oscillator model has shown to be an efficient tool for capturing 

electrostatic interactions in a more accurate fashion38-46. For example, polarizable FFs 

like the Drude FF and AMOEBA47 were found to improve accuracy in protein structure 

refinement, protein folding and simulations of intrinsically disordered proteins42. Polarizable 

FFs have also shown unique results in studies of nucleic acids, including base flipping48, 

conformational sensitivity to ion type40, ion distributions around duplexes49 and improved 

modeling of RNA hairpins50, 51. Another recent study that compared five different force 

fields including Drude2017 on G-quadruplexes found Drude2017 achieved a high level of 

accuracy when evaluated against both quantum mechanical and experimental data45.

The CHARMM Drude FF currently covers proteins, nucleic acids, lipids, carbohydrates, 

atomic ions, and a limited set of small molecules representative of those classes of 

molecules as well as additional species common to drug-like molecules. These include 

selected alkanes52 alkenes53, alcohols54, ethers55, aromatics56, N-containing aromatic 

heterocyclics57, amides58, sulfur containing compounds59 & halogenated aliphatic and 

aromatic compounds60, 61. However, this represents a limited range of chemical functional 

groups when considering broader chemical spaces, requiring significant extensions of the 

coverage of the FF. Examples in the context of drug-like chemical space include the 

full range of cyclic alkanes and heteroaromatic species, terminal and conjugated alkenes, 

alkynes, nitriles, amines, nitro-benzyl species, bipyrroles, biphenyl ring compounds, fused 

bicyclic ring compounds, thiophenes and so on.

Introduction of additional functional groups in the CHARMM-based FF approach involves 

consideration of the chemical connectivity of atoms and the associated atom types. The 

use of atom types versus typing based on, for example element and hybridization, allows 

for additional control of the accuracy of the force field with respect to both bonded 

and nonbonded parameters. Concerning the non-bonded terms, atom types differ in their 

Lennard-Jones (LJ) parameters, the formalism used to represent repulsion associated with 

Pauli’s exclusion based on short-range repulsive forces between electrons with the same spin 

orientation and the attractive van der Waals intermolecular interactions associated London 

dispersion forces in the Drude FF. The LJ potential energy term as included in the Drude 

potential energy form is shown in equation 1.

ULJ = ∑non − bonded pairs εij
Rmin, ij

rij

12
− 2 Rmin, ij

rij

6
Equation 1

In Equation 1, εij is the LJ well depth, rij is the distance between two atoms, and Rmin,ij is 

the distance between the two atoms i and j when the LJ potential energy surface reaches its 

minimum.

The LJ parameters εij and Rmin,ij are obtained from the individual parameters, εi and 

Rmin,i for atom type i and εj and Rmin,j for atom type j through combining rules, with 
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the Lorentz-Berthelot rules used with the CHARMM FFs62. The individual parameters, 

εi and Rmin,i are typically optimized using a set of multiple molecules sharing similar 

functional groups and the associated atom types63-66. Target data for the optimization 

is typically based on the experimental neat liquid or solid properties such as enthalpy 

of vaporization, ΔHvap, enthalpy of sublimation, ΔHsub, molecular volume, Vm, dielectric 

constant, ε, isothermal compressibility, viscosity, etc. of the model compounds considered 

for optimization. Additional target or validation data may include experimental hydration 

free energies and quantum mechanical (QM) interactions between the model compounds 

with water, rare gases or other model compounds. Performing the optimization over multiple 

molecules sharing a common functional group maximizes the transferability of the LJ 

parameters in the context of wider chemical space occurring in more complex molecules. 

Tuning of the LJ parameters is the most challenging aspect of FF optimization as εi and 

Rmin,i do not only include contributions from the r6 and r12 term in equation 1, but also 

include contributions from limitations in the electrostatic terms as well as other order terms 

that contribute to intermolecular interactions not directly included in the energy function. 

In addition, there is the problem of parameter correlation, where multiple combinations of 

parameters can similarly reproduce a collection of target data63, 64. These challenges are 

combined with simultaneously reproducing the experimental condensed phase properties of 

multiple molecules ideally requiring that the optimized LJ parameters belong to the global 

minimum of the LJ parameter space. Accordingly, optimization of εi and Rmin,i for multiple 

atom types is a multi-variable and multi-objective problem. To address this challenge a 

LJ optimization approach is developed and implemented in the present study, building on 

an approach applied to facilitate optimization of the Reax force field (ReaxFF) 67, that 

harnesses the sampling capabilities of an initial design algorithm Orthogonal-maximin Latin 

Hypercube Design (LHD)68, and the predictive abilities of Deep Learning (DL). Recently, 

a similar approach that includes LHD in conjunction with Gaussian process regression and 

Support Vector Machines to optimize LJ parameters for hydrofluorocarbons and ammonium 

perchlorate in the context of the General Amber FF69 has been presented70.

At first, LHD is utilized to generate LJ parameter sets εi and Rmin,i for multiple atom 

types. The sampled parameter sets thus obtained are utilized in MD simulations to calculate 

condensed phase thermodynamic properties, Vm, ΔHvap and ΔHsub of the training set 

molecules. These parameter sets form the input features, and the calculated properties 

are utilized as the output labels for building DL models to predict the condensed phase 

properties. The trained model is then used to comprehensively sample the LJ parameters, for 

example, 107 combinations, allowing for prediction of the associated empirical condensed 

phase thermodynamic properties of the training set molecules. The resulting data is then 

sorted using a custom error function to select a subset of LJ parameter sets that maximize 

agreement with the target condensed phase thermodynamic properties. The final, optimal LJ 

parameters are chosen from this subset, based on their ability to reproduce the ab initio QM 

rare-gas interactions with the concerned molecule. The process flow of this newly designed 

approach for optimization of LJ parameters in CHARMM is depicted in Scheme 1.

In this article the developed DL-based high throughput approach for LJ parameter 

optimization is applied to atom types belonging to four different groups. These include 

the non-terminal and terminal alkenes sp2 carbons (CQ2C1A & CQ2C1B) and their 
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corresponding hydrogens (HQ2C1A & HQ2C1B), 3- and 4-membered ring carbons 

(CQ3R3A & CQ3R4A) and oxygens (OQ3C3A & OQ3C4A) and nitrile carbon and 

nitrogen (CQ1N1 & NQ2C1) atom types. The optimized LJ parameters not only reproduce 

the experimental condensed phase thermodynamic properties Vm, ΔHvap or ΔHsub for both 

the training and validation set compounds but also their dielectric constants and hydration 

free energies. The total number of model compounds used for the study are 35, of which 

17 belong to the training set – used for optimization of the LJ parameters, while the rest 18 

belong to the validation set, meant for testing the transferability of the LJ parameters.

Methods:

Bonded and electrostatic parameter determination:

Prior to LJ parameter optimization, a complete set of FF parameters are required for any 

system. The electrostatic and bonded parameters of the training and validation molecules 

were obtained by following the Drude FF optimization protocol. All ab initio calculations 

were performed using the Psi4 package71and the molecular mechanical and condensed 

phase MD-based calculations were performed using CHARMM8 and NAMD72, with the 

latter used for pure-solvent systems only. The electrostatic and bonded parameters were 

optimized using FFParam 73, the recently developed package for FF optimization of both 

the additive CHARMM and Drude FFs. Although, FFParam includes a graphical user 

interface, an in-house alpha command line version of the package was also utilized to 

optimize multiple molecules together. The molecular geometries of all model compounds 

were optimized using MP2/6-31G(d) model chemistry. The QM optimized geometries were 

used to determine the Drude electrostatic parameters, including the partial atomic charges, 

the atomic polarizabilities (alpha), and the Thole scale factors. Alpha values represent 

isotropic polarizabilities of most atoms with anisotropic polarizabilities applied to selected 

hydrogen-bond acceptor atoms. Selected hydrogen-bond acceptor atoms also have virtual 

lone pair sites implemented to address the anisotropic distribution of the charges to optimize 

interactions with the surrounding environment74. Thole scale factors screen the atomic 

dipole-dipole interactions between 1-2 and 1-3 covalently linked atom pairs thereby by 

optimizing the molecular polarizability75. The partial atomic charges on the atoms and lone 

pair sites of the molecule were derived as recently described76. The method used an in-house 

adaptation of the Restrained Electrostatic Surface Potential (RESP)77 model available in 

Psi4 package71 at MP2/Sadlej model chemistry. The alpha values were obtained using a 

parallel implementation of the GDMA code by Stone and Misquitta 78, 79available in Psi4 

combined with the method of Heid et al 80 for charged species. Since Thole scale factors 

do not have a QM analog, they were determined using a Monte Carlo Simulated Annealing 

(MCSA) algorithm81 to reproduce QM derived molecular dipole moments and molecular 

polarizability tensors scaled by a factor of 0.85. The electrostatic parameters using the above 

method were further assessed for their ability to reproduce the interaction of hydrogen 

donors and acceptors with water. For this purpose, MM interaction energies of selected 

atoms in the molecules with SWM4-NDP water were compared to QM water interaction 

energies obtained at MP2/cc-pVQZ model chemistry. The QM interaction energy was also 

corrected for basis set superposition error (BSSE) using the counterpoise method82.
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The initial bonded parameters were predicted using an in-house adaptation of the 

CHARMM General Force Field (CGenFF) program83, 84. Selected bond, angle and dihedral 

parameters were then adjusted to optimize the agreement of MM potential energy surfaces 

(PES) with the respective QM (MP2/aug-cc-pVDZ) PES. Additionally, bonded parameters 

were optimized to reproduce QM vibrational spectra calculated at the MP2/aug-cc-pVDZ 

model chemistry, where the QM vibrational frequencies were scaled by a factor of 0.9590 

prior to use as target data85. The QM vibrational frequencies were calculated in the Gaussian 

package86, while the MM vibrational frequencies were empirically calculated using the 

MOLVIB87 module in CHARMM.

