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We developed an endophenotype disease module-based methodology for Alzheimer’s disease 

(AD) drug repurposing and identified sildenafil as a potential disease risk modifier. Based on 

retrospective case-control pharmacoepidemiologic analyses of insurance claims data for 7.23 

million individuals, we found that sildenafil usage was significantly associated with a 69% 

reduced risk of AD (hazard ratio = 0.31, 95% confidence interval 0.25–0.39, P<1.0×10−8). 

Propensity score stratified analyses confirmed that sildenafil is significantly associated with a 

decreased risk of AD across all four drug cohorts we tested (diltiazem, glimepiride, losartan and 

metformin) after adjusting age, sex, race, and disease comorbidities. We also found that sildenafil 

increases neurite growth and decreases phospho-tau expression in AD patient-induced pluripotent 

stem cells-derived neuron models, supporting mechanistically its potential beneficial effect in 

Alzheimer’s disease. The association between sildenafil use and decreased incidence of AD does 

not establish causality or its direction, which requires a randomized clinical trial approach.

Introduction

Alzheimer’s disease (AD) is the most prevalent form of dementia, anticipated to affect 

16 million Americans by 20501. This disease has two prominent cellular hallmarks that 

have thus far received the greatest attention in drug development efforts: amyloid-beta 

plaques and neurofibrillary tangles comprised of hyperphosphorylated tau protein2,3. The 

aggregation of amyloid-beta protein (Aβ) is hypothesized to trigger a cascade of disease-

causing processes such as inflammation and synapse dysfunction, as well as contribute 

to tau tangle formation4. The hypothesis that accumulation of Aβ and consequent tau 

pathology represents the main cause of AD has dominated the field for more than 25 

years5,6. However, anti-tau or anti-amyloid selective drug discovery approaches have lack of 

clinical benefits for AD patients7. Although the majority of AD cases are sporadic, genetic 

studies have demonstrated multiple etiologies of familial AD2. However, the predisposition 

to AD is complex, polygenic, and pleiotropic. Simply identifying susceptibility genes has 

not led to new therapies8, and in many cases genetic findings must be translated into target 

identification in order to accelerate drug discovery9–11.

Understanding AD from the point of view of how cellular systems and molecular 

interactome perturbations underlie the disease is critical for therapeutic development in 

AD12. This process must incorporate analysis of endophenotypes, which are intermediate 

genetic traits reflecting the function of a discrete biological system that can further develop 

into multiple genetically related diseases13. Notably, amyloid and tau pathology in AD 

have commonly shared endophenotypes14,15. Systematic identification of underlying AD-

related endophenotype modules shared by amyloid and tau may provide a foundation for 

generating predictive models to characterize pathogenesis and therapeutic development 

for AD16–18. Existing data resources, including genomics, transcriptomics, proteomics, 

and interactomics (e.g., protein-protein interactions [PPIs]) have not previously been fully 

utilized and integrated into AD drug discovery19. As drug targets do not operate in isolation 

from the complex system of proteins that comprise the molecular environment of the cell, 

each drug-target interaction must be examined in an appropriate integrative context20. These 

observations may be used to discover the effects of approved drugs that can be repurposed 

rationally for treatment of diseases other than their original indication21–24.

Fang et al. Page 2

Nat Aging. Author manuscript; available in PMC 2022 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Several network-based methodologies, such as drug-disease proximity25, shed light on 

the relationship between drugs (i.e., drug-drug-targets) and diseases (i.e., molecular 

determinants in disease modules within the human interactome network). In order to 

prioritize drug candidates identified by network-based approaches, rigorous validation is 

mandatory. Network-based drug repurposing approaches focus on drugs that are already 

in clinical practice, and hypothesis testing with this approach is possible using large-scale 

real-world patient data collected during routine health care delivery21,26.

In this study, we utilized an endophenotype network-based methodology for in silico drug 

repurposing in AD. We posited that systematic identification of underlying AD-related 

endophenotype modules, shared by amyloid and tauopathy, would provide a foundation for 

generating predictive models to characterize AD pathogenesis for efficacious therapeutic 

development16,18. Specifically, we proposed an integrated network-based framework by 

incorporating systems pharmacology and network medicine strategies to identify candidate 

drugs for AD. In doing so, we discovered that sildenafil is associated with a reduced 

incidence of AD in real-world patient data. In vitro mechanistic observations in human 

microglia cells and AD patient-induced pluripotent stem cells (iPSC)-derived neurons 

support a possible mechanism for sildenafil’s beneficial effect in AD.

Results

Alzheimer’s endophenotype disease modules

In this study, we utilized state-of-the-art network-based methodologies to identify AD 

endophenotype disease modules, and applied these modules to screen FDA-approved drug 

candidates. We based our studies on the following concepts: 1) genetically supported targets 

are estimated to double clinical development success rates9,11; 2) proteins that associate 

with and functionally govern a disease phenotype are localized in the corresponding 

disease module (molecular determinants of disease pathobiology/physiology) within the 

comprehensive human protein-protein interaction (PPI) network; and 3) proteins that serve 

as drug targets for a specific disease may be suitable drug targets for another disease owing 

to common functional targets and pathways elucidated by the PPIs23,27.

We inspected endophenotype disease modules for AD using three types of disease genes/

proteins: (a) seed genes (experimentally validated AD genes), (b) differentially expressed 

genes from transcriptomics across 7 types of well-established transgenic mouse models 

with amyloid or tau pathology, and (c) differentially expressed proteins from proteomic 

data generated from 3 types of transgenic mouse models with well-studied amyloid or tau 

pathology (see Methods). Functional enrichment analysis revealed that AD seed genes were 

significantly enriched in all the 13 gene sets related to amyloidosis or tauopathy in AD (P 
ranging from 3.28 × 10−23 to 2.59 × 10−3, two-tailed Fisher’s exact test, Supplementary 

Table 1). We also found that AD seed genes formed significant disease modules (see 

Methods). Out of the 144 AD seed genes, 102 proved to be significantly connected through 

the human interactome to form a subnetwork (P < 0.001, permutation test, Extended Data 

Fig. 1 and Supplementary Fig. 1). To test the clinical efficacy of these disease modules in 

AD therapeutic discovery, we next examined the network relationships between drug-targets 

and disease modules using network proximity approaches described previously21,23,24. In 
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total, we collected 21 existing drugs (originally FDA-approved with non-AD indications) 

in new AD clinical trials from the ClinicalTrials.gov database or literatures. Based on the 

available target and pathway information (Supplementary Table 2), we grouped these drugs 

into three categories of mechanism-of-action: i) anti-amyloid, (ii) anti-tau, and (ii) dual 

targeting both amyloid and tau16–18. To examine drug effects on AD, we used a network 

proximity measure that quantifies the relationship between AD endophenotype disease 

modules and drug targets in the human interactome network (see Methods). We found that 

drugs targeting both amyloid and tau have significantly smaller network proximity with AD 

disease modules, compared with those targeting either amyloid or tau alone (Extended Data 

Fig. 2). These network observations support a proof-of-concept of endophenotype module-

based drug discovery: systematic identification of underlying AD-related endophenotype 

modules, shared by both amyloid and tau, will generate predictive models to characterize 

AD likely causal pathways.

We further inspected the endophenotype disease modules generated from large-scale 

transcriptomics (including DNA microarray and bulk RNA-sequencing) and proteomics 

data in AD transgenic mouse models, including both amyloid and tau mouse models (see 

Methods). We found the same network configuration that drugs targeting both amyloid 

and tau pathways reveal stronger network proximity with AD disease modules built from 

transcriptomics and proteomics data, compared to drugs targeting amyloid or tau pathways 

alone (Extended Data Fig. 3). In addition, these drugs have smaller network proximities 

with AD disease modules built from proteomics data compared to transcriptomics-derived 

endophenotype modules, suggesting the importance of proteomics data in AD therapeutics 

discovery. We therefore turned to AD drug repurposing by utilizing amyloid and tau 

endophenotype module findings, reasoning that drugs targeting the network intersection 

of amyloid and tau endophenotypes have the greatest potential for success in randomized 

clinical trials16–18.

