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Abstract

Recent studies have highlighted that the proteome can be used to identify potential biomarker
candidates for Alzheimer’s disease (AD) in diverse cohorts. Furthermore, the racial and ethnic
background of participants is an important factor to consider to ensure the effectiveness of
potential biomarkers for representative populations. A promising approach to survey potential
biomarker candidates for diagnosing AD in diverse cohorts is the application of machine learning
to proteomics datasets. Herein, we leveraged six existing bottom-up proteomics datasets, which
included non-Hispanic White, African American/Black, and Hispanic participants, to study protein
changes in AD and cognitively unimpaired participants. Machine learning models were applied

to these datasets and resulted in the identification of amyloid-p precursor protein (APP) and heat
shock protein p-1 (HSPBL1) as two proteins that have high ability to distinguish AD; however,
each protein’s performance varied based upon the racial and ethnic background of the participants.
HSPB1 particularly was helpful for generating high areas under the curve (AUCs) for African
American/Black participants. Overall, HSPB1 improved the performance of the machine learning
models when combined with APP and/or participant age, and it is a potential candidate that should
be further explored in AD biomarker discovery efforts.
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Introduction

African American/Black and Hispanic adults are more likely to develop Alzheimer’s
disease (AD) than other racial groups,1~2 which is a result of complex and interconnected
factors related to structural and systemic racism, “lived experiences”, social determinants of
health, comorbidities, and genetics.3-10 Reducing these disparities partially requires better
understanding of molecular changes in AD. Neuropathological differences in AD hallmarks
(amyloid-beta (AB) plaques and tau tangles) have not been reported in African American/
Black and non-Hispanic White participants. 11-13 Some studies have observed that African
American/Black participants are more likely to present with both AD and other dementia
pathologies!! 14-16: however, this may be dependent on the sampling of participants

in the study in terms of community dwelling versus research centers.1”-19 Moreover,
potential molecular differences between African American/Black and non-Hispanic White
participants have recently been reported, particularly in cerebrospinal fluid (CSF) levels of
tau biomarkers for AD.17-20-22 CSF |evels of total tau and tau phosphorylated at position
181 (p-tauqgy) were lower overall in African American/Black participants than non-Hispanic
White participants regardless of cognitive status,1”- 20-22 and furthermore, smaller changes
in tau levels occurred in African American/Black participants with cognitive decline.20
These differences, however, were related to apolipoprotein E (APOE) &4 status.” While
such studies have to be replicated, potential differences in biomarker levels based on racial
and ethnic background would impact biomarker discovery efforts and biomarker utility.

One promising route forward for establishing AD diagnostic biomarker panels is through
incorporating machine learning. In this paradigm, a mathematical model is systematically
generated to classify new data based on previous examples of known data.23-24 Machine
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learning can be used in conjunction with protein biomarkers from diseased patients and
healthy controls to predict disease status.24 Machine learning has been previously used

for disease classification in AD research.25-26 For example, various machine learning
algorithms including XGBoost,2” Support Vector Machine (SVM),28 and the Avristotle
Classifier?® were able to classify brain proteomics data from AD and cognitively normal
(CN) groups30 across two brain regions with high accuracy,2® and proteins from CSF were
also useful in distinguishing the disease.36 In those studies, however, the impact of racial
diversity on the model was not ascertainable because the datasets were relatively small, and
the vast majority of the samples were from non-Hispanic White participants.

Racial bias is a common problem facing machine learning, particularly when racial
subgroups are underrepresented,3! so investigations that address the extent to which machine
learning models of AD are effective for all racial groups are necessary. Our laboratories have
demonstrated that racial bias in machine learning is relevant to AD proteomics studies. An
SVM model trained with proteomics analysis of non-Hispanic White patients’ plasma was
effective at discriminating AD in multiple datasets, but only for the racial group used to train
the model.26 For African American/Black participants, that specific model was ineffective

in distinguishing AD, suggesting that proteomic biomarkers should be established using
diverse cohorts. Overall, these studies demonstrate an urgent need for understanding AD-
related proteomic changes and ensuring potential biomarkers are evaluated and validated in
diverse racial and ethnic participants.