Pure solvent MD simulations:

Neat liquid simulations were performed by preparing a box of 216 solute molecules, such 

that each molecule was equally spaced 6 Å apart in each direction. The initial setup of the 

box was performed in CHARMM using the additive CGenFF force field, where the liquid 

box was heated to their experimental temperatures (Table SI of supporting information 1 

(SI_1)) for 100 ps in the NVT ensemble, followed by 400 ps NPT equilibration. For both the 

steps, the CPT leap-frog integrator with a timestep of 1 fs was used. A smaller time step was 

used to maintain consistency for comparison with the Drude Polarizable Force Field (FF). 

The equilibrated box was then used for a 3 ns additive MD production run using NAMD, 

where the MD parameters were maintained from the previous step in CHARMM. The fully 

equilibrated additive box was then utilized as the starting configuration for the pure solvent 

calculations in the Drude FF. Drude particles were added to the non-hydrogen atoms of 

the molecules, where a mass of 0.4 amu was transferred to the Drude particles from their 

real atoms. In addition, lone pairs were added as required to the hydrogen-bond acceptor 

atoms. The Drude topologies for all molecules are included in Table SVIII of supporting 

information 2 (SI_2). This was followed by a steepest-decent (SD) minimization for 200 

steps, where all Drude particles were allowed to relax while the real atoms were restrained 

using a harmonic force constant of 106 (kcal/mol)/Å2. This was followed by another round 

of minimization where all particles were allowed to relax using SD for another 500 steps.

The liquid boxes using the Drude FF were then equilibrated at the experimental 

temperatures (Table SI of SI_1) and 1 atm pressure with a 1 fs timestep, in the NVT 

ensemble for 100 ps, followed by a 400 ps equilibration in the NPT ensemble using 

CHARMM as the MD engine. MD simulations were performed at respective temperatures 

for each molecule and 1 atm pressure, using the Velocity Verlet integrator (VV2) 

implemented in CHARMM. The VV2 integrator approximates the self- consistent field 

(SCF) condition of the Drude particles through an extended Lagrangian dual thermostat 

formalism 14. A separate low temperature thermostat (T=1.0 K) was used for the Drude 

particles to ensure that their time course approximates the self-consistent field (SCF) 

regimen. The equilibrated system was then further run from 600 ps to 2 ns depending 

on the convergence using NAMD as the MD engine. In NAMD, the extended Lagrangian 

dual-thermostat of CHARMM is replaced by the dual-stochastic Langevin-thermostat for the 

treatment of the Drude particles88. The systems were minimized for 1000 steps in NAMD, 

followed by an equilibration when the velocities were reinitialized at their experimental 

temperatures. The calculations of the thermodynamic properties of the molecules were then 
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based on condensed phase and gas-phase analysis performed in CHARMM. The molecular 

volume was calculated as the total average box volume divided by 216 for the number of 

monomers, while the enthalpy of vaporization was evaluated by subtracting the average 

potential energy of the monomers in the liquid phase from the average potential energy of 

each monomer in gas phase, adding a thermal correction of RT89. Two of the 35 molecules 

used in the present study also existed in solid state, namely 2-cyanopyridine (2CYP) – a 

training set compound for nitriles and 3-cyanopyridine (3CYP) belonging to validation set 

of the same group. As the compounds are low melting crystalline solids, with a melting 

point at room temperature 298 – 300 K90, both liquid and solid-state data were available 

for such compounds. Hence, we calculated both heats of vaporization and sublimation for 

these compounds. The coordinates for both crystals were obtained from the Cambridge 

Structural database 91 and replicated using the CRYSTAL module of CHARMM, such that 

there were 32 molecules for 2CYP and 3CYP crystals. The crystal configurations were then 

energy minimized and initiated for 3 independent simulations, using distinct seed numbers 

for velocity generation. The setup of the Drude systems were identical to those in liquid 

simulations, where each system was simulated for a total of 600 ps, where the first 100 

ps was used as equilibration, while the last 500 ps was used as the production run. For 

the determination of their Vm, both the simulations were performed at 150 K, the same 

temperatures at which the crystallization data was collected by Kubiak et al. (2002)90, while 

the ΔHsub were obtained at 298.15 K , as the experimental values were measured at that 

temperature 92. Crystal Vm calculations were based on the total volume of the full cell 

used in the simulations divided by the number of molecules in that cell, 32 in the present 

study. The analysis and evaluation of the final properties were performed in CHARMM and 

identical to the pure solvent calculation illustrated above.

For all additive and Drude MD simulations the electrostatic interactions were treated using 

the Particle Mesh Ewald (PME) method93, 94, where a coupling parameter of 0.34 and 

a sixth-order spline were used for mesh-interpolation. The non-bonded pair lists were 

maintained up to 14 Å, with a 10-12 Å real-space cutoff range for the electrostatic and 

Lennard-Jones (LJ) terms, with the LJ interactions truncated with an atom-based forced 

switch algorithm95. Long-range corrections95 to the LJ term was implemented as previously 

described62, 96. All covalent bonds involving hydrogens were constrained using the SHAKE 

algorithm97. The Drude hardwall constraint39 of 0.2 Å was applied only while sampling 

the LJ parameter space meant for the training data for DL. Once the final parameters 

were optimized the hardwall constraint was removed, and the systems were run for longer 

timescales (10-20 ns) as required for the convergence of the dielectric constant.

Hydration free energies

The hydration free energy (HFE) calculations were performed in CHARMM, using Deng 

and Roux’s staged implementation98 of alchemical free energy perturbation (FEP)99, 100. At 

first, each individual molecule was solvated in a box of 250 SWM4-NDP water molecules 

and equilibrated for 2 ns in CHARMM, using the condensed phase MD protocol as 

described above. The equilibrated box was then further utilized to calculate the HFE, where 

the HFE denotes the change in the free energy of annihilating the solute in vacuum to 

that in water, with the changes in the free energy computed through the FEP method. As 
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described in detail previously60, 101 and applied in multiple studies 43, 102-105, the HFE is 

decomposed into nonpolar and electrostatic components, where the nonpolar component 

is further decomposed into dispersive and repulsive terms using the Weeks, Chandler & 

Anderson (WCA) method106. Thus, a coupling parameter was used for perturbing each of 

the three individual components: λ for electrostatic (perturbed from 0 to 1 with an increment 

of 0.1), staging parameter s for dispersion (varied as 0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, and 1.0) and ξ for the repulsion term (varied linearly from 0 to 1, with an increment 

of 0.1). While perturbing the nonpolar components s and ξ, all charges of the solute were 

set to 0, while for the electrostatic component, the states λ = 0 and λ = 1 denoted fully 

discharged and charged compounds, respectively. A 300 ps equilibration and 1.5 ns to 4.0 

ns production was performed for each of the λ windows, such that the production phase 

was utilized for calculating the final value. The final reported values for the electrostatic 

contributions were determined using thermodynamic integration (TI)107, while the nonpolar 

contribution was determined using the exponential formula with the weighted histogram 

analysis method (WHAM)108. The free energy change was thus a sum of the dispersive, 

repulsive and electrostatic calculation, where a long range correction96 was included in 

the dispersion term by taking the difference in the LJ solvent–solute interaction energies 

using cutoff schemes of 12 and 50 Å. Convergence of the HFE values was confirmed by 

calculating one system (compound in a SWM4 or TIP3P water box) in triplicate (separate 

for Drude and additive, respectively) where a similar value for all three simulations indicated 

that the length of the simulation (1.5 to 4 ns) was enough to confirm the convergence for all 

molecules in the group. The reported standard deviation for the group was based on these 

three individual sets of simulations. All other molecules of the group were then subjected to 

a single set of HFE simulation using the same length of production run.

