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Abstract

Recent studies have highlighted that the proteome can be used to identify potential biomarker 

candidates for Alzheimer’s disease (AD) in diverse cohorts. Furthermore, the racial and ethnic 

background of participants is an important factor to consider to ensure the effectiveness of 

potential biomarkers for representative populations. A promising approach to survey potential 

biomarker candidates for diagnosing AD in diverse cohorts is the application of machine learning 

to proteomics datasets. Herein, we leveraged six existing bottom-up proteomics datasets, which 

included non-Hispanic White, African American/Black, and Hispanic participants, to study protein 

changes in AD and cognitively unimpaired participants. Machine learning models were applied 

to these datasets and resulted in the identification of amyloid-β precursor protein (APP) and heat 

shock protein β-1 (HSPB1) as two proteins that have high ability to distinguish AD; however, 

each protein’s performance varied based upon the racial and ethnic background of the participants. 

HSPB1 particularly was helpful for generating high areas under the curve (AUCs) for African 

American/Black participants. Overall, HSPB1 improved the performance of the machine learning 

models when combined with APP and/or participant age, and it is a potential candidate that should 

be further explored in AD biomarker discovery efforts.
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Introduction

African American/Black and Hispanic adults are more likely to develop Alzheimer’s 

disease (AD) than other racial groups,1–2 which is a result of complex and interconnected 

factors related to structural and systemic racism, “lived experiences”, social determinants of 

health, comorbidities, and genetics.3–10 Reducing these disparities partially requires better 

understanding of molecular changes in AD. Neuropathological differences in AD hallmarks 

(amyloid-beta (Aβ) plaques and tau tangles) have not been reported in African American/

Black and non-Hispanic White participants.2, 11–13 Some studies have observed that African 

American/Black participants are more likely to present with both AD and other dementia 

pathologies11, 14–16; however, this may be dependent on the sampling of participants 

in the study in terms of community dwelling versus research centers.17–19 Moreover, 

potential molecular differences between African American/Black and non-Hispanic White 

participants have recently been reported, particularly in cerebrospinal fluid (CSF) levels of 

tau biomarkers for AD.17, 20–22 CSF levels of total tau and tau phosphorylated at position 

181 (p-tau181) were lower overall in African American/Black participants than non-Hispanic 

White participants regardless of cognitive status,17, 20–22 and furthermore, smaller changes 

in tau levels occurred in African American/Black participants with cognitive decline.20 

These differences, however, were related to apolipoprotein E (APOE) ε4 status.17 While 

such studies have to be replicated, potential differences in biomarker levels based on racial 

and ethnic background would impact biomarker discovery efforts and biomarker utility.

One promising route forward for establishing AD diagnostic biomarker panels is through 

incorporating machine learning. In this paradigm, a mathematical model is systematically 

generated to classify new data based on previous examples of known data.23–24 Machine 
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learning can be used in conjunction with protein biomarkers from diseased patients and 

healthy controls to predict disease status.24 Machine learning has been previously used 

for disease classification in AD research.25–26 For example, various machine learning 

algorithms including XGBoost,27 Support Vector Machine (SVM),28 and the Aristotle 

Classifier29 were able to classify brain proteomics data from AD and cognitively normal 

(CN) groups30 across two brain regions with high accuracy,25 and proteins from CSF were 

also useful in distinguishing the disease.36 In those studies, however, the impact of racial 

diversity on the model was not ascertainable because the datasets were relatively small, and 

the vast majority of the samples were from non-Hispanic White participants.

Racial bias is a common problem facing machine learning, particularly when racial 

subgroups are underrepresented,31 so investigations that address the extent to which machine 

learning models of AD are effective for all racial groups are necessary. Our laboratories have 

demonstrated that racial bias in machine learning is relevant to AD proteomics studies. An 

SVM model trained with proteomics analysis of non-Hispanic White patients’ plasma was 

effective at discriminating AD in multiple datasets, but only for the racial group used to train 

the model.26 For African American/Black participants, that specific model was ineffective 

in distinguishing AD, suggesting that proteomic biomarkers should be established using 

diverse cohorts. Overall, these studies demonstrate an urgent need for understanding AD-

related proteomic changes and ensuring potential biomarkers are evaluated and validated in 

diverse racial and ethnic participants.