Endophenotype network-based Alzheimer’s drug repurposing

We next proposed an endophenotype network-based drug repurposing framework for AD: 

(1) construction and validation of AD endophenotype module (Fig. 1a); (2) In silico drug 

repurposing via network proximity analysis (Fig. 1b); (3) population-based validation to 

test the drug user’s AD-related outcomes (Fig. 1c); (4) network-based in vitro mechanistic 

observations in human microglia cells and AD patient iPSC-derived neurons (Fig. 1d). 

In total, we compiled 1,608 FDA-approved drugs by pooling the reported experimental 

drug-target binding affinity data: EC50, IC50, Ki, or Kd, each ≤ 10 μM as a cutoff. We 

calculated a z-score for quantifying the significance of the network proximity (the shortest 

path lengths) between drug-targets and proteins in the endophenotype modules within the 

human interactome network. We screened all FDA-approved drugs based on their network 

proximity to the AD seed module (built from AD seed genes), and selected the top 100 

candidates with the lowest z-score. We further computed the network proximity of the 

top 100 candidates with the other 12 AD modules, including 2 modules derived from 

experimentally validated seed genes related to amyloid and tau, and 10 modules derived 

from proteomics data across 3 types of AD genetic mouse models with amyloid and tau 

pathology (Fig. 2).
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We ranked the 100 drugs by counting the number of disease modules that had a z-score 

less than −1.5 to the drug. Drug candidates that were predicted by at least 4 out of 13 

endophenotype modules were kept. After excluding the nutraceutical drugs, metal drugs 

(copper, zinc), and radioligand diagnostic agents, we identified 66 candidate drugs. We 

further grouped these 66 drugs (Fig. 2 and Extended Data Fig 4.) into 12 categories 

according to the first level of the Anatomical Therapeutic Chemical Classification (ATC) 

code. Among them, drugs affecting the cardiovascular system (n=14) have the largest 

number of predicted drugs (Fig. 2), followed by nervous system therapeutics (n=11), 

antineoplastic and immunomodulating agents (n=9), and alimentary tract and metabolism 

drugs (n=7). Previous studies have suggested that therapeutic strategies aimed at reducing 

cardiovascular diseases may reduce the prevalence of AD28. Indeed, among the 14 FDA-

approved cardiovascular drugs identified, there are currently 9 drugs under preclinical or 

clinical trials for AD (clinicaltrials.gov database as of July 31, 2019).

Discovery of sildenafil as a new candidate drug in AD

We systematically retrieved anti-AD clinical, in vivo, and blood–brain barrier (BBB) 

properties from publicly available databases for the 66 candidate drugs (Fig. 2 and 

Supplementary Table 3). Among the 66 drugs, 21 network-predicted drugs have reported 

clinical or preclinical evidence in AD (Fig. 2), suggesting reasonable accuracy of our 

network proximity approach. Among the 21 drugs, 11 drugs (including an approved AD 

drug donepezil) are in ongoing AD clinical trials. To test model performance, we prioritized 

the same 100 candidate drugs with the lowest z-score by AD seed modules using a 

previous proximal pathway enrichment analysis approach (PxEA)29, and found our human 

interactome-based network proximity measure slightly outperformed PxEA (Supplementary 

Table 4). In addition, we further collected 120 FDA-approved drugs with reported clinical 

or preclinical evidence relevant to AD from the AlzGPS database30 (Supplementary Table 

5). We found that network-predicted drug candidates are significantly enriched in the 120 

collected drugs with known preclinical and clinical evidence related to AD (P = 2.08 × 

10−9, two-tailed Fisher’s test). To avoid bias of network proximity scores, we evaluated 

these drugs again via generating random disease modules of the same size (n=144) as the 

AD seed module. Heatmap illustration (Supplementary Fig. 2) shows that the z-scores are 

quite random, which further suggests the robustness of the used network proximity measure. 

Yet, we found that the incompleteness of drug-target networks may influence the z-score 

(Supplementary Table 6) after manually checking the network proximity calculation for 12 

drugs (dually targeting amyloid & tau) under ongoing AD trials.

We next used subject matter expertise based on a combination of factors: (i) strength of 

network proximity measures (z-score < −1.5 across 13 AD endophenotype disease modules; 

(ii) availability of sufficient patient data for meaningful evaluation (exclusion of infrequently 

used medications); (iii) published positive in vivo experimental data in AD mouse models; 

(iv) novelty of the predicted associations through exclusion of drugs currently being tested in 

AD clinical trials; (v) ideal brain penetration from literatures or predicted by admetSAR31, 

a computational tool for evaluation of drug pharmacokinetic properties (see Supplementary 

Methods).

Fang et al. Page 5

Nat Aging. Author manuscript; available in PMC 2022 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov


Applying these criteria resulted in identifying several top drug candidates, including 

dantrolene, deferoxamine, lansoprazole and sildenafil. We excluded lansoprazole since 

its usage was associated with increased risk of AD and AD-related dementia in a 

pharmacoepidemiologic study32. In addition, dantrolene and deferoxamine (infrequently 

used medications) were not selected as both of them had an insufficient amount of patient 

data for population-based validation. Thus, sildenafil (z = −2.30 on AD seed module), 

an FDA-approved drug for erectile dysfunction, was selected as the best drug candidate. 

Vascular dementia, often occurring with AD, is one of the leading causes of age-related 

cognitive impairment and sildenafil has been shown to significantly improve cognition 

and memory in a rat model of vascular dementia33. In addition, sildenafil treatment also 

attenuates the magnitude of tauopathy in AD Tg2576 transgenic mice33. Thus, we selected 

sildenafil to test the drug user’s relationship with AD outcomes using population-based 

observational studies.

Pharmacoepidemiologic analyses point to an association between sildenafil use and AD 
incidence

We evaluated the sildenafil user’s relationship with AD outcomes by analyzing 7.23 million 

U.S. commercially insured individuals. In order to minimize confounding factors, we 

conducted three types of drug cohort-based observational studies: 1) sildenafil users vs. 

non-sildenafil users, 2) sildenafil vs. a comparator drug (diltiazem or glimepiride) without 

reported preclinical and clinical evidence of AD relevance, and 3) sildenafil vs. a comparator 

drug (losartan or metformin) in active AD clinical trials using a new-user active comparator 

design21. We conducted five comparison analyses to evaluate the predicted association based 

on individual level longitudinal patient data and state-of-the-art pharmacoepidemiologic 

methods. These included: (i) sildenafil (n = 116,412, z = −2.30 with AD seed module) vs. a 

matched control population (n = 460,356), (ii) sildenafil vs. diltiazem (an anti-hypertensive 

drug, n = 251,360, z = 0.57), (iii) sildenafil vs. losartan (another anti-hypertensive drug in an 

AD clinical trial [ClinicalTrials.gov Identifier: NCT02913664], n = 664,265, z = −0.86), (iv) 

sildenafil vs. glimepiride (an anti-diabetic drug, n= 159,597, z = −0.57), and (v) sildenafil 

vs. metformin (an anti-diabetic drug in an AD clinical trial [NCT00620191], n = 723,082, 

z = −0.73). Table 1 summarizes the patient data for state-of-the-art pharmacoepidemiologic 

analyses. For each comparison, we estimated the un-stratified Kaplan-Meier curves and 

conducted propensity score stratified (n strata = 10) log-rank tests and the Cox regression 

analysis. As shown in Fig. 3a, after 6 years of follow-up, sildenafil usage was significantly 

associated with a 69% reduced risk of AD, compared with matched non-sildenafil users 