Deep Learning Model Development:

Data Preparation—The training set data for the DL model included the LJ parameters 

εimin and Ri
min of the targeted atom types for the molecules in each set, as features and the 

MD calculated pure solvent/crystal properties Vm, ΔHvap, or ΔHsub as the outputs or labels. 

At first, the LJ parameters were generated using LHD following which the pure solvent/

crystal empirical thermodynamic properties (Vm, ΔHvap, or ΔHsub) were calculated through 

MD simulations. As described above, each molecule in the training set was subjected to 

three distinct runs of pure solvent/crystal MD simulations, starting from three distinct fully 

equilibrated additive boxes where the lengths of the simulations were chosen to obtain 

convergence of the empirical thermodynamic properties for each molecule for the individual 

groups. To reproduce the experimental properties of all the training set models, several 

iterations of LHD parameter generation and pure solvent MD simulations were required in 

some cases. This involved generation of an initial set of LJ parameters and the associated 

thermodynamic properties, which were then compared to experimental. If the experimental 

properties of all training set molecules were not adequately reproduced, a new range of 

parameters were selected, and the process repeated until adequate agreement for all the 

molecules was attained. Once convergence was achieved the LJ parameters and associated 

thermodynamic properties from all such scans were combined to create the training data for 

the DL models.
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Hyperparameter Tuning and Deep Learning Model Selection: A feed-forward 

Deep Neural Network (DNN) was utilized to develop the DL models based on the feature 

vectors from the LHD generated LJ parameters to the target empirical thermodynamic 

properties. Hyperparameters optimized for the models are listed in Table 1, along with the 

range of the parameters tested. The hyperparameter tuning was implemented using a 5-fold 

Cross Validation utilizing the grid search method implemented in the GridSearchCV library 

of Scikitlearn109 and regression model from Keras110, where the metric of the evaluation 

was “negative mean squared error”. The final hyperparameters were then utilized for training 

the final models, with a learning rate of 0.005, Swish as the activation function, 2 hidden 

layers with the same number of nodes as the number of output thermodynamic properties 

(Vm and ΔHvap or ΔHsub of each molecule in the training set). The number of nodes for 

each layer was thus 8 for alkenes and 3- and 4-membered ring models that had 4 training 

set molecules each and 12 for nitriles based on 5 molecules with two different states for 2-

cyanopyridine. Concerning the activation function, both Swish111 & ReLU (Rectified Linear 

Unit) were tested using (Mean Absolute Error) MAE and Mean Squared Error (MSE) as 

the criteria. Swish is also a sigmoid activation function like ReLU, but unlike ReLU, Swish 

is smooth and monotonic. Swish has been previously shown to it outperform ReLU111 and 

application of the two functions in the present study during development of the alkene model 

also showed improved convergence of the error metrics over ReLU (Figure SI of SI_1).

Training and evaluation of the selected DL model: Individual DL models for 

Vm and ΔHvap or ΔHsub were developed for all four groups: alkenes, 3-membered rings, 

4-membered rings, and nitriles. As described above, each model was a feed-forward DNN 

comprised of two hidden, fully connected layers utilizing Swish as the activation function 

to determine the non-linear relationships between the input features εi and Rmin,i and output 

labels (Vm and ΔHvap or ΔHsub – for each molecule) with a linear activation function used 

for the output layer. The loss function was optimized using Adaptive Moment Estimator 

(Adam)112, due to its adaptive learning rate and its suitability to complex parameter space, 

similar to the one in our data. Early stopping method 113 was used to limit the number of 

epochs and to avoid overfitting of the data, using a patience value of 100 to halt the training 

if no significant error reduction was achieved over 100 epochs. For training, 5-fold cross 

validation was used with 80% of the data chosen to train the DL model and 20% of it 

was utilized in testing the accuracy of the model, where the correlation of the experimental 

values to the predicted values was evaluated to confirm the performance of the model at 

the end of training. Finally, we emphasize that individual DNN models had to be trained 

for each of the four classes of functional groups optimized in the present study. Further 

performance evaluation of the final models was undertaken by extracting 20-25 sets of 

LJ parameters from the full range of parameters subjected to Brute-Force sampling with 

the DNN predicted properties compared to their empirically calculated values from MD 

simulations.

Error functions for LJ parameter selection: Using the trained DL models for each 

functional group class, 10 million sets of stochastically selected LJ parameters were 

sampled. For this purpose, a “Brute-Force search algorithm”114 also known as “perebor 
algorithm,”115 was utilized. The top ~100,000 sets of LJ parameters were chosen from the 
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10 million sets generated out of this data by first comparing the DNN predicted condensed 

phase properties to their respective experimental values using the error function presented in 

the following equations.

eROC = ∑
i = 1

n
δV m

i wV m
i + δΔHvap

i wΔHvap
i Equation 2

δV m
i = V mobs

i − V mexpt .
i

Equation 3

δΔHvap
i = ΔHvapobs

i − ΔHvapexpt .
i

Equation 4

In equation 2, δi denotes the unsigned difference of the respective calculated pure solvent 

property from experimental values as shown in equations 3 and 4 and wi denotes the weight 

used for the property. In equations 3 and 4 V mexpt .
i  and ΔHvapexpt .

i  are the experimental 

molecular volume and enthalpy of vaporization or sublimation of each molecule i, V mobs
i  and 

ΔHvapobs
i  are the calculated molecular volume and enthalpy of vaporization or sublimation 

of the same molecule, where n is the total number of molecules in the training set. 

The weights, wVm and wΔHvap for the molecular volume and enthalpy of vaporization/

sublimation, respectively were generated using the Rank Order Centroid (ROC) method116 

wherein weights are generated according to the number of attributes or variables associated 

with the decision. To obtain a good set of parameters yielding the least possible δi for 

each of the pure-solvent properties, all molecules were ranked equally, prioritizing ΔHvap 

or ΔHsub over Vm. Thus, weights of wV m
i = 0.25 and wΔHvap

i = 0.75 were used. This error 

function was used in choosing the best sets from the training data and from the Brute-Force 

based predictions. In equations 2 to 4 ΔHsub was substituted for ΔHvap when the condensed 

phase was represented by a crystal and its Vm is equivalent to the molecular volume in solid 

state.

Additional target data included QM rare gas (He and Ne)-model compound distance-based 

interaction potential energy scans (PES) focused on the concerned atom types in the 

molecules. The QM rare gas interaction values were obtained using the BSSE corrected 

MP2/cc-pVQZ model chemistry. Three interaction orientations; in-plane linear (0° from 

plane of target atom), in-plane lateral (90° in-plane of the target atom), and out-of-plane 

(90° out-of-plane of the target atom) were considered for all atom types, except CQ2C1A 

in internal alkenes and CQ1N1 in nitriles, where only one in-plane interaction was possible. 

Both QM and MM calculations were set up to perform distance-based PES, where the 

rare-gas-model compound distances were probed ranging from 2.5 Å to 5.0 Å. Comparison 

of the QM and MM interactions focused on the variation of the differences between 

the minimum interaction energies and distances over the different interaction orientations 

between the rare gases and the model compounds, not the absolute QM and MM minimum 

interaction energies and distances. The variance was quantified as the root mean square 
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fluctuation (RMSF) of the differences between the MM and QM minimum interaction 

distances and energies, indicated by δ and ε, respectively, over all the model compounds 

and interaction orientations. Determination of the RMSF over all interactions orientations 

and model compounds first involved calculation of the absolute differences between the QM 

and empirical minimum interaction distances and energies as shown in equations 5a and 

5b. In the equations Dij, emp
K  and Dij,QM denote the empirical and QM minimum interaction 

distances, respectively, while Eij, emp
K  and Eij,QM denote the empirical and QM minimum 

interaction energies, where i represents the model compound-rare gas interacting pairs (e.g., 

Ethene-helium, Ethene-neon, etc.), j represents the interaction orientations (in plane-linear, 

in plane-lateral and out-of-plane), and K represents each set of LJ parameters.

δij
K = ∣ Dij, emp

K − Dij, QM ∣ Equation 5a

εijK = ∣ Eij, emp
K − Eij, QM ∣ Equation 5b

The mean differences are then determined over the different interaction orientations j for 

each interacting pair i as denoted by equations 6a and 6b.