The brain’s direct involvement in AD makes it a valuable tissue in which to initially 

characterize proteomic changes. Analyses in postmortem brain tissue could identify 

important target proteins that could later be measured in more accessible biological samples 

such as plasma or CSF. Proteomics has been widely used to study molecular changes in the 

AD brain, and many proteins have different abundances between AD and CN groups across 

spatial brain regions.30, 32–43 However, many existing brain proteomics datasets derived in 

the United States have included primarily non-Hispanic White participants,30, 32–36 such 

that characterization of proteomic changes in AD brain in other racial and ethnic groups 

has been very limited. Availability of postmortem brain tissue from African American/Black 

participants is significantly limited due to difficulties around recruitment into AD studies,44 

particularly related to organ donation.45 Some studies have worked to develop effective 

strategies for recruiting African American/Black participants into AD research, such as 

culturally informed storytelling materials, community engagement and AD education, and 

making CSF and/or organ donation optional instead of required.46–49

Recently, we used proteomics to analyze postmortem brain tissue from a cohort that 

included African American/Black and non-Hispanic White participants. In those studies, 

despite most proteins changing similarly in both racial groups we identified a subset 

of proteins with race-specific changes in AD.37 Others have reported that markers of 

inflammation and neurodegeneration were increased in AD from the middle temporal 

gyrus region in African American/Black participants compared to non-Hispanic White 

participants.50–51 These studies suggest that there is heterogeneity in protein changes in 

the brain from AD participants, though these studies have had relatively small sample sizes 

and require replication.
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Herein, we combined multiple, recently-published brain proteomics datasets that are 

described in the literature32, 36, 52 with machine learning to accomplish three goals: 1) 

identify protein features that strongly correlate to AD across multiple datasets, 2) determine 

the impact of racial demographic on the utility of these features for discriminating AD from 

CN, and 3) evaluate the degree to which machine learning models successfully distinguish 

AD from CN samples within specific studies. Our findings show that proteins expressed 

in the brain can differentiate AD from CN groups across AD brain proteomics datasets, 

yet the utility of each of the selected proteins for distinguishing AD depends on the cohort 

diversity. These studies also highlight the need for further studies of heat shock protein β-1 

(HSPB1), which we have identified herein as showing particular promise in discriminating 

AD in African American/Black participants. Finally, the studies point to an urgent need for 

enhanced diversity in future brain proteomics analyses in AD.

Methods

Cohort details and proteomics dataset selection

Available proteomics datasets of postmortem brain tissue from CN and AD participants 

were included in this study. Datasets were limited to those analyzed using Tandem Mass 

Tags (TMT), an isobaric tagging strategy that allows multiplexing of up to 18 samples in 

a single experiment, for protein quantification.53–54 This criterion was necessary to ensure 

that the proteomics sample preparation and analysis process was largely similar for all 

datasets and resulted in inclusion of six datasets: (1) dorsolateral prefrontal cortex (DLPFC) 

from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP; N = 

192; diagnosis based on Emory strict criteria in 2019)32; (2–3) parahippocampal gyrus 

(PHG; Brodmann area 36) from the Mount Sinai/JJ Peters VA Medical Center Brain Bank 

(MSBB-Bai, N = 6236 and MSBB-Full, N = 19052); (4–6) hippocampus, inferior parietal 

lobule (IPL), and globus pallidus (GP) from the University of Pittsburgh Alzheimer Disease 

Research Center (Pitt ADRC; N = 20).37 We note that the samples in the MSBB-Bai 

dataset are also part of the larger MSBB-Full dataset. All cohorts included participants 

from multiple self-reported racial groups (Table 1). Only findings from AD and CN 

participants from each dataset were included for machine learning analyses. Participants 

with asymptomatic AD or mild cognitive impairment were excluded.