(hazard ratio [HR] =0.31, 95% confidence interval [CI] 0.25–0.39, P < 1 × 10−8) by the 

Cox regression model (Fig. 3f). Importantly, propensity score-stratified cohort studies reveal 

that sildenafil usage is significantly associated with a 65% reduced risk of AD compared to 

diltiazem (HR 0.35, 95% CI 0.29–0.44, P < 1 × 10−8, Figs. 3b and 3f), a 55% reduced risk 

compared to losartan (HR 0.45, 95% CI 0.35–0.55, P <1 × 10−8, Figs. 3c and 3f), a 64% 

reduced risk compared to glimepiride (HR 0.36, 95% CI 0.28–0.45, P <1 × 10−8, Figs. 3d 

and 3f), and a 63% reduced risk compared to metformin (HR 0.37, 95% CI 0.30–0.45, P <1 

× 10−8, Figs. 3e and 3f). In summary, these five pharmacoepidemiologic analyses support 

our network-based prediction of the potential utility of sildenafil in reducing the risk of AD.
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Disease comorbidities, including coronary artery disease (CAD), hypertension (HT), and 

type 2 diabetes (T2D), are significantly associated with risk of AD34,35. We found that 

sildenafil usage was significantly associated with reduced risk of AD across five drug 

cohorts in individuals after we excluded CAD, HT, and T2D as well (Fig. 4a). In addition, 

sildenafil usage was significantly associated with reduced likelihood of AD across all 

five drug cohorts in individuals with CAD (Fig. 4b, Extended Data Fig. 5), HT (Fig. 4c, 

Extended Data Fig. 6), and T2D (Fig. 4d, Extended Data Fig. 7), respectively, although 

it showed a reduced effect size. In addition, individuals with cognitive impairment and 

dementia may be less likely to be prescribed sildenafil. After adjusting mild cognitive 

impairment (MCI), we found that sildenafil usage is significantly associated with reduced 

likelihood of AD across all five drug cohorts as well (Supplementary Table 7), thus reducing 

the likelihood of confounds due to selection bias by physicians. Using the commonly 

used Charlson comorbidity index, we found that sildenafil users have the similar Charlson 

comorbidity index with comparator treatment groups after PS-matching (Supplementary Fig. 

3). Thus, the sildenafil users have the equal health/disease conditions on average with those 

receiving comparator drugs in the PS-matching patient data observations.

We also performed sex- and age-specific subgroup analysis. Although slight differences in 

age distributions were observed across five drug cohorts (Supplementary Fig. 4), we found 

that sildenafil was significantly associated with reduced likelihood (Fig. 5b, Supplementary 

Table 8) of AD across all five drug cohorts in both mid-older (65–74 years) and older 

individuals (75–100 years). Sex-specific subgroup analysis revealed that sildenafil usage 

is more significantly associated with a reduced risk of AD in males compared to females 

(Fig. 5a, Supplementary Table 9). Since the majority of sildenafil users are males receiving 

treatment for erectile dysfunction (ED) and male ED patients (75.9 ± 32.4 [standard 

deviation] mg) received a higher daily dosage of sildenafil compared to females (22.1 ± 

15.0 mg) with pulmonary hypertension (p = 0.03, t-test, Supplementary Table 10), these 

factors may explain the more significantly reduced risk by sildenafil in male individuals 

(Fig. 5a). In addition, we found that sildenafil usage was associated with reduced likelihood 

of AD in both ED and pulmonary hypertension (off-label indication) populations as 

well (Supplementary Table 11 and Supplementary Fig. 5); yet, this trend lacks statistical 

significance because of the small sample size. In addition to sex and age, we didn’t observe 

a significant difference on annual total cost between sildenafil users and non-sildenafil users 

(p = 0.36, t-test, Supplementary Table 12), further reducing confounding risk of social 

economic factors. Altogether, these comprehensive subgroup analyses reveal that sildenafil 

is a candidate drug for prevention or treatment of AD (Figs. 3–5).

In vitro observation of sildenafil’s mechanism-of-action

To examine the possible mechanism-of-action for sildenafil in AD, we next performed 

network analysis via an integration of drug targets and AD seed genes into the brain-specific 

PPI network (see Methods). RNA-sequencing data from the GTEx database36 suggest that 

several proteins (GSK3β, CDK5 and FYN) are highly expressed in human brain tissues. 

Network analysis shows that these three proteins have closer network distance to sildenafil’s 

targets than other seed genes in the human interactome (Fig. 6a). We didn’t find supporting 

evidence between sildenafil and FYN from the literatures. Importantly, recent studies have 
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shown that GSK3β and CDK5 play crucial roles in AD pathobiology37 and microglia-

mediated neuroinflammation38,39. We therefore selected GSK3β and CDK5 to investigate 

mechanism-of-action of sildenafil using human microglia HMC3 cells. First, HMC3 cells 

were treated with sildenafil at various concentrations (0.03 μM to 100 μM) for 48 h, and 

cell viability was determined by MTT assay (see Methods). As presented in Supplementary 

Fig. 6, sildenafil did not affect cell viability at any concentration, revealing low toxicity. 

Thus, the optimized concentration of sildenafil (30 and 100 μM) was used in the following 

experiments. As shown in Fig. 6b, phosphorylation levels of GSK3β and CDK5 were very 

low in the control vehicle and significantly increased (P = 0.036 for GSK3β and P = 0.007 

for CDK5, two-tailed student’s t-test) by LPS treatment (1 μg/mL for 30 min) in HMC3 

cells. Of note, pre-treating with sildenafil (30 and 100 μM) reduced phosphorylated GSK3β 
(P = 0.10 [30 μM] and P = 0.023 [100 μM], two-tailed student’s t-test, Fig. 6c) and CDK5 

(P = 0.045 [30 μM] and 0.008 [100 μM], two-tailed student’s t-test, Fig. 6d) in a dose 

dependent manner (Supplementary Fig. 7).

Sildenafil’s effect on AD patient iPSC-derived neurons

To further test the effect of sildenafil on AD, iPSCs that derived from AD patient were 

differentiated into forebrain neurons (see Methods). These AD neurons were treated with 

sildenafil at day 38 (Fig. 6e), when the process of differentiation and maturation are 

complete. At first, iPSC was differentiated into neural progenitor cells, and then neural 

precursors (Fig. 6g–6h). Neural precursors were further matured for 10 days before 

treatment with sildenafil or DMSO control. After 6 days of treatment, the AD neurons were 

immune-stained with Tuj1, a neuronal marker. The sildenafil treated group had elevated 

neurite growth comparing to the DMSO control (Fig. 6i). Phosphorylated-tau181 (p-tau 

181) is an early biomarker of AD pathology and correlates with cognitive declines40. To 

investigate whether sildenafil reduces p-tau accumulation in AD neurons, cells were lysed 

and an ELISA assay was performed to measure the level of p-tau 181. We found that 

sildenafil significantly reduced the accumulation of p-tau 181 in AD patient iPSC-derived 

neurons (Fig. 6j). In summary, these data mechanistically support sildenafil’s potential 

beneficial effect in AD, complementing our endophenotype-based prediction and patient 

population-based analyses.