The brain’s direct involvement in AD makes it a valuable tissue in which to initially
characterize proteomic changes. Analyses in postmortem brain tissue could identify
important target proteins that could later be measured in more accessible biological samples
such as plasma or CSF. Proteomics has been widely used to study molecular changes in the
AD brain, and many proteins have different abundances between AD and CN groups across
spatial brain regions.39: 32-43 However, many existing brain proteomics datasets derived in
the United States have included primarily non-Hispanic White participants,30: 32-36 sych
that characterization of proteomic changes in AD brain in other racial and ethnic groups
has been very limited. Availability of postmortem brain tissue from African American/Black
participants is significantly limited due to difficulties around recruitment into AD studies,**
particularly related to organ donation.*> Some studies have worked to develop effective
strategies for recruiting African American/Black participants into AD research, such as
culturally informed storytelling materials, community engagement and AD education, and
making CSF and/or organ donation optional instead of required.46-49

Recently, we used proteomics to analyze postmortem brain tissue from a cohort that
included African American/Black and non-Hispanic White participants. In those studies,
despite most proteins changing similarly in both racial groups we identified a subset

of proteins with race-specific changes in AD.37 Others have reported that markers of
inflammation and neurodegeneration were increased in AD from the middle temporal
gyrus region in African American/Black participants compared to non-Hispanic White
participants.59-51 These studies suggest that there is heterogeneity in protein changes in
the brain from AD participants, though these studies have had relatively small sample sizes
and require replication.
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Herein, we combined multiple, recently-published brain proteomics datasets that are
described in the literature32 36. 52 with machine learning to accomplish three goals: 1)
identify protein features that strongly correlate to AD across multiple datasets, 2) determine
the impact of racial demographic on the utility of these features for discriminating AD from
CN, and 3) evaluate the degree to which machine learning models successfully distinguish
AD from CN samples within specific studies. Our findings show that proteins expressed

in the brain can differentiate AD from CN groups across AD brain proteomics datasets,

yet the utility of each of the selected proteins for distinguishing AD depends on the cohort
diversity. These studies also highlight the need for further studies of heat shock protein -1
(HSPB1), which we have identified herein as showing particular promise in discriminating
AD in African American/Black participants. Finally, the studies point to an urgent need for
enhanced diversity in future brain proteomics analyses in AD.

Cohort details and proteomics dataset selection

Available proteomics datasets of postmortem brain tissue from CN and AD participants
were included in this study. Datasets were limited to those analyzed using Tandem Mass
Tags (TMT), an isobaric tagging strategy that allows multiplexing of up to 18 samples in

a single experiment, for protein quantification.53-54 This criterion was necessary to ensure
that the proteomics sample preparation and analysis process was largely similar for all
datasets and resulted in inclusion of six datasets: (1) dorsolateral prefrontal cortex (DLPFC)
from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP; N =
192; diagnosis based on Emory strict criteria in 2019)32; (2-3) parahippocampal gyrus
(PHG; Brodmann area 36) from the Mount Sinai/JJ Peters VA Medical Center Brain Bank
(MSBB-Bai, N = 6236 and MSBB-Full, N = 190°2); (4-6) hippocampus, inferior parietal
lobule (IPL), and globus pallidus (GP) from the University of Pittsburgh Alzheimer Disease
Research Center (Pitt ADRC; N = 20).37 We note that the samples in the MSBB-Bai
dataset are also part of the larger MSBB-Full dataset. All cohorts included participants
from multiple self-reported racial groups (Table 1). Only findings from AD and CN
participants from each dataset were included for machine learning analyses. Participants
with asymptomatic AD or mild cognitive impairment were excluded.

TMT protein intensity data for all quantified proteins from each dataset were used for
these analyses. Quantified proteins from the ROSMAP dataset had < 50% missing TMT
intensities. Data for these proteins were normalized to pools (samples containing equal
amounts of protein from all samples included in each batch).32 Both MSBB datasets
included TMT quantification at the peptide spectral match (PSM) level, which involved
removing PSMs with low intensities prior to normalizing to the median intensity across all
PSMs and mean-centering the data. PSMs were averaged per protein to provide protein-level
quantification, which was batch-corrected based on the pools.3¢: 52 Quantified proteins in
the Pitt ADRC dataset were identified across both TMT batches of samples and required
that proteins were present for = 80% of channels including the pool channels. Data was
normalized to the pool channels.3” The number of quantified proteins from each dataset
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were as follows: ROSMAP = 8,812, MSBB-Bai = 12,148, MSBB-Full = 12,148, Pitt
ADRC-hippocampus = 1,414, Pitt ADRC-IPL = 1,487, Pitt ADRC-GP = 1,173.