TMT protein intensity data for all quantified proteins from each dataset were used for 

these analyses. Quantified proteins from the ROSMAP dataset had < 50% missing TMT 

intensities. Data for these proteins were normalized to pools (samples containing equal 

amounts of protein from all samples included in each batch).32 Both MSBB datasets 

included TMT quantification at the peptide spectral match (PSM) level, which involved 

removing PSMs with low intensities prior to normalizing to the median intensity across all 

PSMs and mean-centering the data. PSMs were averaged per protein to provide protein-level 

quantification, which was batch-corrected based on the pools.36, 52 Quantified proteins in 

the Pitt ADRC dataset were identified across both TMT batches of samples and required 

that proteins were present for ≥ 80% of channels including the pool channels. Data was 

normalized to the pool channels.37 The number of quantified proteins from each dataset 
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were as follows: ROSMAP = 8,812, MSBB-Bai = 12,148, MSBB-Full = 12,148, Pitt 

ADRC-hippocampus = 1,414, Pitt ADRC-IPL = 1,487, Pitt ADRC-GP = 1,173.

Univariate analysis

Data analysis was performed in RStudio, using R version 4.0.3. For all univariate analyses, 

the predictor variable was disease status (control or AD), and the response variable was 

protein abundance for the protein of interest. All receiver-operating characteristic (ROC) 

curves and area under the curve (AUC) calculations were calculated directly from the MS 

data using the package, pROC.55 Protein identities were matched between datasets using 

UniProt accession numbers, which were included in the first column or row of each dataset. 

When the AUC of the entire cohort was specified, all samples in the dataset were used, 

without regard to racial demographics. When AUCs or fold changes were reported by racial 

subgroup, the racial identities of the samples along with disease status (CN or AD) were 

used to stratify samples prior to calculating fold change or AUC. In all cases, fold change 

was calculated using mean intensity for the group, using the embedded function in R. 

P-values were calculated using two-tailed t-tests.

Machine learning

Supervised classification was primarily performed with AC.2021, using leave-one-out cross-

validation as described previously.25 This classifier recently has been demonstrated to show 

enhanced classification performance over Support Vector Machine (SVM) and extreme 

gradient boosting (XGBoost) on a variety of proteomics datasets classifying AD.25 Only two 

hyperparameters are adjustable in the classifier: the number of Repeats, and X, a variable 

that influences the weighting of each feature. To tune these hyperparameters, the MSBB-Full 

dataset was used: the full set of patient samples and the three features of interest (APP, 

HSPB1, and age) were included in the model. First, the Repeats value was set by starting at 

Repeats = 500 and increasing the value, from 500 to 1000 to 2000, until both the number 

of misclassified samples and the AUC (to two decimal places) remained constant for three 

consecutive classifications. To achieve this standard of reproducibility, Repeats set to 2000 

was sufficient. Next, the parameter X was tuned, by starting at 1 and increasing through 10. 

In this case, the optimal value was that which provided the highest AUC (to two decimal 

places). In cases where two X values provided equivalent AUCs, the better X value was 

the one that misclassified the fewest samples. This procedure resulted in an X value of 2 

being optimal. These hyperparameters (Repeats = 2000; X = 2) were used for all subsequent 

classifications on all datasets and all feature sets. Hyperparameters were not re-tuned for 

different datasets, since the tuning of hyperparameters on small datasets could lead to 

overtraining, and the goal of these studies is to compare results across feature combinations 

and datasets when a consistent set of machine learning parameters is used.