Discussion

We demonstrated that endophenotype-informed drug discovery offers a valuable and 

complementary approach to promote AD therapeutic development, which optimizes the 

usefulness of available data and adds new knowledge relevant to potential treatments for 

AD. Specifically, we showed proof-of-concept of an AD endophenotype module, shared 

by amyloid and tau, in both transcriptomic and proteomic data across multiple types 

of AD transgenic mouse models. Of note, recent clinical and experimental studies have 

also demonstrated that synergistic interaction of amyloid and tau is a greater contributor 

to AD than either amyloid or tau alone16–18. To further prove our AD endophenotype 

hypothesis, we examined network relationships of drugs under the AD ongoing trials 

and found that drugs targeting both amyloid and tau pathways had significantly stronger 

network relationships with amyloid and tau endophenotype modules (Extended Data Fig. 3), 

Fang et al. Page 8

Nat Aging. Author manuscript; available in PMC 2022 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compared with those targeting amyloid or tau pathways alone. This prompted us to develop 

network-based methodologies for AD drug repurposing via quantifying the network distance 

between AD modules and drug targets in the human interactome.

In silico drug repurposing identified 66 potential drug-AD associations across diverse 

pathways (Fig. 2). Nervous system drugs for non-AD indications, such as Parkinson’s 

disease or amyotrophic lateral sclerosis (ALS), may offer potential candidates for AD drug 

repositioning due to their safety and ability to penetrate the brain. For example, riluzole 

is an FDA-approved drug for ALS and is now in Phase II trials for mild AD patients 

(ClinicalTrials.gov Identifier: NCT01703117). In addition, cardiovascular diseases (e.g., 

hypertension) and metabolic diseases (e.g., diabetes) have been reported as risk factors for 

AD and share possible pathological mechanisms with AD41,42. Carvedilol (z = −2.23 with 

AD seed module), an adrenergic receptor blocker for hypertension, significantly attenuates 

brain oligomeric Aβ levels and cognitive deterioration in two mouse models43.

Sildenafil is a PDE5 inhibitor, and PDEs are broadly expressed in human brain36. Recent 

studies have shown that PDE inhibitors have beneficial therapeutic effects in preclinical 

models of AD by modulating neuronal plasticity, reducing tau phosphorylation, improving 

cognitive impairment, decreasing Aβ plaque accumulation, and enhancing the level of brain-

derived neurotrophic factor (BDNF)44. Based on the available data, we selected sildenafil to 

test for possible associations with AD using a large-scale patient longitudinal database.

Using Cox regression matching, we found that sildenafil usage was significantly associated 

with a decreased risk of AD (Fig. 3). Importantly, propensity score-stratified cohort studies 

confirmed that sildenafil usage was significantly associated with a decreased likelihood of 

AD compared to comparator drugs (Figs. 3b–3e), including diltiazem (Fig. 3b), losartan 

(Fig. 3c), glimepiride (Fig. 3d) and metformin (Fig. 3e). Since sildenafil is a drug prescribed 

primarily to male individuals, we performed sex-specific subgroup analyses. This analysis 

showed that sildenafil usage was associated with a decreased risk of AD across all 

five comparators for male individuals; in females, sildenafil usage was associated with 

a reduced AD only when compared to diltiazem (Fig. 5a and Supplementary Table 9). 

There are two possible explanations. First, as sildenafil is primarily prescribed to male 

individuals with ED, there are no enough female patients (Table 1) to appropriately power 

a study for statistical significance. Indeed, there are few female individuals who received 

sildenafil for treatment of pulmonary hypertension. Second, we found that male individuals 

with ED had a higher average daily dosage of sildenafil than females (Supplementary 

Table 10); yet, we found that average daily dosage of sildenafil was not associated with 

incidence of AD (HR 0.99, 95% CI 0.99–1.0, P = 0.19, log-rank test). Sildenafil usage was 

associated with reduced likelihood of AD in individuals with ED or pulmonary hypertension 

(Supplementary Table 11 and Supplementary Fig. 5), although this trend lacks statistically 

significance by the small sample size. Specifically, there are 10 AD cases in ED population 

and 7 cases (Supplementary Table 11) in pulmonary hypertension population compared to 

in total 93 AD cases (Table 1) in all sildenafil users. Taken together, the male-specific, 

reduced risk by sildenafil must be investigated in sex-balanced populations and sex-matched 

randomized clinical trials in the future. In addition, sildenafil may have male-specific 

benefits in reducing the incidence of AD, the basis of which remains to be discovered.
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We showed that sildenafil usage was associated with a reduced AD risk in both the general 

population and subgroup analyses after adjustment of sex, race, age, T2D, HT and CAD 

(Figs. 3–5). To reduce the likelihood of confounding by indication (such as diabetes, heart 

disease, and hypertension), we conducted comprehensive subgroup analyses. We found that 

sildenafil usage was significantly associated with reduced risk of AD across all 5 drug 

cohorts in either individuals without CAD, HT and T2D (Fig. 4a), or individuals with 

CAD (Fig. 4b), HT (Fig. 4c), or T2D (Fig. 4d). Importantly, age-specific subgroup analyses 

revealed that sildenafil usage was significantly associated with reduced risk of AD in the 

older group as well (Fig. 5b and Supplementary Table 8).

To investigate the mechanism-of-action of sildenafil against AD, we further integrated 

drug targets of sildenafil and known AD seed genes into the brain-specific human PPI 

network. Network analysis prompted us to explore whether sildenafil targets GSK3β and 

CDK5 (Fig. 6a). Hyperphosphorylation of the microtubule-associated protein tau is a 

hallmark of AD45, and GSK3β and CDK5 are involved in aberrant phosphorylation of 

tau46. Microglial cells are a specific population of macrophages in the central nervous 

system proposed to be involved in the tau pathology of AD47. Although previous studies 

have revealed that sildenafil reverses cognitive impairment in Tg2576 mice via inhibiting 

overall brain activity of GSK3β and CDK533, it has not previously been tested whether 

this occurs in human microglial cells. GSK3β and CDK5 are involved in the LPS-induced 

proinflammatory cytokine expression and innate immune response in macrophages48. We 

therefore exposed human microglia to LPS to evaluate the effects of sildenafil on GSK3β 
and CDK5 activation. We found that sildenafil downregulated GSK3β and CDK5 in human 

microglia cells, supporting mechanistically its potential beneficial effect in AD. We further 

test the effect of sildenafil using AD patient iPSC-derived neurons. We found that sildenafil 

increased neurite growth and decreased p-tau 181 expression in AD patient iPSC neurons, 

further supporting a potential mechanism for its beneficial effect in AD (Fig. 6c–6j). 

Previous in vivo studies revealed that sildenafil improved memory, amyloid plaque load, 

inflammation, and neurogenesis in APP/PS1 mice49,50. Sildenafil also improved memory, 

tau hyperphosphorylation, and GSK3β phosphorylation in J20 mice51, which is consistent 

with our in vitro mechanistic observation in AD patient-derived iPSC neuron models (Fig. 

6). Two pilot studies also showed potential benefits of sildenafil in treatment of AD: 

(1) a single dosage of 50 mg sildenafil decreased spontaneous neural activity in right 

hippocampus in 10 AD patients52; and (2) a single dosage of 50 mg sildenafil increased 

cerebral metabolic rate of oxygen and cerebral blood flow in 12 AD patients, and decreased 

cerebral vascular reactivity in 8 AD patients53. Altogether, we believe that these data 

provide a potential mechanism-of-action for the protective efficacy of sildenafil in AD, 

complementing our endophenotype-based prediction and population-based validation.

There are several strengths of our approach compared to previous studies21. First, we 

demonstrated a proof-of-concept of an endophenotype-based network methodology for AD 

drug discovery using a synergistic endophenotype between amyloidosis and tauopathy16–18. 

We performed multi-omics data integration by incorporating various transcriptomics 

and proteomics data from AD transgenic mouse models to improve our network-based 

predictions. Second, our population-based validation attempts were based on a large 

patient-level longitudinal database and state-of-the-art pharmacoepidemiologic analyses. 
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The massive longitudinal data allows access to real-world patient populations, while 

maintaining adequate statistical power. Covariates within the data were adjusted for potential 

confounds of AD and erectile dysfunction.