δi, mean
K = ∑jδij

K

j
Equation 6a

εi, meanK =
∑jεijK

j
Equation 6b

The RMSF about the mean differences of the interaction orientations, j, are then calculated 

for each interacting pair i as shown in equations 7a and 7b.

δi, rmsf
K =

∑j δij
K − δi, mean

K 2

j
Equation 7a

εi, rmsf
K =

∑j εijK − εi, meanK 2

j
Equation 7b

Next, as shown in equations 8a and 8b, the mean of the RMSF for each LJ parameter set K 

is calculated by taking the mean of the δi, rmsf
K  and εi, rmsf

K , respectively, over all interaction 

pairs per molecule n.

δn, mean_rmsf
K =

∑i δi, rmsf
K

i
Equation 8a
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εn, mean_rmsf
K =

∑i εi, rmsf
K

i
Equation 8b

The sum of the RMSF of the distances and interaction energies are then calculated for each 

LJ parameter set K for individual molecules n

RMSFn
K = δn, mean_rmsf

K + εn, mean_rmsf
K Equation 9

Finally, the overall RMSF of each LJ parameter set is calculated as the mean of RMSFn
K for 

all the model compounds being considered as shown in equation 10

RMSFK =
∑nRMSFn

K

n
Equation 10

As described previously, the RMSFK error function selects parameter sets that are balanced 

with respect to the relative interactions of the model compounds with the rare gases while 

allowing the MM energies and distances to be offset from the QM values 63-65.

Selection of the final LJ parameters: To choose the best set of LJ parameters from 

the top sets selected by the Brute-Force algorithm, rare-gas based RMSF along with a 

low eROC was utilized. Step one involved selecting the top LJ parameter sets from the 10 

million outcomes of the Brute-Force selected LJ parameters using the custom error function 

eROC. For example, for alkenes the range of eROC for all 10 million sets varied from ~0.9 

to ~26.0, hence only sets with eROC less than ~4.0 were chosen yielding approximately 

100,000 sets. Next, the chosen parameters were clustered into specific ranges of values of 

the LJ parameters. The ranges of the parameters were selected based on the ranges covered 

in the training data. Each LJ parameter was partitioned into 3 ranges as shown in Table 2 

for alkenes and Table SII of SI_1 for the rest of the groups. These ranges of each of the LJ 

parameters were then uniquely combined into which the parameter sets were clustered. For 

example, for alkenes, 4 atom types HQ2C1A, HQ2C1B, CQ2C1A and CQ2C1B were being 

optimized, hence there were 8 different parameters (εi and Rmin,i for each), in 3 different 

ranges, yielding a total of 83 (512) possible clusters for the group. As an example, for 

alkenes, εi
HQ2C1A − Range A, Rmin, i

HQ2C1A ‐ Range B, εi
CQ2C1A − Range C, Rmin, i

CQ2C1A ‐ Range A, 

εi
HQ2C1B − Range C, Rmin, i

HQ2C1B ‐ Range B, εi
CQ2C1B − Range B and Ri

CQ2C1B ‐ Range C will 

make one unique combination or cluster. Of the total number of possible clusters (512 in 

case of alkenes), only those clusters which contained at least 6 parameter sets were chosen 

for the RMSF analysis. Thus, the chosen subset of the data in alkenes consisted of 187 

(out of 512) clusters. Next, all LJ sets, up to the top 500 based on eROC ranking in each 

cluster, were subjected to a rare gas-based interactions in MM, which were further used to 

calculate the RMSF with those in QM. This type of clustering was done to ensure that all 

combinations of the LJ parameters present in the top ~100,000 selections were explored 

during the QM rare gas RMSF based analysis while avoiding the need to perform the RMSF 
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calculation on all ~100,000 parameter sets. The final LJ parameter set was that with the 

lowest RMSF value along with a low eROC.

Validation of the Final Parameters—After the best LJ set was selected, the chosen 

set was then subjected to a threefold empirical validation process. This first involved 

empirically validating the predicted properties for the chosen LJ parameter set. Next, the 

condensed phase pure solvent/crystal properties (Vm and ΔHvap/ΔHsub & dielectric constant) 

were calculated for the validation set molecules. Lastly, the HFE of all the molecules in each 

group, as defined by the availability of the experimental value, were calculated to ensure the 

ability of the parameters to predict the energetics in aqueous solution.

Once the final LJ parameters were selected and validated, the electrostatic and bonded 

parameters were rechecked for reproducibility against the QM target data for all molecules 

in both training and validation sets. This included the intramolecular geometries, molecular 

vibrational spectra, and the PES of the selected bonds, angles, and dihedrals. In addition, 

water minimum interaction energies and distances, molecular dipole moments and the 

component vectors and molecular polarizabilities and their tensors were compared to the 

corresponding QM data. Figures SI-SVIII and Tables SI-SVII of SI_2 depicts all the related 

data for the final optimized parameters all the molecules. The FF topologies and parameters 

for all molecules are provided in Table SVIII of SI_2.

Results & Discussion:

Presented is the implementation and application of a DL-based workflow for the refinement 

of LJ parameters. The overall DL-based LJ parameter optimization workflow is shown 

in Scheme 1. The procedure is composed of three main parts, namely: training, high 

throughput parameter selection, and validation. The training part is an iterative two step 

framework that is used to train a DL model that learns the relationship of the LJ parameters 

with the pure solvent or crystal condensed phase properties. The high-throughput selection 

part is used to sample the LJ parameter space using the trained DL model and find 

best sets of LJ parameters using the error function shown in equations 2 to 4. The 

final set of LJ parameters is then selected through comparison with QM rare gas-model 

compound interactions, thereby assuring the balance of the selected LJ parameters across 

the parameters themselves, atom types and molecules while still reproducing the condensed 

phase experimental properties. In the empirical validation part, the optimized LJ parameter 

set is validated through out-of-training molecules and calculation of the free energies of 

hydration and dielectric constants of both training and validation set molecules. The overall 

workflow is illustrated in Scheme 1 and detailed explanations for each part of the procedure 

are presented below.

Atom type and model compound selection:

The DL-based LJ optimization approach is applied to the parameters εi and Rmin,i belonging 

to atom types of four different organic functional groups not adequately optimized in the 

context of the Drude FF. These include the alkenes, 3- and 4-membered ring compounds, 

and nitriles. To initiate the optimization process initial decisions concerning the model 

compounds and the number of new atom types is required. For the model compounds, the 

Chatterjee et al. Page 13

J Chem Theory Comput. Author manuscript; available in PMC 2023 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



training set molecules are selected based on their simplicity such that they have minimal 

additional atom types beyond those being targeted. In the case of the alkenes (Figure 

1), these include ethene, propene, 1-butene and 2-butene. These molecules include both 

terminal and non-terminal sp2 carbons and the covalently linked hydrogens. Importantly, 

the only additional moiety on the selected model compounds are alkanes for which well 

optimized parameters are available52, 117-119. In the subsequent parameter optimization, 

these parameters were used for the alkyl chain atom types. Model compounds for the 

additional classes of molecules are shown in Figure SII of SI_1. Generally, a similar 

pattern in the structures of the molecules is evident within each individual functional group 

set. However, additional complexity in the molecules was required with the rings and 

nitriles to account for the lack of availability of the experimental condensed phase data for 

simple compounds. In addition, with the ring systems maintenance of the cyclic aliphatic 

carbon atom types in the presence and absence of oxygen was desired. Such considerations 

ultimately lead to the inclusion of compounds such as cyclic alkanes with and without ether 

and ketone groups in the 3- and 4-membered ring model compounds and aromatic rings in 

the nitrile model compounds.

The assignment of new atom types represents the second critical step in the extension of 

the Drude FF. The number of actual atom types required to reproduce the experimental 

condensed phase thermodynamic and kinetic properties has been debated 120-122 and such 

arguments range from suggesting individual parameters for each atom in a molecule 120, 121 

or discuss the possibility of reducing the atom types to their elemental classification 122. 

While too many atom types create a high level of complexity in the FF thereby limiting 

transferability of parameters, too few atom types limit the ability to achieve a sufficient 

level of accuracy. Thus, it is necessary to determine the requirement of a new atom type 

through a large set of molecules with a wide variety of chemical connectivity containing 

the same functional group. In the present study, we started with a minimal set of atom 

types for each functional group. Based on this minimal set, ranges for εi and Rmin,i values 

were first chosen, thus constituting the LJ parameter space and LHD was used to generate 

the LJ parameters in a given range, which were then used to calculate the condensed 

phase data for all the training set molecules. In the case of alkenes, initially only three 

atom types were used; CQ2C1A non-terminal alkene carbon, CQ2C1B for terminal alkene 

carbons, while the same hydrogen type, HQ2C1A, was applied in both scenarios. The 

differences between the experimental and calculated condensed phase properties obtained 

for all the molecules in the set using all the LHD selected LJ parameters were calculated. 