For each dataset and feature set, a unique model was developed, using AC.2021, X=2, 

and Repeats=2000, with the resulting Results vector reporting the outcome of a leave-one-

out cross-validation. The Results vector shows the strength of the association between 

each unlabeled sample and its class assignment, and it was used to determine the percent 

misclassified for each racial group and to calculate the AUC.
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In a secondary test, all the datasets and feature sets previously classified using AC.2021 

were reclassified using XGBoost, again using leave-one-out cross-validation. In this case, 

the package, xgboost, was used. The parameters, eta and max_depth, were tuned to 

optimize the AUC of the MSBB-Full dataset when all three features (age, HSPB1, APP) 

were included. The optimized parameters were those that produced the highest AUC for 

the model. The resulting parameters (eta=1; max_depth=3) were used on all subsequent 

classifications on all feature sets and all datasets. Other parameters included standard 

choices that were unoptimized, namely: booster = “gbtree”, objective = “binary:logistic”, 

nrounds =30, eval_metric=“auc”. This set of experiments was completed as a quality control 

measure to demonstrate that the major outcomes of the original experiments were not 

influenced by the selection of the classifier. In cases where only one feature was included in 

the model, for both XGBoost and AC.2021, the feature of interest was listed twice, since at 

least two features are required for learning with these tools, but the features do not need to 

be unique.

Results and Discussion

The overall goal of this study was to understand how inclusion of racial and ethnic diversity 

in brain proteomics datasets impacts the development of a universal diagnostic biomarker 

panel for AD. The key challenge to achieve this goal is that a dataset containing large 

numbers of brain proteomics samples from multiple racial groups does not yet exist. 

Additionally, use of a single dataset with limited sample size also leads to statistical 

limitations, is more susceptible to biological noise, and requires further replication. To 

mitigate these challenges, we employed an experimental design in which multiple existing 

datasets were leveraged to allow for broader applicability of the findings. We included in 

this study six publicly available brain proteomics datasets that (1) were analyzed using TMT 

labeling and (2) contained at least 15% African American/Black participants or at least 

50 samples from AD or CN groups (Table 1). The MSBB-Full dataset was chosen as a 

reference to identify the proteins because it contains N = 190 samples, and the composition 

of participants was ~12% of African American/Black and ~9% Hispanic.

Each of the 12,148 quantified proteins in the MSBB-Full dataset52 was assessed for its 

ability to discriminate AD from CN participants. The performance metric selected was the 

area under the ROC curve, and only proteins whose AUC was at least 0.8 were considered 

as highly predictive of the disease state. A total of 13 proteins (Table 2) met this criterion 

and were further interrogated. We note that the AUC, as a performance metric, ranks 

proteins somewhat differently than p-values or fold changes. We chose AUC as the primary 

performance metric because 1) each dataset in this study has different numbers of samples 

and AUC is independent of study size, and 2) AUC directly measures a protein’s ability to 

discriminate disease state.

Of the 13 proteins selected, two were present in each of the five remaining datasets: 

amyloid-β precursor protein (APP) and HSPB1, which are the subject of the remainder of 

this investigation. To first assess whether these proteins effectively discriminate AD across 

all the datasets present in the study, ROC curves were evaluated (Figure 1). Both APP 

and HSPB1, to varying degrees, could be used to differentiate samples from AD and CN 
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participants. We note that the relative proportion of samples from African American/Black 

participants in the datasets appears to influence the AUC values obtained for the proteins. 

The dataset with the lowest proportion of African American/Black participants (ROSMAP) 

has the largest gap between the ROC curve for APP, which has an AUC of 0.91, and HSPB1, 

with an AUC of 0.68. By contrast, in the three datasets, Pitt ADRC-hippocampus, -IPL, 

and -GP, with African American/Black participants comprising at least 40% of the samples, 

the AUCs of APP and HSPB1 are more similar; in fact, the AUC of HSPB1 (AUC 0.89) 

in the Pitt ADRC-hippocampus dataset is higher than that of APP (AUC 0.88). APP is 

noticeably higher than HSPB1 in both MSBB datasets, which have an intermediate number 

of samples from African American/Black participants. In summary, HSPB1 appears to be a 

useful indicator of AD, and relative to APP, HSPB1’s utility appears to be associated with 

the number of African American/Black participants in the dataset.