Limitations of this work should also be acknowledged. Although we have assembled 

large-scale, experimentally-validated drug-target interactions and the human interactome, 

potential literature bias and data incompleteness could affect the findings54. For example, 

we found that the incompleteness of drug-target networks may influence the poor z-score 

for certain drugs (Supplementary Table 6). Second, detailed clinical information is not 

available from health insurance claims data although we adjusted age, sex, and disease 

comorbidities (including CAD, HT, T2D, and MCI). In addition, pharmacoepidemiologic 

analysis may not be suitable for testing drugs that have fewer patient data. We were able 

to perform population-based validation for sildenafil, as it has a large amount of patient 

data available. For drugs with less patient data, replication of the associations using multiple 

large population-based cohorts is suggested.

Moreover, pharmacoepidemiologic studies are subject to bias due to unmeasured 

confounding factors. The MarketScan Medicare supplementary database does not contain 

detailed clinical information with respect to the enrollees’ education level or social 

economic status, and lacks genotyping information, such as the apolipoprotein E (APOE) 

status. APOE genotyping status have been associated with treatment responses of AD, 

including aducanumab55. Yet, we cannot inspect relationship between sildenafil-AD 

outcome and APOE genotyping as currently used insurance claims don’t have APOE 
genotyping information for individuals. We may investigate sildenafil’s mechanism-of-

action in AD patient-derived iPSC models with specific APOE genotypes56. We defined 

AD outcomes using the International Classification of Disease codes and accuracy of 

phenotyping codes may influence our findings as well. Combining biomarker-based 

confirmation of AD diagnosis and phenotyping codes should be used in the future when 

those biomarker information (such as imaging and blood biomarkers) are available at the 

electronic health records.

Sildenafil may be more likely to be prescribed for wealthy individuals and increased wealth 

was associated with a reduced risk of developing AD and AD-related dementia57,58. We 

didn’t observe a significant difference on annual total cost between sildenafil users and 

non-sildenafil users (Supplementary Table 12). Charlson comorbidity index analysis reveals 

that the sildenafil users have the equal health/disease conditions on average with those 

receiving comparator drugs after PS-matching (Supplementary Fig. 3). However, social 

economic status and health inequalities between sildenafil users and comparator drug users 

should be investigated further in future studies. We found that average daily dosage of 

sildenafil was not associated with incidence of AD (Supplementary Table 10); yet, dosage 

and timing of exposure are important confounding factors and they should be investigated 

in future placebo-controlled trials as well. Finally, population-based observational studies 

cannot build causal relationship between sildenafil use and beneficial clinical response 

of AD. Future causal methods, such as Mendelian randomization studies should be 

utilized further59,60. Taken together, the association between sildenafil usage and decreased 

incidence of AD does not establish causality or its direction, and our results therefore 
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warrant rigorous clinical trial testing of the treatment efficacy of sildenafil in AD patients, 

inclusive of both sexes and placebo-controlled.

In summary, this study offers an integrated, network-based approach that incorporates 

endophenotype module findings, in vitro mechanistic observations, and large-scale patient 

data analysis for the discovery of effective therapeutics to protect patients from developing 

AD or reduce their risk. This approach can be applied to other neurodegeneration diseases 

by exploiting other endophenotypes, such as inflammation and metabolic dysfunction. Other 

repurposable agents were also identified in this study that could be interrogated in greater 

detail to determine their anti-AD potential.

Methods

Construction of the human protein–protein interactome

To construct a high-quality and comprehensive human protein-protein interactome, we 

assembled 15 commonly used data sources with five types of experimental evidence: (1) 

binary PPIs tested by high-throughput yeast-two-hybrid (Y2H) systems via integrating 

two publicly available high-quality Y2H datasets21,61,62; (2) kinase-substrate interactions 

from literature-derived low-throughput and high-throughput experiments; (3) database 

integration-based PPIs identified by affinity purification followed by mass spectrometry 

(AP-MS) and literature-derived low-throughput experiments; (4) binary, physical PPIs 

from protein three-dimensional structures; and (5) signaling networks derived from low-

throughput experiments as annotated in SignaLink 2.063. Genes were annotated to their 

Entrez ID using the NCBI database as well as their official gene symbols from GeneCards 

(http://www.genecards.org/). Inferred data, such as evolutionary analysis, gene expression 

data, and metabolic associations, were excluded. The updated human interactome consisted 

of 351,444 PPIs (edges or links) linked to 17,706 unique proteins (nodes). The detailed 

descriptions of building the human interactome are given in our recent studies23,24.

Building endophenotype models for Alzheimer’s disease

In order to build disease modules for AD, we first collected experimentally validated (seed) 

genes in amyloidosis (amyloid) and tauopathy (tau) respectively. These genes satisfied 

at least one of the following conditions: i) gene validation in large-scale amyloid or 

tauopathy GWAS studies; ii) in vivo experimental model evidence that knockdown or 

overexpression of the gene leads to AD-like amyloid or tau pathology. Based on these 

criteria, we obtained 54 seed genes related to amyloid and 27 seed genes related to 

tauopathy (Supplementary Table 13). We further constructed a list of AD seed genes for 

building the AD endophenotype (see module characterized by both amyloid and tau) via 

assembling multiple data sources as below: i) 54 amyloid seed genes and 27 tauopathy seed 

genes; ii) 47 late-onset AD common risk genes identified by large-scale genetic studies; iii) 

35 genes with at least two AD-causing mutations from the Human Gene Mutation Database 

(HGMD)64; iv) 39 disease genes curated in at least 2 of 4 following disease gene databases: 

HGMD (n=63), DisGeNET (n=23, score≥0.2)65, MalaCards (n=79)66, and Open targets 

(n=81, overall score ≥ 0.7 and literature score > 0)67. After removing the duplicates, 144 AD 

seed genes were obtained (Supplementary Table 13).
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We used a network approach, termed the largest connected component (LCC) approach, to 

build a disease module. Specifically, we rebuilt the new network modules by searching the 

LCC formed by the list of AD seed genes. We further performed the permutation testing as 

below to test the significance of disease modules:

P = # Sm(p) > Sm
# total permutations (1)

A nominal P was computed by counting the number of permutations (Sm (p)) greater than 

the number of observed LCC (Sm) formed by the randomly selected proteins with a similar 

connectivity distribution in the human interactome network. We performed the permutations 

(1,000 times) to calculate the statistical significance.

Transcriptomics-based endophenotype models

We collected a total of 34 transcriptomic datasets consisting of original brain microarray 

data (n=17) and bulk RNA-seq data (n=17) from 7 types of transgenic mouse models, 

including 5XFAD, APP/PS1, HO-TASTPM, Tg2576, TgCRND8, Tau P301L, and rTg4510. 

The detailed mutations and neuropathology for these models are provided in Supplementary 

Table 14. All the datasets are composed of samples from total brain, specific brain regions 

(including hippocampus, cortex, and cerebellum), and brain-derived microglial cells. The 

original brain microarray datasets were obtained from Gene Expression Omnibus (GEO)68, 

and detailed information of these GEO datasets is provided in Supplementary Table 14. 

Expression data were subjected to R statistical processing using the limma/Bioconductor 

package (v3.13)69. Differentially expressed genes (DEGs) were then identified using a 

conservative statistical threshold of False Discovery Rate (FDR) < 0.05 and |fold change 

(FC)| > 1.5 for differential expression (see Supplementary Materials and Methods). The 

DEGs identified from RNA-seq data were collected from four previous studies70–73 across 

four types of AD genetic mouse models (5XFAD, Tg2576, TgCRND8, and rTg4510). 