Univariate analysis

Data analysis was performed in RStudio, using R version 4.0.3. For all univariate analyses,
the predictor variable was disease status (control or AD), and the response variable was
protein abundance for the protein of interest. All receiver-operating characteristic (ROC)
curves and area under the curve (AUC) calculations were calculated directly from the MS
data using the package, pROC.5® Protein identities were matched between datasets using
UniProt accession numbers, which were included in the first column or row of each dataset.
When the AUC of the entire cohort was specified, all samples in the dataset were used,
without regard to racial demographics. When AUCs or fold changes were reported by racial
subgroup, the racial identities of the samples along with disease status (CN or AD) were
used to stratify samples prior to calculating fold change or AUC. In all cases, fold change
was calculated using mean intensity for the group, using the embedded function in R.
P-values were calculated using two-tailed t-tests.

Machine learning

Supervised classification was primarily performed with AC.2021, using leave-one-out cross-
validation as described previously.2® This classifier recently has been demonstrated to show
enhanced classification performance over Support Vector Machine (SVM) and extreme
gradient boosting (XGBoost) on a variety of proteomics datasets classifying AD.2> Only two
hyperparameters are adjustable in the classifier: the number of Repeats, and X, a variable
that influences the weighting of each feature. To tune these hyperparameters, the MSBB-Full
dataset was used: the full set of patient samples and the three features of interest (APP,
HSPB1, and age) were included in the model. First, the Repeats value was set by starting at
Repeats = 500 and increasing the value, from 500 to 1000 to 2000, until both the number

of misclassified samples and the AUC (to two decimal places) remained constant for three
consecutive classifications. To achieve this standard of reproducibility, Repeats set to 2000
was sufficient. Next, the parameter X was tuned, by starting at 1 and increasing through 10.
In this case, the optimal value was that which provided the highest AUC (to two decimal
places). In cases where two X values provided equivalent AUCs, the better X value was

the one that misclassified the fewest samples. This procedure resulted in an X value of 2
being optimal. These hyperparameters (Repeats = 2000; X = 2) were used for all subsequent
classifications on all datasets and all feature sets. Hyperparameters were not re-tuned for
different datasets, since the tuning of hyperparameters on small datasets could lead to
overtraining, and the goal of these studies is to compare results across feature combinations
and datasets when a consistent set of machine learning parameters is used.

For each dataset and feature set, a unique model was developed, using AC.2021, X=2,

and Repeats=2000, with the resulting Results vector reporting the outcome of a leave-one-
out cross-validation. The Results vector shows the strength of the association between
each unlabeled sample and its class assignment, and it was used to determine the percent
misclassified for each racial group and to calculate the AUC.
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In a secondary test, all the datasets and feature sets previously classified using AC.2021
were reclassified using XGBoost, again using leave-one-out cross-validation. In this case,
the package, xgboost, was used. The parameters, eta and max_depth, were tuned to
optimize the AUC of the MSBB-Full dataset when all three features (age, HSPB1, APP)
were included. The optimized parameters were those that produced the highest AUC for

the model. The resulting parameters (eta=1; max_depth=3) were used on all subsequent
classifications on all feature sets and all datasets. Other parameters included standard
choices that were unoptimized, namely: booster = “gbtree”, objective = “binary:logistic”,
nrounds =30, eval_metric="auc”. This set of experiments was completed as a quality control
measure to demonstrate that the major outcomes of the original experiments were not
influenced by the selection of the classifier. In cases where only one feature was included in
the model, for both XGBoost and AC.2021, the feature of interest was listed twice, since at
least two features are required for learning with these tools, but the features do not need to
be unique.