We next considered whether HSPB1 is, in fact, a more useful marker of AD in African 

American/Black participants than it is in non-Hispanic White participants. If this were to be 

true, then one would expect to see this difference more readily when the samples in each 

group are first stratified by racial demographic. We tested this hypothesis by comparing 

the AUCs for APP and HSPB1 in each dataset within the samples from a given racial 

group (non-Hispanic White or African American/Black). As predicted based on the data 

in Figure 1, HSPB1 is a better indicator of AD in African American/Black participants 

than it is in non-Hispanic White participants (Table 3). In six of six datasets, the AUC 

for this protein is higher for African American/Black participants. The fold change for 

HSPB1 is higher in all six datasets for the African American/Black participants. Three of 

the datasets show fold changes > 20% higher; however, we note that the fold change values 

are dataset-dependent and a reflection of details of inherent changes in the samples, sample 

preparation, processing, mass spectrometry acquisition, and data normalization.

By contrast, there is no discernable race-associated difference in performance when 

evaluating the AUC for APP. In half of the datasets studied, APP has a higher AUC for 

the samples originating from non-Hispanic White participants (AUC > 0.90) than from those 

in the African American/Black participants (AUC 0.5–0.85). Yet, in the other half of the 

datasets, the AUC is higher for the African American/Black participants. APP does appear 

to have greater changes in expression level in AD for non-Hispanic White participants than 

in African American/Black participants. In four of six datasets, the fold change for APP 

is substantially larger (60–80%) in non-Hispanic White participants. Considering the two 

datasets that did not show a large difference in fold change, one is the “low AD pathology” 

dataset (Pitt ADRC-GP), where both racial groups show rather slight fold changes. In the 

other, the MSBB-Bai dataset, only two samples are present in the African American/Black 

CN group. A fold change value calculated from more samples would likely result in a 

different outcome. Overall, it is clear that APP has the ability to distinguish AD from CN in 

both racial groups; however, the level of its discriminating ability varied in each group.

Interestingly, HSPB1 appears to be a better discriminator of AD in African American/Black 

participants and in pathological regions. HSPB1 shows particular promise as another protein 

which can potentially help confirm AD diagnosis. It is necessary, however, to evaluate 

HSPB1 in the context of larger sample sizes from African American/Black adults and also 
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other racial and ethnic groups. The overall findings for HSPB1 and APP, including which 

differences are significant (P < 0.05), are shown as bar graphs in Figure 2. Here, all five 

datasets from high-pathology brain regions are included, and a paired t-test was used to 

determine if race-associated differences are present, based on fold change or AUC. The 

results reiterate the findings already stated above.

HSPB and APP biomarker panels.

Brain proteomics data are invaluable in the quest to identify useful candidate biomarkers 

for AD. APP has a well-established role in AD pathogenesis, as APP is cleaved to 

produce 40- and 42-amino acid Aβ peptides that accumulate in AD’s characteristic amyloid 

plaques.56–57 While APP has peptides that serve as CSF AD biomarkers, its measurement 

alone is insufficient to diagnose the disease with high accuracy.58–59 This study has 

identified an additional protein, HSPB1, that is highly associated with AD across multiple 

datasets and shows particular promise for improving the diagnosis of AD in African 

American/Black participants. HSPB1 has been shown to localize to both amyloid plaques60 

and tau fibrils61–62 in the brain, and to interact directly with both Aβ63 and tau64 in vitro, 

leading to prevention or delay of respective fibril formation. Furthermore, neurons from 

mice lacking HSPB1 were more sensitive to Aβ toxicity,60 while APPswe/PS1dE9 mice 

overexpressing HSPB1 had improved spatial learning and fewer amyloid plaques in the 

brain,65 all of which are consistent with HSPB1 having protective effects against AD in the 

brain.66

To determine the potential benefit of adding HSPB1 into a biomarker panel with APP, 

machine learning was used to classify four of the datasets (MSBB-Full, ROSMAP, Pitt 