For 7 RNA-seq transcriptomic profiles from 5XFAD70,71 and rTg451072, the threshold 

for significance of differential expression was set to FDR < 0.05 using the Benjamini-

Hochberg’s method74. Given the larger number of DEGs identified in Tg2576 and 

TgCRND8 by a threshold P of 0.05, we used a stricter criterion (T test P<0.01) to determine 

DEGs compared with corresponding wildtype (WT) mice72. All DEGs identified in mouse 

models were further mapped to unique human-orthologous genes using the Mouse Genome 

Informatics (MGI) database75. All statistical analyses were performed using R software.

Proteomics-based endophenotype models

In total, 10 proteomic datasets were assembled from 3 types of AD transgenic models76,77. 

For instance, these AD transgenic models included proteome-wide differential analysis 

from frontal cortical, hippocampal, and cerebellar extracts in hAPP (3M [month] and 

12 M) and hAPP-PS1 (3M and 12M) mice. We obtained four differentially-expressed 

protein sets (hAPP_3M, hAPP_12M, hAPP-PS1_3M and hAPP-PS1_12M) after merging 

the differentially expressed proteins from different brain regions (Supplementary Table 

14). In addition, we performed differential protein analyses using proteomics data 

generated in hippocampus across two types of transgenic mice: (i) ADLPAPT mice (4M, 
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7M, and 10M) carrying three human transgenes (APP, PS1 and MAPT) and (ii) hAPP-

PS1 (4M, 7M, 10M) mice. After mapping them to human-orthologs75, we obtained 

six sets of differentially-expressed proteins, including ADLPAPT_4M, ADLPAPT_7M, 

ADLPAPT_10M, hAPP-PS1_4M, hAPP-PS1_7M, and hAPP-PS1_10M (see Supplementary 

Materials and Methods).

Construction of drug-target network

We assembled physical drug-target interactions for U.S. Food and Drug Administration 

(FDA)-approved drugs via integrating six commonly used data sources21. We defined a 

physical drug-target interaction using reported binding affinity data: inhibition constant/

potency (Ki), dissociation constant (Kd), median effective concentration (EC50), or median 

inhibitory concentration (IC50) ≤ 10 μM. First, we acquired drug-target interactions from 

the DrugBank database (v4.3)78, the Therapeutic Target Database (TTD, v4.3.02)79, and the 

PharmGKB database80. We then extracted bioactivity data related to FDA-approved drugs 

from three commonly used databases: ChEMBL(v20)81, BindingDB82, and IUPHAR/BPS 

Guide to PHARMACOLOGY83. We retained only those items satisfying the following 

criteria: (i) binding affinities, including Ki, Kd, IC50, or EC50, of ≤10 μM; (ii) protein targets 

having a unique UniProt accession number; (iii) protein targets marked as “reviewed” in the 

UniProt database; and (iv) proteins present in Homo sapiens. In total, we obtained 15,367 

drug–target interactions connecting 1,608 FDA-approved drugs and 2,251 unique human 

targets/proteins.

Network proximity analysis

Given a set of disease proteins (A), a set of drug targets (B), the closest distance dAB 

measured by the average shortest path length of all the nodes to the other module in the 

human protein-protein interactome is defined as:

dAB = 1
∥ A ∥ + B ∑a ∈ Aminb ∈ Bd(a, b) + ∑b ∈ Bmina ∈ Ad(a, b) (2)

where d(a, b) indicates the shortest path length between protein a and drug target b. We 

conducted a permutation test to calculate the significance of the network distance between a 

given drug and the AD endophenotype disease module. We further constructed a reference 

distance distribution corresponding to the expected distance between two randomly selected 

groups of proteins of the same size and degree distribution as the original disease proteins 

and drug targets in the network. The randomization was performed by first binning all 

the proteins in the interactome by their degree, then a number of genes were drawn from 

each bin based on the degree distribution of the AD seed genes21,25. This procedure was 

repeated 1,000 times. As we do permutation testing for each drug individually, there are 

no multiple comparisons for drugs in network proximity measures. Details for network 

proximity measure are provided in previous studies21,25.

Pharmacoepidemiologic validation

Study cohorts.—The pharmacoepidemiology study utilized the MarketScan Medicare 

Claims database from 2012 to 2017 based on the Medicare Advantage and Fee for services. 
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The dataset included individual-level diagnosis codes, procedure codes and pharmacy claim 

data for 7.23 million patients. Pharmacy prescriptions of sildenafil, diltiazem, losartan, 

glimepiride and metformin were identified by using RxNorm and National Drug Code 

(NDC).

Outcome measurement.—For a subject exposed to the aforementioned drugs, a drug 

episode is defined as from drug initiation to drug discontinuation (Supplementary Fig. 8). 

Specifically, drug initiation is defined as the first day of drug supply (i.e. 1st prescription 

date). Drug discontinuation is defined as the last day of drug supply (i.e. last prescription 

date + days of supply) and without drug supply for the next 90 days. In another word, gaps 

of less than 90-day of drug supply were allowed within a drug episode. The sildenafil 

cohort included the first sildenafil episode for each subject, as well as the diltiazem 

cohort, the losartan cohort, the glimepiride cohort and the metformin cohort. Further, we 

excluded observations that started within 180-day of insurance enrollment. For the final 

cohorts, demographic variables including age, sex and geographical location were collected. 

Additionally, diagnoses of hypertension (HT), type 2 diabetes (T2D), coronary artery disease 

(CAD), and Mild cognitive impartment (MCI) (the International Classification of Disease 

[ICD] codes are given in Supplementary Table 15) before drug initiation were collected. 

Herein, we focused on AD outcomes only using the well-established ICD9/ICD10 codes by 

excluding other types of dementia (i.e., vascular dementia)84. All AD ICD9/10 codes were 

further ascertained the validity and reliability of all claims data85 before use. These variables 

were specifically selected to address potential confounding biases. Last, a control cohort 

was selected from patients who were not exposed to sildenafil. Specifically, non-exposures 

were matched to the exposures (ratio 4:1) by initiation time of sildenafil (Supplementary 

Fig. 9), enrollment history, sex, HT diagnosis, T2D diagnosis and CAD diagnosis. The 

geographical location, diagnoses of HT and T2D were collected for the control cohort as 

well. The primary outcome in pharmacoepidemiologic studies is time from drug initiation 

to AD diagnosis or drug discontinuation for sildenafil, as well as the comparator drugs. For 

the sildenafil, diltiazem, losartan, glimepiride and metformin cohorts, observations without 

diagnosis of AD were censored at the end of drug episodes. For the control cohort, the 

corresponding sildenafil episode starting date was used as the starting time. Observations 

without diagnosis of AD were censored at the corresponding sildenafil episode’s end date 

(Supplementary Fig. 8).

Covariate adjustment.—The covariates include age, sex, geographic location, HT 

diagnosis, T2D diagnosis, and CAD diagnosis. All variables were specifically selected to 

address clinical scenarios evaluated in each study.

Charlson comorbidity.—The Charlson comorbidity index predicts the one-year mortality 

for a patient who may have a range of comorbid conditions86–88. Collected comorbidities 

contain chronic cardiac disease, chronic respiratory disease (excluding asthma), chronic 

renal disease (estimated glomerular filtration rate ≤30), mild to severe liver disease, 

dementia, chronic neurological conditions, connective tissue disease, diabetes mellitus 

(diet, tablet, or insulin controlled), human immunodeficiency virus (HIV) or acquired 

immunodeficiency syndrome (AIDS), and malignancy. These conditions were selected a 
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priori by a global consortium to provide rapid, coordinated clinical investigation of patients 

presenting with any severe or potentially severe acute infection of public interest and 

enabled standardization. In this study, we used the clinical diagnosis record within 6 months 

prior the drug episode starting date to determinate comorbidity score.