A heat map of the correlations between experimental and calculated properties for four 

alkene molecules constituting the training set is shown in Figure 2. As may be seen, while 

reasonable correlations between some molecules were present (e.g., propene and ethene for 

Vm), in other cases the differences were anticorrelated (e.g., 1-butene and 2-butene for Vm 

and ethene and 2-butene with ΔHvap). This indicates that variations in the LJ parameters for 

those three atom types alone would not lead to a solution that can accurately model all four 

model compounds. Consequently, an additional hydrogen atom type HQ2C1B, was added 

to allow for explicit hydrogen types for terminal C-H moieties. The resulting correlations 

in the differences in the reproduction of the experimental data across the molecules and 

LJ parameters sets significantly improved (Figure 2C and D) although no correlations were 
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observed between ethene and the remaining three molecules. The lack of anticorrelated 

behavior indicated that LJ parameters that accurately modeled all four compounds could be 

achieved as presented below. Notably this approach could also be used to identify molecules 

appropriate for inclusion in the training set, as performed for the 4-membered rings (Figure 

SIII and associated text in SI_1), indicating its utility in facilitating decisions concerning 

atom types and model compounds to include during force field development.

Based on the above considerations and analysis the atom types and molecules for the DL 

LJ optimization were selected for all 4 groups. The atom types optimized in this work 

were alkene (non-terminal and terminal) carbons (CQ2C1A & CQ2C1B) and hydrogens 

(HQ2C1A & HQ2C1B), 3- and 4-membered ring carbons (CQ3R3A & CQ3R4A) and 

oxygens (OQ3C3A & OQ3C4A) and nitrile carbon and nitrogen (CQ1N1 & NQ2C1) atom 

types. For each group, 8-10 molecules were selected such that 4-5 of them were categorized 

as training set, while the rest were categorized as validation set molecules (Figure 1 and 

SII of SI_1). The training set molecules were used to optimize the LJ parameters and the 

validation-set molecules were used to test the transferability of the optimized parameters. In 

the remainder of the main text, the description of the application of the DL workflow will 

focus on the alkenes along with summary data on the remaining classes of compounds, with 

details included in the SI_1.

DL model development:

DL model development is an iterative scheme composed of data generation and DL training. 

After the electrostatic and bonded parameters of the model compounds for a given group 

are parametrized, the compounds are used for the generation of training data, which involves 

LJ parameter sets as features and the corresponding pure solvent or crystal properties 

calculated using MD simulations as labels. Generation of the training data that encompasses 

the experimental properties for the multiple molecules in the group is challenging and 

requires the appropriately distributed sets of input LJ parameters. The initial LJ parameter 

guesses were obtained either from the LJ parameters of analogous atom types in the Drude 

polarizable force field or in CGenFF. Using the initial guess LJ parameters, the condensed 

phase properties of all the molecules in the training set were calculated. Comparison of 

the calculated and experimental values was then undertaken from which a range of LJ 

parameters for DL model development were initially selected. For the individual classes 

of functional groups, the range of the parameters for initial model development was 

proportional to the overall level of agreement between calculated and experimental values. 

Once an initial range of LJ parameters for all the relevant atom types was selected, LHD 

was utilized to generate LJ parameters that uniformly covers the selected range parameters 

for generation of the calculated condensed phase properties. LHD is a statistical sampling 

method that is used to generate evenly distributed parameter sets within a given range, thus 

generating non-overlapping sets. The “center maximin” type of LHD was used to generate 

sets of parameters uniformly sampled with a reduced pair-wise correlation and maximized 

“inter-site distances” between the parameters thus generated. To generate a sample size 

of N from x variables, LHD divides the range of each variable into N non-overlapping 

intervals based on an equal probability size of 1/N. The intervals within each point generated 

using LHD are thus uniformly distributed to represent the given LJ parameter space. As 
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an example, N = 200 sets of LJ parameters with 8 different variables (εi and Rmin,i of 4 

different atom types) were generated for alkenes. The upper and lower limits of the LJ 

parameters for all four atom types are listed in Table 3 along with the total range, the 

sampling resolution, and the total possible number of sets present in the given LJ space 

interpreted by LHD for each individual LJ parameter. Thus, the 200 sets of LJ parameters 

generated by LHD are representative of 6.7 X 1017 possible sets of LJ parameters of alkenes.

Using the LHD selected parameters MD simulations were undertaken to calculate the 

associated condensed phase properties. If the calculated properties encompassed the 

experimental data for the training molecules, DL model training was initiated. If the 

calculated values did not encompass the experimental data, a new range of parameters 

was identified, LHD applied to select a new training set of LJ parameters and the MD 

calculations performed. It took different numbers of iterations to cover the experimental or 

near experimental properties for the four groups, which depend on the quality of the initial 

LJ parameters. For example, with the alkenes, the previously optimized LJ parameters for 

2-butene from the Drude lipid FF53 was used as the starting point for generating the training 

data, representing a high quality initial guess. In contrast, with the 4-membered rings, since 

there were no analogous carbon atom types in the Drude FF, the initial LJ parameters for the 

carbon atom were obtained from the CGenFF 4-membered ring carbon. For the 4-membered 

ring oxygen, the Drude FF tetrahydrofuran oxygen LJ parameters were used. The parameter 

ranges for alkenes along with the initial parameters are listed in Table 3, and the quality 

of the empirical properties of the initial and the best LJ parameters from the LHD selected 

training data are listed in Table 4. Data in Table 4 includes the differences and percentage 

differences of the calculated condensed phase properties of the four training set molecules 

from their respective experimental properties. With the alkenes, only a single scan was 

required to prepare the data used for training the DL model. This is associated with the good 

initial set of parameters yielding overall good agreement with experiment. Interestingly, the 

best set selected by LHD improved agreement with experiment in some cases (e.g., ethene 

ΔHvap) though not in all cases shown in Table 4. However, as LHD is designed to sample a 

diverse range of parameters rather than identify the ideal set, this result is expected.

With the remaining groups additional scans were required as the initial guess of the LJ 

parameters was not as good as with the alkenes. For the 4-membered rings it took 5 scans 

to cover the experimental properties for most of the molecules in the set (Table SIII of 

SI_1). However, this process included using the correlation analysis of the differences in 

the condensed phase properties to identify that 2-oxetanone was inappropriate as model 

compound (Figure SIII and associated text in SI_1). Once 2-oxetanone was identified as 

problematic an additional scan was performed with both 2- and 3-oxetanone followed by a 

single, final scan with 2-oxetonane omitted. For the 3-membered rings and nitriles the initial 

LJ from CGenFF produced near experimental properties in two scans. The number of sets 

selected from LHD used for training each model varied from 97-200. The details of the LJ 

parameter ranges for the rest of the three groups, along with the quality of the initial set to 

the best set from the LHD-selected training data is presented in Tables SIII, SIV and SV of 

the SI_1. Thus, the presented DL approach appears to require one to two scans to identify 

the appropriate region of LJ parameters space in cases where the suitable model compounds 

are identified. When multiple scans were required, all the LJ parameter sets for all the scans 
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on which MD simulations were performed and empirical condensed phase data obtained 

were used for training of the final DL models for each group.

Although LHD samples the selected LJ parameter space uniformly it does so at a low 

resolution such that identifying the regions of parameter space that most accurately represent 

the experimental pure solvent properties for all chosen molecules is not achieved. DNNs 

have the ability to extract complex information from data, even when the training data 

is composed of much simpler information 123. Our models use the LJ parameters εi and 

Rmin,i of the given atom types as features to predict the pure solvent properties Vm and 

ΔHvap/ΔHsub as the outputs or labels for each molecule in the set. The convergence of the 

error metrics (MAE and MSE) during the training is shown in Figure SIV of SI_1. In all 

cases the models are largely converged after 100 epochs though training continued until 

the exit criteria discussed above was met. The resulting DL models were able to predict 

the MD simulation-based target data based on condensed phase data from simulations of a 

subset of the LHD selected parameter sets. For the final models the correlations between the 

MD-based true and DL-based predicted values of all target properties in the test split from 

the 5-fold cross validation for each group are shown in Figure 3 for all four groups. The 

average R2 of all the models was 0.96 ± 0.03, which depicts their high predictive ability.