ADRC-Hippocampus, Pitt ADRC-IPL). Note: these studies were not completed on the Pitt 

ADRC-GP dataset because this brain region is known to have low AD pathology; also, since 

the MSBB-Bai dataset is fully represented in MSBB-Full, it was not included in the machine 

learning studies. The supervised classification relied on different feature combinations, 

including: APP alone, APP with HSPB1, APP with age, and all three features: APP, 

HSPB1, age (see Methods). The inclusion of age as an alternative third feature provided 

an opportunity to assess the relative benefit of HSPB1, as age is the largest risk factor for 

AD.

In all four datasets, the overall AUC (including all samples/all racial backgrounds) improves 

when HSPB1 is included in the model, versus a model with APP alone (Table 4). The 

improvement in AUC is greater in the Pitt ADRC datasets, which have a higher percentage 

of African American/Black participants. We also assessed the diagnostic accuracy among 

the racial subgroups. In the MSBB-Full dataset, a total of 23 samples are present in 

the African American/Black group, and the classification improved from 30% to 22% 

misclassified when HSPB1 is included as a feature. This difference corresponds to seven 

vs five samples being misclassified, respectively, so larger studies are still warranted. 

The inclusion of HSPB1 also substantially improves the classification, from 24% to 6% 

misclassified, for the Hispanic participants in the MSBB-Full dataset (Table 4).

The utility of HSPB1 for improving classification of samples from non-Hispanic White 

participants was also studied in MSBB-Full and ROSMAP datasets. The models that include 
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HSPB1 show consistent improvements in classification: 15 to 13% misclassified in the 

MSBB- Full dataset and 13 to 11% misclassified in the ROSMAP dataset. These two 

datasets have 146 and 189 non-Hispanic White participants, respectively. Improvements of 

classification were difficult to discern in the Pitt ADRC datasets likely because of the small 

sample sizes.

Finally, we assessed the relative impact of including HSPB1 into the model for predicting 

AD vs. adding in the participants’ age or adding in both the age and HSPB1. Table 4 

shows that including age in the model instead of HSPB1 results in a modest classification 

improvement for non-Hispanic White participants, no improvement for African American/

Black participants, and only minimal improvement for Hispanic participants. We note that 

more samples or more datasets with Hispanic adults represented are needed to support 

findings about this racial subgroup. Adding in age as a third feature with the set of APP and 

HSPB1 does not show any improvement in the model over the two protein-only model for 

the larger datasets (ROSMAP and MSBB-Full). These results, and particularly the results 

from the MSBB-Full dataset (largest sample size), demonstrate that HSPB1’s inclusion is 

important for distinguishing AD in brain samples from non-White participants, particularly 

for African American/Black adults.

Finally, to verify that the machine learning outcomes are independent of the classifier used, 

the entire set of supervised classifications was repeated with XGBoost as the classifier, 

instead of AC.2021. These results can be found in Supplementary Table 1. Overall, all the 

key outcomes were replicated using this alternative classifier. One notable difference in 

comparing the reclassification data to the original AC.2021 results is that the AUCs were 

lower for 14 of the 16 classifications using XGBoost, and the remaining two classifications 

had equal AUCs to those generated using AC.2021. This comparison between the classifiers 

further demonstrates that AC.2021 is a better choice for classifying these data.

Strengths and limitations of the study.

The key strength of this study is leveraging datasets from multiple laboratories to better 

understand how AD is manifested at the protein level and which proteins are important to 

consider as biomarker candidates for the disease. Each of the datasets used in this study had 

a similar TMT quantitation strategy, which helps to minimize potential sample processing- 

and mass spectrometry-related differences. The detection of both APP and HSPB1 in all six 

datasets is an asset to this study. The general agreement of magnitude of protein change 

in AD across laboratories and determined by the TMT quantitation strategy supports the 

reliability of the proteomics results. Finally, the application of machine learning, following 

the univariate analysis, is a strength, as it identifies the most robust potential protein 

candidates that can determine AD. The analysis of each protein individually and as a panel 

demonstrated that the two proteins combined gave more diagnostic utility than using either 

individually.