Statistical analysis.—The survival curves for time to AD were estimated using a Kaplan-

Meier estimator approach. Additionally, propensity score stratified survival analyses were 

conducted to investigate the risk of AD between sildenafil users and non-sildenafil users, 

sildenafil users and diltiazem users, sildenafil users and losartan users, sildenafil users and 

glimepiride users, as well as sildenafil users and metformin users (Table 1). Specifically, 

for each comparison, the propensity score of taking sildenafil was estimated by using a 

logistic regression model, in which the covariates included age, sex, geographical location, 

T2D diagnosis, HT diagnosis and CAD diagnoses (Supplementary Fig. 9). Propensity score 

stratified Cox-proportional hazards models were used to conduct statistical inference for the 

hazard ratios (HR) of developing AD between cohorts.

Brain-specific subnetwork analysis

We collected RNA-seq data (RPKM value) of 32 tissues from GTEx v6 release36. For each 

tissue (e.g., brain), we regarded those genes with reads per kilobase millions (RPKM) ≥ 1 

in over 80% of samples as tissue-expressed genes, and the rest as tissue-unexpressed. To 

quantify the expression significance of tissue-expressed gene i in tissue t, we calculated the 

average expression E(i) and the standard deviation δE(i) of a gene’s expression across all 

considered tissues89. The significance of gene expression in tissue t is calculated:

ZE(i, t) = E(i, t) − E(i)
δE(i)

(3)

Then, we performed a brain-specific co-expressed PPI network analysis by comparing 

genome-wide expression profiles of brain to 31 other tissues from the GTEx database41.

In vitro mechanistic observation

Reagents.—Sildenafil citrate (purity > 98%) was purchased from Topscience. 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and Lipopolysaccharides 

(LPS) (Cat# L2880) was purchased from Sigma-Aldrich. Antibodies against CDK5 (Cat# 

A5730), GSK3β (Cat# A2081), and phospho-GSK3B-Y216 (Cat# AP0261) were obtained 

from ABclonal Technology. CDK5-Phospho-Tyr15 (Cat# YP0380) was purchased from 

Immunoway (Plano, Texas, USA). All other reagents were obtained from Sigma-Aldrich 

unless otherwise specified. The validation of all primary antibodies for the species are 

available from the manufacturer’s website.

Cell viability.—Human microglia HMC3 cells were obtained from American Type Culture 

Collection (ATCC, Manassas, VA). Cell viability was analyzed by the MTT method as 

described previously22. Briefly, 5,000 cells/well were plated in 96-well plates for 12 h, then 

treated with sildenafil for 48 h. After treatment, MTT solution was added to the cells to a 

final concentration of 1 mg/mL and the mixture was allowed to incubate at 37 °C for 4 h. 

The supernatant was removed, and the precipitates were dissolved in DMSO. Absorbance 
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was measured at 570 nm using a Synergy H1 microplate reader (BioTek Instruments, 

Winooski, VT, USA).

Western blot analysis.—Human microglial HMC3 cells were pre-treated with DMSO 

(control vehicle) or sildenafil, and followed with 1 μg/mL LPS for 30 min. The 

concentration (30 μM or 100 μM) of sildenafil used in this study was based on data 

from previous studies90. Cells were harvested, washed with cold PBS, and then lysed with 

RIPA Lysis Buffer with 1% Protease Inhibitor (Cat# P8340, Sigma-Aldrich). Total protein 

concentration was measured using a standard BCA protein assay kit (Bio-Rad, CA, USA) 

according to the manufacturer’s manual. Samples were electrophoresed by sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), then blotted onto a polyvinylidene 

difluoride (PVDF; EMD Millipore, Darmstadt, Germany) membrane. After transferring, 

the membranes were probed with specific primary antibodies (1:1000) at 4 °C overnight. 

Specific protein bands were detected using a chemiluminescence reagent after hybridization 

with a horseradish peroxidase (HRP)-conjugated secondary antibody (Rabbit anti-Human 

IgG Secondary Antibody (Cat # PA1–28587)) (1:3000).

Differentiation of iPSCs into forebrain neurons

An AD patient-derived iPSC line HVRDi001-A-1 (WiCell) was previously cultured in 

mTeSR™1 medium. At day 0, they were broken up into single cells and plated onto tissue 

culture-treated 6-well Matrigel-coated plate with a density of 2 – 2.5 × 105 cells/cm2. Cells 

were cultured in neural induction medium (05839, STEMCELL Technologies) in a 37°C, 

5% CO2 incubator. Monolayer neural progenitors were then generated and passaged at day 7 

and day 14. At day 21, cells were dissociated and cultured in forebrain neuron differentiation 

medium (08600, STEMCELL Technologies). At day 28, cells were differentiated into 

neuronal precursors and plated in 96 well poly-L-ornithine/laminin-coated plates with a 

density of 6 × 104 cells/cm2 in forebrain neuron maturation medium (08605, STEMCELL 

Technologies). After 10 days of maturation, neurons were treated with either DMSO or 

Sildenafil.

Immunofluorescence analysis of iPSC-derived neuron cultures

Neurons were fixed in 4% paraformaldehyde and permeabilized in 0.1 Triton X-100. 

Afterward, neurons were incubated with 10% serum and stained with Tuj1 (ab18207, 

abcam). The secondary antibody was IgG-conjugated Alexa Fluor 488 (111–545-003, 

Jackson ImmunoResearch). Nuclei were counterstain with DAPI (4′,6-diamidino-2-

phenylindole). Images were taken with Leica inverted microscope (DMI6000SD, Leica 

Microsystems).

p-tau measurement in iPSC-derived neuron lysis

After six days of DMSO or Sildenafil treatment, cell culture media was aspirated and 

neurons were lysed in 50 μL Neuronal Protein Extraction Reagent (87792, Thermo Fisher 

Scientific) with protease and phosphatase inhibitors (78442, Halt). Lysates were then 

diluted into 50 μL and run on a tau (Phospho) [pT181] Human ELISA Kit (KHO0631, 

Invitrogen). The plate was read at 450 nm absorbance in a microtiter plate reader (Biotek). 

A 4-parameter standard curve was generated and the concentration of each sample was read 
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from the standard curve. The dilute factor was multiplied to correct the sample dilution 

and obtain the original p-tau 181 concentration. To make a comparison among different 

treatments, the total protein concentration of each cell lysis sample was determined by 

running a BCA protein assay (Thermo Scientific). The final p-tau 181 concentration was 

given by the original concentration divided by the total protein concentration.

Data availability:

Data supporting the findings of this study are available within Supplementary Table 

Files. Human protein-protein interactome and drug-target network can be downloaded 

from https://github.com/ChengF-Lab/endoAD. Tissue/brain-specific expression data were 

downloaded from GTEx database (https://www.gtexportal.org/home/). The expression 

datasets used in this study were downloaded from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/) with accession IDs GSE65067, GSE74437, GSE74438, 

GSE64398, GSE53480, GSE56772, and GSE57583. The health insurance claims data are 

available from the MarketScan Medicare Claims database (2012 to 2017) based on the 

Medicare Advantage and Fee for services from IBM MarketScan Research Databases.