With the 3- and 4-membered ring groups, a subset of the condensed phase simulations 

based on the LHD selected parameters were not stable. This is due, for example, to 

certain combinations of LJ parameters having Rmin,i values that are too large or εi values 

that are not favorable enough over the different atom types in the group such that the 

interactions between the monomers in the simulations were not favorable enough to 

maintain a condensed phase. In these cases, the liquids expanded into gases during the 

NPT simulations. Such a behavior, associated with what is termed infeasible vs. feasible 

parameter sets, was anticipated as LHD explores the full range of the multivariate LJ 

parameter space, thus potentially resulting in infeasible combinations of Rmin,i and εi as 

occurred with the cyclic compounds. Notably, the number of infeasible sets was limited 

to 53 out of 220 for 3-membered rings, 18 out of 225 for 4-membered rings (without 

optimizing the oxygen) and 10 out of 120 (with optimizing the ring oxygen) (Tables SIII and 

SIV of SI_1). Thus, the final models for such groups were trained on the remaining, feasible 

LJ parameter sets, while there were no infeasible sets in alkenes and nitriles groups. The 

number of sets used for DL training for each group are included in Table SIII of SI_1.

High-throughput LJ Parameter Selection:

The trained DL models were applied to sample from a broad range of LJ parameters space at 

high resolution to identify top ranking LJ parameter sets for the four groups. This involved 

using the DL models to predict the pure-solvent or crystal properties of 10 million input 

parameter sets (εi and Rmin,i), where the input parameters were generated by stochastically 

sampling throughout the entire LJ parameter space of up to 1018 possible parameter 

sets using the Brute-Force algorithm. The Brute-Force algorithm is a straight-forward 

problem-solving method where all possible solutions to a problem are tested individually, 

retaining only those that are close to the actual solution. Some well-known examples 

of its applications include the implementation of chess in Artificial Intelligence114, 124 
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and cryptography115, 125. Such an algorithm was recently used in a DL-based force field 

parametrization framework for ReaxFF 67. Following this strategy, Vm and ΔHvap/ΔHsub 

were predicted for 10 million LJ parameter sets generated stochastically within the specified 

range of parameters for the training-set molecules. Such a large number of sets were 

sampled to allow the DL models to interpolate and predict pure solvent empirical properties 

for LJ parameters that were not covered by the LHD selected parameters.

Once the 10 million LJ parameter sets were sampled using Brute-Force, the next step 

involved determining the sets of parameters which yield empirical condensed-phase 

properties closest to their experimental values. However, determining a single set of 

parameters that yields objectives closest to the target represents a significant challenge 

associated with the present multi-variable, multi-objective problem. Thus, a custom error 

function, eROC, was applied to choose a collection of best sets for each group. eROC is 

based on the weighted unsigned differences between predicted and experimental values of 

the observables (Equations 2 to 4). Presented in Figure 4 are the distributions of eROC for 

the four functional groups. Evident are the broad distributions, with the distributions biased 

towards low eROC values for all four groups, with the widest range of errors for 4-membered 

groups and least for the nitriles. However, in all cases it is evident that a large number 

of parameter sets have low scoring eROC values. Accordingly, additional target data was 

required to select the final parameter sets, as described in the next section.

Selection of the final LJ parameters:

To select the final sets of parameters ab initio QM interactions of rare gas elements 

(He and Ne) with the training set molecules were used. The use of rare gas-model 

compound ab initio data has previously been used in CHARMM and Drude FF LJ parameter 

optimization 63-65. This approach focuses on balancing the interaction energies and distances 

over the different molecules and orientations while the magnitude of both terms may be 

systematically offset from the QM values, as required to allow for accurate reproduction of 

experimental condensed phase data. This approach was designed to address the parameter 

correlation problem where more extreme values of LJ parameters can yield good agreement 

with experimental data as, for example, an unphysically large εi with one atom type may 

compensate for an unphysically small εi on a second atom type during optimization.

The final parameter set selection was initiated by selecting approximately the top 100,000 

LJ parameter sets from the 10 million sets subjected to Brute-Force analysis with the 

DNNs. This was performed by identifying an eROC cutoff that yielded approximately the top 

100,000 sets. For alkenes, the top ~100,000 sets encompassed an eROC less than 4.0. The 

chosen subset of the data was divided into unique clusters of LJ parameters, with a minimum 

of 6 LJ sets in each cluster. These clusters were then subjected to the rare gas-model 

compounds RMSF calculations for up to the top 500 sets in a cluster ranked based on the 

eROC values. The clustering ensured a uniform sampling of the LJ parameters in the top 

100,000 sets while focusing on lower eROC values as well as avoiding the need to perform 

the RMSF calculation on all 100,000 sets. The LJ parameter set corresponding to the lowest 

RMSF value along with a low eROC was chosen as the final set.
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Importance of inclusion of both condensed phase and ab initio QM target data in LJ 
parameter optimization.

Shown in Figure 5 are rare gas-model compounds PES for 1-propene, 1-butene and 2-

butene, targeting the terminal and non-terminal carbons in the double bond for different 

interaction orientations. The figure represents PES from the ab initio QM calculations and 

for the final LJ parameter set selected based on the lowest RMSF along with those from 

CGenFF. As is evident there are significant differences between the QM and MM PES, with 

the MM PES for the Drude force field being systematically more favorable and with minima 

at shorter distances; a similar trend occurs with CGenFF. This emphasizes the need for the 

use of the DNN to facilitate the selection of LJ parameters that reproduce the experimental 

data while the RMSF of the differences between the MM and QM minimum interaction 

energies and distances over the rare gas-model compound interaction orientations selects 

LJ parameters that balance the interactions as a function of orientation. The similarity of 

the Drude and additive CGenFF PES indicates that the difference between QM and MM 

PES largely reflect limitations in the use of dimers alone to model dispersion interactions 

that also yield appropriate condensed phase properties with an MM model. Additional 

limitations in the treatment of long-range dispersion contributions in the QM model126-129 

will also contribute to the differences in Figure 5 and Figure SVI to SVIII in SI_1 for the 

remaining groups.

Additional analysis was undertaken to better quantify the use of the DL model for LJ 

parameter optimization and the impact of the use of the RMSF metric for final parameter 

set. Shown in Table 5 are average difference and percent difference in condensed phase 

properties for the training sets for the four groups for LJ parameters obtained at different 

steps in the parametrization workflow. In addition, the eROC and RMSF from the final 

two steps of with workflow are included. As is evident going from the initial guess LJ 

parameters to the best of the LHD selected parameters to the parameters from the DL 

Brute-Force sampling based on the eROC metric alone generally leads to improvement in 

the overall agreement with the experimental condensed phase properties. Inclusion of the 

RMSF metric in addition to eROC when selecting parameters leads to poorer agreement with 

experiment in the majority of cases associated with an increase in the eROC metric while 

the RMSF value decreased as expected. With the nitriles, the lowest eROC LJ parameter set 

also corresponded to the lowest RMSF associated set. Thus, as expected the inclusion of the 

RMSF metric leads to suboptimal eROC values and a degradation in the agreement with the 

average condensed phase properties, though the differences are not statistically significant in 

the majority of cases. However, the inclusion of the RMSF metric yields LJ parameters with 

an improved balance in the interactions between the rare gases and the model compounds 

as function of orientation and, importantly yields the overall good agreement with the 

experimental condensed phase properties for both training and validation set molecules as 

presented below.

Validation of the final parameters:

The final LJ parameters chosen from the high throughput selection process were validated 

through pure solvent calculations on the separate validation set molecules and on the 

calculation of dielectric constants and HFEs of both the training and validation set 
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compounds. Table 6 presents the final pure solvent and crystal properties including Vm, 

ΔHvap, ΔHsub and dielectric constants along with the HFE of the training and validation 

set molecules for alkene group. Table 7 lists the average unsigned differences and the 

percent differences of the Vm and ΔHvap/ΔHsub of the final calculated properties to their 

experimental values for all four groups with the HFE values for the four groups shown in 

Table 8. For the alkenes, the differences in the energetic terms are typically less than 0.5 

kcal/mol and the percent difference less than 10 % indicating general agreement within 

chemical accuracy 130, 131 of experiment for the studied properties. Analysis of Tables 7 

and 8 indicate that the Drude model generally shows improvement over the additive FF 

when taking all the molecules into account. An exception occurred with the alkenes, where 

the average differences were smaller with the additive model, though the Drude performs 

better with the validation set molecules. Specifically, for 4-membered ring compounds, on 

an average the Drude FF reproduced Vm by 4.09±0.36 Å3 for the training set compounds, 

1.04±0.22 Å3 for validation set compounds, while the quality of the ΔHvap were similar 

with 0.11±0.03 kcal/mol for the training set and −0.18±0.15 kcal/mol for the validation 

set. For alkenes, the overall quality of the optimized LJ parameters was similar or better 

than CGenFF, where Drude FF was better than CGenFF by 0.02±0.12 Å3 for Vm and 

0.12±0.08 kcal/mol for ΔHvap, while similar to CGenFF for dielectric constant (−0.02±0.01) 

and better by 0.24±0.03 kcal/mol for HFEs. The highest difference in HFE was in the case 

of alkenes (−0.6 kcal/mol) with cyclohexene. Overall, the condensed phase properties Vm 

and ΔHvap or ΔHsub for the validation set molecules and the dielectric constants and HFEs 

for all compounds were all close to their experimental values using the optimized set of LJ 

parameters.