The major limitation of this study is the lack of larger and/or more diverse proteomics 

datasets to conduct machine learning analyses. Even though two of the datasets in this 

study had ~200 samples, the vast majority of those samples were from non-Hispanic White 

participants. Assessing the value of biomarkers in sub-populations of participants introduces 
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the challenge of potentially working with low sample sizes. Yet, as this work shows, this 

type of analysis is critical for generating biomarker panels that are effective for the full 

population, since some proteins have differential diagnostic utility in sub-populations. While 

this study focused on racial subgroups, similar subpopulations should be investigated across 

other parameters, including socioeconomic status, comorbidities, education, lifestyle factors, 

and other social determinants of health. This study, in addition to others that attempt to 

undertake the challenging problem of assessing racial sub-populations, would benefit from 

larger datasets containing a greater representation of African American/Black, Hispanic, and 

other racial and ethnic participants.

This study focused on two proteins, APP and HSPB1, that were detected in six publicly 

available datasets but selected from a set of 13 proteins in the MSBB-Full dataset, which 

served as a reference in this study. Whether there are other shared proteins that could 

be useful biomarkers would require further analysis and selection from different reference 

datasets and those with larger numbers and diverse participants.

Conclusions

Leveraging six different brain proteomics datasets, we identified potential AD biomarkers 

that could serve a racially diverse American population. This combination of datasets 

and attention to racial subgroup analysis allowed us to identify HSPB1 as a protein 

that correlates strongly to AD in multiple studies and does so with higher accuracy in 

samples from African American/Black than non-Hispanic White participants. Furthermore, 

combining APP and HSPB1 does a better job of discriminating AD than APP alone for 

all racial groups. HSPB1 should be considered as a potential biomarker candidate for 

other tissues such as CSF and plasma. Future efforts to identify other potential biomarker 

candidates using the machine learning strategies presented herein and to replicate the 

combined value of HSPB1 and APP as diagnostic biomarkers should be explored.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. APP and HSPB1 receiver-operating characteristic (ROC) curves in brain datasets as a 
function of the percentage of African American/Black participants.
The AUCs for APP and HSPB1, respectively, in each dataset are: ROSMAP (0.91, 0.68); 

MSBB-Bai (0.93, 0.88); MSBB-Full (0.91, 0.82); Pitt ADRC-hippocampus (0.88, 0.89); Pitt 

ADRC-IPL (0.91, 0.84); Pitt ADRC-GP (0.67, 0.53). Note: the GP is a brain region with low 

AD pathology.
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Figure 2. Assessment of HSPB1 and APP for discriminating AD in five datasets obtained from 
brain regions with high AD pathology.
(A) AUCs for HSPB1; (B) fold change for HSPB1; (C) AUCs for APP; (D) fold change 

for APP. P-values were calculated using paired t-tests. Abbreviations: AUC, are under the 

curve; HSPB1, heat shock protein β-1; NHW, non-Hispanic White; AA, African American; 

ROSMAP, Religious Orders Study and Rush Memory and Aging Project; MSBB, Mount 

Sinai Brain Bank; Pitt ADRC, University of Pittsburgh Alzheimer Disease Research Center; 

IPL, inferior parietal lobule; APP, amyloid-β precursor protein.
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Table 2.