Results and Discussion

The overall goal of this study was to understand how inclusion of racial and ethnic diversity
in brain proteomics datasets impacts the development of a universal diagnostic biomarker
panel for AD. The key challenge to achieve this goal is that a dataset containing large
numbers of brain proteomics samples from multiple racial groups does not yet exist.
Additionally, use of a single dataset with limited sample size also leads to statistical
limitations, is more susceptible to biological noise, and requires further replication. To
mitigate these challenges, we employed an experimental design in which multiple existing
datasets were leveraged to allow for broader applicability of the findings. We included in
this study six publicly available brain proteomics datasets that (1) were analyzed using TMT
labeling and (2) contained at least 15% African American/Black participants or at least

50 samples from AD or CN groups (Table 1). The MSBB-Full dataset was chosen as a
reference to identify the proteins because it contains N = 190 samples, and the composition
of participants was ~12% of African American/Black and ~9% Hispanic.

Each of the 12,148 quantified proteins in the MSBB-Full dataset®? was assessed for its
ability to discriminate AD from CN participants. The performance metric selected was the
area under the ROC curve, and only proteins whose AUC was at least 0.8 were considered
as highly predictive of the disease state. A total of 13 proteins (Table 2) met this criterion
and were further interrogated. We note that the AUC, as a performance metric, ranks
proteins somewhat differently than p-values or fold changes. We chose AUC as the primary
performance metric because 1) each dataset in this study has different numbers of samples
and AUC is independent of study size, and 2) AUC directly measures a protein’s ability to
discriminate disease state.

Of the 13 proteins selected, two were present in each of the five remaining datasets:
amyloid-f precursor protein (APP) and HSPB1, which are the subject of the remainder of
this investigation. To first assess whether these proteins effectively discriminate AD across
all the datasets present in the study, ROC curves were evaluated (Figure 1). Both APP

and HSPB1, to varying degrees, could be used to differentiate samples from AD and CN
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participants. We note that the relative proportion of samples from African American/Black
participants in the datasets appears to influence the AUC values obtained for the proteins.
The dataset with the lowest proportion of African American/Black participants (ROSMAP)
has the largest gap between the ROC curve for APP, which has an AUC of 0.91, and HSPB1,
with an AUC of 0.68. By contrast, in the three datasets, Pitt ADRC-hippocampus, -IPL,
and -GP, with African American/Black participants comprising at least 40% of the samples,
the AUCs of APP and HSPBL1 are more similar; in fact, the AUC of HSPB1 (AUC 0.89)

in the Pitt ADRC-hippocampus dataset is higher than that of APP (AUC 0.88). APP is
noticeably higher than HSPB1 in both MSBB datasets, which have an intermediate number
of samples from African American/Black participants. In summary, HSPB1 appears to be a
useful indicator of AD, and relative to APP, HSPB1’s utility appears to be associated with
the number of African American/Black participants in the dataset.

We next considered whether HSPBL1 is, in fact, a more useful marker of AD in African
American/Black participants than it is in non-Hispanic White participants. If this were to be
true, then one would expect to see this difference more readily when the samples in each
group are first stratified by racial demographic. We tested this hypothesis by comparing

the AUCs for APP and HSPBL in each dataset within the samples from a given racial
group (non-Hispanic White or African American/Black). As predicted based on the data

in Figure 1, HSPB1 is a better indicator of AD in African American/Black participants
than it is in non-Hispanic White participants (Table 3). In six of six datasets, the AUC

for this protein is higher for African American/Black participants. The fold change for
HSPB1 is higher in all six datasets for the African American/Black participants. Three of
the datasets show fold changes > 20% higher; however, we note that the fold change values
are dataset-dependent and a reflection of details of inherent changes in the samples, sample
preparation, processing, mass spectrometry acquisition, and data normalization.