Conclusion:

Optimization of LJ parameter is a complex multi-variable, multi-objective problem that 

requires extensive numbers of condensed phase simulations during the optimization process. 

The LJ parameters, which are limited to one or two atom types specific for a functional 

group, must be able to reproduce the experimental thermodynamic properties of multiple 

molecules that contain that functional group. In addition, there is the parameter correlation 

problem where the LJ parameters on different atom types can compensate for unphysical 

parameter values in the individual atom types. This issue will be addressed in more detail 

in a forthcoming manuscript. Finally, there is the broad range of chemical space that 

needs to be covered by a given force field. In combination these represent a significant 

challenge. To address such a challenge, we have re-designed the workflow for the LJ 

parameter optimization in the Drude FF by taking advantage of the sampling power of 

Latin Hypercube Design (LHD) and the predictive power of Deep Learning to allow for 

the extensive sampling of LJ parameter space while being able to include condensed phase 

data into the optimization process. In addition, QM data is used to overcome the parameter 

correlation problem. Using this approach, we obtained high quality parameters for four 

groups of molecules representing different functional groups including alkenes, 3- and 

4-membered ring compounds and nitriles.

Our method at first utilizes LHD to generate 97 to 200 parameter sets uniformly sampled 

from the multidimensional LJ parameter space. These parameter sets are used to calculate 
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pure solvent/crystal properties of the training set compounds for each group. The generated 

data is then used for training the DL model. When selecting such wide ranges of LJ 

parameters for MD simulations to obtain the condensed phase data for training the 

DL models, certain combinations of parameters led to unstable systems associated with 

infeasible parameter sets for the 3 and 4-membered ring compounds, and, therefore, were 

eliminated from the training data.

The trained DL model is then used in a Brute-Force search algorithm to predict the 

properties from 10 million sets of εi and Rmin,i over the atom types being optimized for the 

training set molecules. From this data top parameter sets are selected based on a weighted 

error function that includes experimental Vm and ΔHvap or ΔHsub condensed phase data and 

then clustered based on their LJ parameters. The final parameter set out of the 10 million 

sets is chosen based on good agreement with the experimental data as indicated by the eROC 

metric and on the lowest RMSF between the MM and QM minimum interaction energies 

and distances of the rare gas elements He and Ne with the training set compounds. The 

final chosen set is then validated by determining the experimental values of the training 

set molecules to confirm their quality and tested for transferability by testing them on an 

out-of-training validation set molecules. In addition, the dielectric constant and the HFE 

of the molecules are determined. The final LJ parameters optimized using the current 

workflow yielded parameters which reproduced the experimental properties of the training 

and validation set compounds with an average unsigned error of 3.32±0.94 Å3 for Vm, 

0.68±0.22 kcal/mol for ΔHvap, 1.28±0.59 for dielectric constant and 0.42±0.18 kcal/mol for 

HFE, where the uncertainties represent standard error.

The quality of the final parameters and the resulting empirical pure solvent/crystal properties 

indicated the overall strength of the workflow. The overall agreement of the pure solvent 

properties of the compounds in Drude FF was improved over the additive CGenFF. In 

addition, the Drude model can also reproduce the HFE values well as the pure solvent or 

crystal properties, as seen previously132, thus emphasizing the importance of the explicit 

inclusion of polarization in a FF.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Training and validation set compounds for alkenes along with the atom types included in the 

optimization represented by each compound. Figure SII of SI_1 presents the structures of 

molecules in rest of the three groups.
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Figure 2: 
Correlation heatmaps of the differences between the calculated and experimental values of 

Vm (A and C) and ΔHvap (B and D) of the alkene training set molecules based on the set 

of LJ parameters selected by LHD during DL model development. Results are shown for 

3 atom types (A and B) and for 4 atom types (C and D). (Molecule abbreviations: ethe - 

ethene, prpe - propene, bte1 – 1-butene and bte2 – 2-butene)
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Figure 3: 
Correlation plots for MD-based true vs. DL-based predicted properties for of all target 

properties in the test split from the 5-fold cross validation applied during DL training. A & 

B) alkenes model; C & D) 3-membered ring compound model; E & F) 4-membered ring 

compound model; G & H – Nitriles model, where the correlations of Vm and ΔHvap/ΔHsub 

are depicted individually.
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Figure 4: 
Histograms showing probability distributions of the error eROC of the brute-force scan data 

for each functional group.
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Potential energy surfaces of the rare gas-alkene model compound interactions for 1-propene 

(prpe), 1-butene (1-bte) and 2-butene (bte2), at different angles of interaction: in-plane and 

out-of-plane (OOP) with Helium (He) and Neon (Ne) for the QM, final Drude FF and 

additive CGenFF model chemistries.
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Schematic of the new process of optimization of LJ parameters in Drude Polarizable Force 

Field. Dotted arrow represents use of the same model after training, solid arrows represent 

continuity to the next steps.
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Table 1:

Hyperparameters used for model optimization

Hyperparameter Range of values Final Hyperparameter

Number of hidden layers 2,3,4,6,8,10 2

Number of nodes in each layer 2,4,6,8,10,12,14 Number of output thermodynamic properties

Learning Rate 0.1,0.05,0.005,0.001 0.005

Batch Size 2,4,6,8,10 6

Activation function ReLU, Swish Swish
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Table 2:

Parameter ranges used for generating parameter-based clusters in alkenes.

Range εi
HQ2C1A Rmin, i

HQ2C1A εi
HQ2C1B Rmin, i

HQ2C1B εi
CQ2C1A Rmin, i

CQ2C1A εi
CQ2C1B Rmin, i

CQ2CB

Range 
A < −0.0350 < 1.1000 < −0.0350 < 1.1000 < −0.0675 < 1.8000 < −0.0675 < 1.8000

Range 
B

−0.0350 to 
−0.0290 1.10 to 1.35 −0.0351 to 

−0.0290 1.10 to 1.35 −0.0674 to 
−0.0555 1.8 to 2.1 −0.0675 to 

−0.0555 1.8 to 2.1

Range 
C > −0.0290 > 1.3500 > −0.0290 > 1.3500 > −0.0555 > 2.1 > −0.0555 > 2.1
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Table 3:

The initial and the range of parameters for all atom types of alkenes, used in training the DL LJ model. εi in 

Kcal/mol and Rmin,i in Å.

Group Alkenes

Atom Types CQ2C1A CQ2C1B HQ2C1A HQ2C1B

LJ Parameters ε i Rmin,i ε i Rmin,i ε i Rmin,i ε i Rmin,i

Initial −0.066 2.07 −0.066 2.07 −0.034 1.2099 −0.034 1.2099

Lower Limit −0.0759 1.7595 −0.0759 1.7595 −0.0391 1.0284 −0.0391 1.0284

Upper Limit −0.0561 2.3805 −0.0561 2.3805 −0.0289 1.3914 −0.0289 1.3914

Range 0.0198 0.621 0.0198 0.621 0.0102 0.363 0.0102 0.363

Sampling Resolution 0.0001 0.0031 0.0001 0.0031 0.0001 0.0018 0.0001 0.0018

No. of points 198 200 198 200 102 202 102 202

Total number of possible sets 6.66E+17

Number of LHD generated sets 200
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Table 4:

Pure solvent properties of alkenes training set molecules, using initial LJ and the best LJ from the training data 

selected by Latin Hypercube Design.

Alkenes Training Set

Molecule Description

Molecular
Volume
(cu. Å)

ΔHvap
(Kcal/mol)

Diff %Diff Diff %Diff

Ethene
Initial −3.79 −4.84% 1.36 28.87%

Best of training 2.61 3.08 −0.08 −2.45

Propene
Initial −1.96 −1.74% 0.1 2.22%

Best of training −0.42 −0.37% 0.03 4.74%

1-butene
Initial 2.00 1.25% −0.11 −2.33%

Best of training 4.74 2.91% 0.05 1.02%

2-butene
Initial −1.98 −1.29% −0.20 −3.82%

Best of training −4.35 −2.88% −0.28 −5.43%
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Table 5:

Comparison of the eroc and RMSF metrics along with the average differences and percent difference between 

the calculated and experimental pure solvent condensed phase properties for the LJ parameters from the initial 

guess, the best LJ parameters selected by Latin Hypercube Design and from the DL Brute-Force sampling 

based on the eROC metric alone and based on both the eROC and RMSF metrics. Averages are over the training 

set compounds in each group.