List of proteins discriminating AD from CN participants in MSBB-Full dataset.
a

UniProt accession number Protein name AUCs p-value Fold change
b

P21741 Midkine 0.93 1.78E-17 3.53

P05067-108 Amyloid-β precursor protein 0.91 6.39E-16 3.35

Q9H4F8 SPARC-related modular calcium-binding protein 1 0.90 3.37E-16 1.66

O95631 Netrin-1 0.85 3.23E-11 1.54

Q96CG8 Collagen triple helix repeat-containing protein 1 0.84 2.74E-13 1.79

Q8N474 Secreted frizzled-related protein 1 0.84 6.03E-13 1.55

P04792 Heat shock protein β-1 0.82 9.32E-12 1.46

P05362 Intercellular adhesion molecule 1 0.82 4.88E-10 1.70

E7EMC7 Sequestosome-1 0.81 5.07E-10 1.30

F8WE04 N/A 0.81 1.87E-11 1.44

Q96AQ6 Pre-B-cell leukemia transcription factor-interacting protein 1 0.81 5.94E-10 1.33

P17948-2 Vascular endothelial growth factor receptor 1 isoform 2 0.81 4.72E-11 1.21

Q9NPD7 Neuritin 0.80 3.66E-12 0.74

a
Proteins discriminating AD and CN participants with AUCs > 0.80.

b
Mean fold change value of AD/CN participants.
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Table 3.

Performance metrics of APP and HSPB1 by racial group across six datasets.

HSPB1
a

APP
a

NHW AA/Black NHW AA/Black

AUCs

ROSMAP 0.68 1.00 0.91 0.50

MSBB-Full 0.81 0.86 0.92 0.84

MSBB-Bai 0.88 1.00 1.00 1.00

Pitt ADRC-Hippocampus 0.84 0.93 0.88 0.93

Pitt ADRC-IPL 0.76 1.00 1.00 0.85

Pitt ADRC-GP 0.32 0.75 0.52 0.88

FCs

ROSMAP 1.20 1.23 1.81 1.08

MSBB-Full 1.46 1.52 3.40 2.24

MSBB-Bai 1.4 1.70 6.93 6.35

Pitt ADRC-Hippocampus 1.45 1.75 6.03 2.58

Pitt ADRC-IPL 1.12 1.30 7.80 4.40

Pitt ADRC-GP 0.84 1.29 1.12 1.41

a
Bold indicates the higher AUC or fold change value between the two racial groups.

Abbreviations: APP, amyloid-β precursor protein; HSPB1, heat shock protein β-1; AUC, area under the curve; NHW, non-Hispanic White; AA, 
African American; ROSMAP, Religious Orders Study and Rush Memory and Aging Project; MSBB, Mount Sinai Brain Bank; Pitt ADRC, 
University of Pittsburgh Alzheimer Disease Research Center.
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Table 4.

Classification and AUC metrics for APP, HSPB1, and age features.

Datasets % Non-Hispanic White APP APP + HSPB1 APP + Age All 3

MSBB-Full

76.8%

AUC 0.89 0.93 0.90 0.93

NHW % error 15 13 13 14

AA % error 30 22 30 22

H % error 24 6 18 6

ROSMAP

98.4%
AUC 0.89 0.91 0.92 0.93

NHW % error 13 11 12 12

AA % error
a 33 33 33 33

Pitt ADRC-Hippocampus

55.6%
AUC 0.76 0.89 0.90 0.91

NHW # error 2 3 3 3

AA # error 1 1 1 0

Pitt ADRC-IPL

52.6%
AUC 0.89 0.98 0.89 0.96

NHW # error 0 2 0 1

AA # error 1 1 1 1

a
33% of the African American/Black participants is equal to one sample. The AUCs from classification with APP alone and APP + HSPB1 were 

compared using DeLong’s test, resulting in the following p-values: MSBB-Full, p = 0.01; ROSMAP, p = 0.09; Pitt ADRC-hippocampus, p = 0.20; 
Pitt ADRC-IPL, p = 0.39.

Abbreviations: AA, African American/Black; APP, amyloid-β precursor protein; H, Hispanic; HSPB1, heat shock protein β-1; MSBB, Mount 
Sinai Brain Bank; NHW, non-Hispanic White; ROSMAP, Religious Orders Study and Rush Memory and Aging Project; Pitt ADRC, University of 
Pittsburgh Alzheimer Disease Research Center; IPL, inferior parietal lobule.
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