By contrast, there is no discernable race-associated difference in performance when
evaluating the AUC for APP. In half of the datasets studied, APP has a higher AUC for

the samples originating from non-Hispanic White participants (AUC > 0.90) than from those
in the African American/Black participants (AUC 0.5-0.85). Yet, in the other half of the
datasets, the AUC is higher for the African American/Black participants. APP does appear
to have greater changes in expression level in AD for non-Hispanic White participants than
in African American/Black participants. In four of six datasets, the fold change for APP

is substantially larger (60-80%) in non-Hispanic White participants. Considering the two
datasets that did not show a large difference in fold change, one is the “low AD pathology”
dataset (Pitt ADRC-GP), where both racial groups show rather slight fold changes. In the
other, the MSBB-Bai dataset, only two samples are present in the African American/Black
CN group. A fold change value calculated from more samples would likely result in a
different outcome. Overall, it is clear that APP has the ability to distinguish AD from CN in
both racial groups; however, the level of its discriminating ability varied in each group.

Interestingly, HSPB1 appears to be a better discriminator of AD in African American/Black
participants and in pathological regions. HSPB1 shows particular promise as another protein
which can potentially help confirm AD diagnosis. It is necessary, however, to evaluate
HSPB1 in the context of larger sample sizes from African American/Black adults and also
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other racial and ethnic groups. The overall findings for HSPB1 and APP, including which
differences are significant (P < 0.05), are shown as bar graphs in Figure 2. Here, all five
datasets from high-pathology brain regions are included, and a paired t-test was used to
determine if race-associated differences are present, based on fold change or AUC. The
results reiterate the findings already stated above.

HSPB and APP biomarker panels.

Brain proteomics data are invaluable in the quest to identify useful candidate biomarkers
for AD. APP has a well-established role in AD pathogenesis, as APP is cleaved to

produce 40- and 42-amino acid AP peptides that accumulate in AD’s characteristic amyloid
plaques.®5-57 While APP has peptides that serve as CSF AD biomarkers, its measurement
alone is insufficient to diagnose the disease with high accuracy.®8-59 This study has
identified an additional protein, HSPBL, that is highly associated with AD across multiple
datasets and shows particular promise for improving the diagnosis of AD in African
American/Black participants. HSPB1 has been shown to localize to both amyloid plaques®
and tau fibrils81-62 in the brain, and to interact directly with both AB83 and tau®* /n vitro,
leading to prevention or delay of respective fibril formation. Furthermore, neurons from
mice lacking HSPB1 were more sensitive to Ap toxicity,50 while APPswe/PSIdE9I mice
overexpressing HSPB1 had improved spatial learning and fewer amyloid plaques in the
brain,5° all of which are consistent with HSPB1 having protective effects against AD in the
brain.66

To determine the potential benefit of adding HSPBL1 into a biomarker panel with APP,
machine learning was used to classify four of the datasets (MSBB-Full, ROSMAP, Pitt
ADRC-Hippocampus, Pitt ADRC-IPL). Note: these studies were not completed on the Pitt
ADRC-GP dataset because this brain region is known to have low AD pathology; also, since
the MSBB-Bai dataset is fully represented in MSBB-Full, it was not included in the machine
learning studies. The supervised classification relied on different feature combinations,
including: APP alone, APP with HSPB1, APP with age, and all three features: APP,

HSPB1, age (see Methods). The inclusion of age as an alternative third feature provided

an opportunity to assess the relative benefit of HSPB1, as age is the largest risk factor for
AD.

In all four datasets, the overall AUC (including all samples/all racial backgrounds) improves
when HSPBL is included in the model, versus a model with APP alone (Table 4). The
improvement in AUC is greater in the Pitt ADRC datasets, which have a higher percentage
of African American/Black participants. We also assessed the diagnostic accuracy among
the racial subgroups. In the MSBB-Full dataset, a total of 23 samples are present in

the African American/Black group, and the classification improved from 30% to 22%
misclassified when HSPBL1 is included as a feature. This difference corresponds to seven

vs five samples being misclassified, respectively, so larger studies are still warranted.

The inclusion of HSPB1 also substantially improves the classification, from 24% to 6%
misclassified, for the Hispanic participants in the MSBB-Full dataset (Table 4).

The utility of HSPBL1 for improving classification of samples from non-Hispanic White
participants was also studied in MSBB-Full and ROSMAP datasets. The models that include
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HSPB1 show consistent improvements in classification: 15 to 13% misclassified in the
MSBB- Full dataset and 13 to 11% misclassified in the ROSMAP dataset. These two
datasets have 146 and 189 non-Hispanic White participants, respectively. Improvements of
classification were difficult to discern in the Pitt ADRC datasets likely because of the small
sample sizes.