Group Description eROC RMSF Vm Diff. Vm ΔHvap Diff. ΔHvap

(cu. Å) % Diff. (kcal/mol) % Diff.

Alkenes

Initial NA NA 2.43±0.45 2.28±0.86 0.44±0.31 9.31±6.53

Best of LHD NA NA 3.03±0.99 2.31±0.65 0.11±0.06 3.41±1.02

eROC selected 0.8500 0.0818 1.01±0.56 0.67±0.34 0.10±0.05 2.24±1.21

eROC /RMSF selected (final) 2.5100 0.0752 1.31±0.23 1.20±0.43 0.18±0.08 5.07±2.99

3 mem. Cyclic

Initial NA NA 13.69±5.77 10.19±3.90 1.19±0.37 29.06±16.60

Best of LHD NA NA 0.38±0.27 0.36±0.28 0.51±0.22 8.72±4.32

eROC selected 1.6725 0.1937 0.28±0.10 0.24±0.09 0.57±0.27 10.48±5.88

eROC /RMSF selected (final) 2.1750 0.1804 0.46±0.13 0.40±0.14 0.58±0.26 6.17±0.48

4 mem. Cyclic

Initial NA NA 12.12±2.86 9.22±2.67 2.44±1.30 26.54±6.14

Best of LHD NA NA 3.82±0.80 2.79±0.21 0.50±0.15 6.95±1.64

eROC selected 3.8225 0.1478 1.26±0.85 0.76±0.44 0.89±0.17 15.23±5.05

eROC /RMSF selected (final) 3.8900 0.1447 1.53±0.47 1.11±0.28 0.95±0.19 16.46±5.15

Nitriles

Initial NA NA 1.37±0.35 1.10±0.33 0.96±0.28 0.42±0.56

Best of LHD NA NA 1.38±0.31 0.86±0.19 0.61±0.15 4.79±0.91

eROC selected 1.8887 0.0844 1.13±0.32 0.82±0.21 0.53±0.31 3.79±1.65

eROC /RMSF selected (final) 1.8887 0.0844 1.13±0.32 0.82±0.21 0.53±0.31 3.79±1.65
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Table 6:

Thermodynamic properties (Vm, ΔHvap, dielectric constant) and Hydration Free Energies of the Alkenes. NA 

indicates that experimental data is not available. Differences in molecular volumes - Vm in Å3 and enthalpies 

of vaporization and sublimation in Kcal/mol.

Training Set

Molecule Force Field
Vm ΔHvap Dielectric

Constant
Hydration Free

Energy

Diff %Diff Diff %Diff Diff %Diff Diff %Diff

Ethene
Additive 1.14 1.37% −0.11 −3.40% NA NA −0.30 −30.00%

Drude Final −1.97 −2.46% −0.41 −13.95% NA NA 0.04 2.83%

Propene
Additive 1.19 1.03% −0.04 −0.92% −0.06 −2.80% −0.15 −13.04%

Drude Final −1.05 −0.92% 0.09 2.00% 0.27 11.20% −0.21 −19.01%

1-butene
Additive 4.78 2.93% −0.12 −2.55% −0.28 −14.89% −0.26 −22.81%

Drude Final 1.21 0.76% −0.15 −3.21% −0.02 −0.93% 0.35 20.13%

2-butene
Additive −5.65 −3.77% 0.05 0.91% −0.19 −10.80% NA NA

Drude Final −0.99 −0.64% −0.06 −1.12% −0.20 −11.43% NA NA

Validation Set

1-pentene
Additive 4.02 2.16% 0.01 0.16% −0.13 −7.20% −0.68 −67.22%

Drude Final 2.88 3.20% 0.22 3.49% 0.26 11.37% −0.1 −6.38%

1-hexene
Additive 2.68 1.27% −0.14 −1.95% −0.14 −7.54% 0.00 0.00%

Drude Final 1.14 2.04% −0.11 −1.53% −0.04 −1.93% −0.02 −1.19%

2-pentene
Additive −0.36 −0.20% 0.46 6.73% NA NA NA NA

Drude Final 4.48 2.00% 0.16 2.45% NA NA NA NA

2-hexene
Additive −1.98 −0.96% 0.29 3.70% −0.23 −12.97% NA NA

Drude Final 3.77 1.50% 0.12 −0.91% 0.10 3.48% NA NA

3-hexene
Additive −1.01 −0.50% 0.73 8.85% −0.19 −10.80% NA NA

Drude Final 5.31 2.52% 1.25 14.29% −0.19 −10.80% NA NA

Cyclohexene
Additive 4.52 2.62% 0.38 4.59% NA NA −0.07 −24.20%

Drude Final 8.60 4.87% −0.85 −11.90% NA NA −0.63 244.68%
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Table 7:

Pure solvent and crystal properties averaged over the four groups. Molecular volumes, Vm in Å3 and 

enthalpies of vaporization and sublimation in Kcal/mol. Differences and percent differences are unsigned, 

reported uncertainties represent standard error values.

Group Force
Field

Training Set Validation Set

Vm Diff. Vm
% Diff.

ΔHvap
Diff.

ΔHvap
% Diff.

Vm
Diff.

Vm
% Diff.

ΔHvap
Diff.

ΔHvap
% Diff

Alkenes
Additive 3.19±1.18 2.27±0.65 0.08±0.02 1.94±0.62 2.43±0.91 1.29±0.47 0.34±0.13 4.31±1.59

Drude 1.31±0.23 1.20±0.43 0.18±0.08 5.57±2.86 4.36±1.07 2.69±0.61 0.45±0.28 5.87±3.24

3 mem. Cyclic
Additive 2.80±1.73 2.73±1.93 0.59±0.13 10.48±2.88 6.76±0.30 3.91±0.32 0.97±0.29 9.79±2.20

Drude 0.46±0.13 0.40±0.14 0.58±0.26 6.17±0.48 9.57±2.61 5.55±1.40 0.70±0.29 7.29±3.77

4 mem. Cyclic
Additive 5.62±1.19 4.19±0.84 0.84±0.14 10.90±1.53 6.91±1.63 4.64±0.97 1.23±0.36 13.87±1.53

Drude 1.53±0.47 1.11±0.28 0.95±0.19 16.46±5.15 5.87±1.20 4.29±1.25 1.05±0.07 12.69±2.10

Nitriles
Additive 2.99±1.94 2.02±1.34 0.82±0.34 5.59±1.75 2.83±2.00 1.96±1.42 1.80±0.95 12.35±5.36

Drude 1.13±0.32 0.82±0.21 0.53±0.31 3.79±1.65 2.29±1.33 1.25±0.63 1.01±0.32 7.68±1.93
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Table 8:

Hydration Free Energy (HFE) and dielectric constants, averaged over the four groups. HFE in Kcal/mol, 

where uncertainties represent standard error values.

Group Force
Field

Training Set Validation Set

HFE
Diff.

HFE
% Diff.

Dielectric
Constant

Diff.

Dielectric
Constant %

Diff.
HFE Diff. HFE

% Diff.

Dielectric
Constant

Diff.

Dielectric
Constant
% Diff.

Alkenes
Additive 0.24±0.04 21.95±4.26 0.18±0.06 8.85±2.68 0.25±0.19 30.51±17.0 0.17±0.02 10.51±1.20

Drude 0.20±0.09 14.08±5.55 0.16±0.06 8.32±3.22 0.25±0.19 83.19±79.5 0.15±0.05 6.56±2.28

3 mem. 
rings

Additive 1.11±0.36 49.18±2.26 17.00±0.0* 57.78±0.0* NA NA NA NA

Drude 0.29±0.17 22.95±14.37 0.72±0.0* 5.48±0.0* NA NA NA NA

4 mem. 
rings

Additive NA NA 0.22±0.0* 12.29±0.0* NA NA NA NA

Drude NA NA 0.19±0.0* 10.39±0.0* NA NA NA NA

Nitriles
Additive 0.32±0.08 8.95±2.79 16.00±0.27 151.93±32.31 1.20±0.41 19.64±1.21 12.36±0 99.12±0

Drude 0.15±0.05 3.98±1.20 4.04±2.29 23.75±12.81 0.44±0.21 7.90±3.03 8.67±0 53.65±0

*
Indicates data from only one molecule (due to non-availability of experimental data for others).NA indicates non-availability of experimental data.
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