Finally, we assessed the relative impact of including HSPB1 into the model for predicting
AD vs. adding in the participants’ age or adding in both the age and HSPB1. Table 4
shows that including age in the model instead of HSPBL1 results in a modest classification
improvement for non-Hispanic White participants, no improvement for African American/
Black participants, and only minimal improvement for Hispanic participants. We note that
more samples or more datasets with Hispanic adults represented are needed to support
findings about this racial subgroup. Adding in age as a third feature with the set of APP and
HSPB1 does not show any improvement in the model over the two protein-only model for
the larger datasets (ROSMAP and MSBB-Full). These results, and particularly the results
from the MSBB-Full dataset (largest sample size), demonstrate that HSPB1’s inclusion is
important for distinguishing AD in brain samples from non-White participants, particularly
for African American/Black adults.

Finally, to verify that the machine learning outcomes are independent of the classifier used,
the entire set of supervised classifications was repeated with XGBoost as the classifier,
instead of AC.2021. These results can be found in Supplementary Table 1. Overall, all the
key outcomes were replicated using this alternative classifier. One notable difference in
comparing the reclassification data to the original AC.2021 results is that the AUCs were
lower for 14 of the 16 classifications using XGBoost, and the remaining two classifications
had equal AUCs to those generated using AC.2021. This comparison between the classifiers
further demonstrates that AC.2021 is a better choice for classifying these data.

Strengths and limitations of the study.

The key strength of this study is leveraging datasets from multiple laboratories to better
understand how AD is manifested at the protein level and which proteins are important to
consider as biomarker candidates for the disease. Each of the datasets used in this study had
a similar TMT quantitation strategy, which helps to minimize potential sample processing-
and mass spectrometry-related differences. The detection of both APP and HSPBL1 in all six
datasets is an asset to this study. The general agreement of magnitude of protein change

in AD across laboratories and determined by the TMT quantitation strategy supports the
reliability of the proteomics results. Finally, the application of machine learning, following
the univariate analysis, is a strength, as it identifies the most robust potential protein
candidates that can determine AD. The analysis of each protein individually and as a panel
demonstrated that the two proteins combined gave more diagnostic utility than using either
individually.

The major limitation of this study is the lack of larger and/or more diverse proteomics
datasets to conduct machine learning analyses. Even though two of the datasets in this

study had ~200 samples, the vast majority of those samples were from non-Hispanic White
participants. Assessing the value of biomarkers in sub-populations of participants introduces
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the challenge of potentially working with low sample sizes. Yet, as this work shows, this
type of analysis is critical for generating biomarker panels that are effective for the full
population, since some proteins have differential diagnostic utility in sub-populations. While
this study focused on racial subgroups, similar subpopulations should be investigated across
other parameters, including socioeconomic status, comorbidities, education, lifestyle factors,
and other social determinants of health. This study, in addition to others that attempt to
undertake the challenging problem of assessing racial sub-populations, would benefit from
larger datasets containing a greater representation of African American/Black, Hispanic, and
other racial and ethnic participants.

This study focused on two proteins, APP and HSPB1, that were detected in six publicly
available datasets but selected from a set of 13 proteins in the MSBB-Full dataset, which
served as a reference in this study. Whether there are other shared proteins that could

be useful biomarkers would require further analysis and selection from different reference
datasets and those with larger numbers and diverse participants.

Conclusions

Leveraging six different brain proteomics datasets, we identified potential AD biomarkers
that could serve a racially diverse American population. This combination of datasets

and attention to racial subgroup analysis allowed us to identify HSPB1 as a protein

that correlates strongly to AD in multiple studies and does so with higher accuracy in
samples from African American/Black than non-Hispanic White participants. Furthermore,
combining APP and HSPB1 does a better job of discriminating AD than APP alone for

all racial groups. HSPB1 should be considered as a potential biomarker candidate for

other tissues such as CSF and plasma. Future efforts to identify other potential biomarker
candidates using the machine learning strategies presented herein and to replicate the
combined value of HSPB1 and APP as diagnostic biomarkers should be explored.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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