Code availability:

Source codes for network proximity analysis and disease module identification are available: 

https://github.com/ChengF-Lab/GPSnet.
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Extended Data

Extended Data Fig 1. Proof-of-concept of network module of Alzheimer’s disease (AD).
A subnetwork highlighting disease module (AD seed module) characterized by both 

amyloidosis and tauopathy under the human protein-protein interactome model. The AD 

seed module includes 227 protein–protein interactions (PPIs) (edges or links) connecting 

102 unique proteins (nodes).
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Extended Data Fig 2. Heatmap illustrates the network proximity between molecular targets of 21 
ongoing repurposable AD drugs and 37 AD disease modules.
These drugs could ameliorate amyloid, tau or both of them (amyloid & tau) pathology or 

target amyloid, tau or amyloid & tau related pathways in vitro, in vivo mouse models or 

in patients with AD. We built three AD network modules by assembling experimentally 

validated (seed) genes in amyloidosis (amyloid), tauopathy (tau), and AD (characterized by 

both amyloid and tau). In addition, we also built disease modules from 34 differentially 

expressed gene (DEG) sets derived from transcriptomics data (including microarray, and 

bulk RNA-sequencing) from AD genetic mouse.
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Extended Data Fig 3. The efficacy of endophenotype-based drug repurposing in Alzheimer’s 
disease (AD).
Molecular targets of 21 ongoing repurposable AD drugs that target both Amyloid and 

Tau have significantly closer network distance with AD network modules built from 

transcriptomics (a) and proteomics (b) data from AD genetic mouse, in comparison to 

drugs targeting amyloid or tau alone. In a, we built AD modules from 34 differentially 

expressed gene sets derived from transcriptomics data (including microarray, and bulk 

RNA-sequencing) from AD genetic mouse. In b, we built AD modules for 10 differentially 

expressed protein sets from proteomics data in AD genetic mice. P values were calculated by 

Wilcoxon test (one-side) in a and b.

Fang et al. Page 21

Nat Aging. Author manuscript; available in PMC 2022 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig 4. Network-based in silico drug repurposing for Alzheimer’s disease (AD).
13 AD disease modules, including 3 AD seed genes and 10 differentially expressed 

proteins (DEPs) sets from AD mouse proteomics, were used to screen FDA-approved 

drugs for AD. A sankey plot illustrates a global view of 66 drug candidates identified by 

network proximity. Drugs are grouped by their first-level Anatomical Therapeutic Chemical 

Classification (ATC) codes.
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Extended Data Fig 5. Longitudinal analyses reveal that sildenafil usage is significantly associated 
with reduced likelihood of AD in individuals with coronary artery disease (CAD).
Five comparator analyses were conducted including: (a) sildenafil vs. matched non- 

sildenafil, (b) sildenafil vs. diltiazem (an anti-hypertensive drug), (c) sildenafil vs. losartan 

(an anti-hypertensive drug candidate in an AD clinical trial [ClinicalTrials.gov Identifier: 

NCT02913664]), (d) sildenafil vs. glimepiride (an anti-diabetic drug), and (e) sildenafil 

vs. metformin (an anti-diabetic drug in an AD clinical trial [ClinicalTrials.gov Identifier: 

NCT00620191]). For each comparator, we estimated the propensity score by using the 

variables described in Table 1. Then, we estimated the un-stratified Kaplan-Meier curves, 

conducted propensity score stratified (n strata = 10) log-rank test and Cox model.
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Extended Data Fig 6. Longitudinal analyses reveal that sildenafil usage is significantly associated 
with reduced likelihood of AD in individuals with hypertension (HT).
Five comparator analyses were conducted including: (a) sildenafil vs. matched non- 

sildenafil, (b) sildenafil vs. diltiazem (an anti-hypertensive drug), (c) sildenafil vs. losartan 

(an anti-hypertensive drug candidate in an AD clinical trial [ClinicalTrials.gov Identifier: 

NCT02913664]), (d) sildenafil vs. glimepiride (an anti-diabetic drug), and (e) sildenafil 

vs. metformin (an anti-diabetic drug in an AD clinical trial [ClinicalTrials.gov Identifier: 

NCT00620191]). For each comparator, we estimated the propensity score by using the 

variables described in Table 1. Then, we estimated the un-stratified Kaplan-Meier curves, 

conducted propensity score stratified (n strata = 10) log-rank test and Cox model.
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Extended Data Fig 7. Longitudinal analyses reveal that sildenafil usage is significantly associated 
with reduced likelihood of AD in individuals with type-2 diabetes (T2D).
Five comparator analyses were conducted including: (a) sildenafil vs. matched non- 

sildenafil, (b) sildenafil vs. diltiazem (an anti-hypertensive drug), (c) sildenafil vs. losartan 

(an anti-hypertensive drug candidate in an AD clinical trial [ClinicalTrials.gov Identifier: 

NCT02913664]), (d) sildenafil vs. glimepiride (an anti-diabetic drug), and (e) sildenafil 

vs. metformin (an anti-diabetic drug in an AD clinical trial [ClinicalTrials.gov Identifier: 

NCT00620191]). For each comparator, we estimated the propensity score by using the 

variables described in Table 1. Then, we estimated the un-stratified Kaplan-Meier curves, 

conducted propensity score stratified (n strata = 10) log-rank test and Cox model.
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Figure 1. A diagram illustrating an endophenotype network-based drug repurposing framework 
for Alzheimer’s disease (AD).
(a) Construction and validation of endophenotype disease modules for AD in the human 

protein-protein interactome network. (b) In silico drug repurposing by network proximity 

analysis (see Methods). (c) Population-based validation to test the drug user’s relationship 

with AD outcomes. (d) Network-based mechanistic observations in human microglia cells 

and AD patient induced pluripotent stem cells (iPSC)-derived neurons.
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Figure 2. Network-based in silico drug repurposing for Alzheimer’s disease (AD).
In total, 13 endophenotype disease modules, built by 3 experimentally validated (seed) 

gene sets in amyloidosis (Amyloid), tauopathy (Tau), and AD, as well as 10 differentially 

expressed protein from proteomics data generated in AD genetic mouse models, were 

evaluated to screen FDA-approved drugs using a network proximity measure (Methods). A 

Sankey diagram illustrates a global view of 66 high-confidence drug candidates, identified 

by network proximity analysis. Network proximity analysis measures the interplay between 

endophenotype disease modules (proteins) and drug targets in the human interactome. Drugs 

are grouped by their first-level Anatomical Therapeutic Chemical Classification (ATC) 

codes. The drugs with known anti-AD clinical trial status, in vivo animal model, and blood–

brain barrier (BBB) properties data are highlighted. The z-score with AD seed module 

by network proximity is given for each drug. Subject matter expertise criterion-based 
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prioritization resulted in sildenafil as the best candidate (z = −2.30), which has significant 

close network distance with eight endophenotype disease modules.
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Figure 3. Longitudinal analyses reveal that sildenafil usage is significantly associated with 
reduced likelihood of AD in a longitudinal patient database with 7.23 million subjects.
Five comparator analyses were conducted: (a) sildenafil (n = 116,412) vs. sex and 

comorbidities (hypertension, diabetes, and coronary artery disease) matched (ratio 1:4) 

non-sildenafil exposure population (n = 460,356), (b) sildenafil vs. diltiazem (an anti-

hypertensive drug, n = 251,360), (c) sildenafil vs. losartan (an anti-hypertensive drug in 

AD clinical trial [ClinicalTrials.gov Identifier: NCT02913664], n = 664,265), (d) sildenafil 

vs. glimepiride (an anti-diabetic drug, n= 159,597), and (e) sildenafil vs. metformin (an 

anti-diabetic drug under an AD clinical trial [ClinicalTrials.gov Identifier: NCT00620191], 

n = 723,082). First, for each comparator, we estimated the propensity score by using 

the variables described in Table 1. We estimated the un-stratified Kaplan-Meier curves, 

conducted propensity score stratified (n strata = 10) two-sided log-rank test and applied 

a Cox model. (f) Hazard ratios (HR) and 95% confidence interval (CI) across five cohort 

studies. Propensity score stratified Cox-proportional hazards models were used for statistical 
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inference of the hazard ratios (sildenafil n = 116,412; non-sildenafil n = 460,356; diltiazem n 

= 251,360; losartan n =664,265; glimepiride n = 159,597; metformin n = 723,082).
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Figure 4. Subgroup analyses of five drug cohort studies to evaluate confounding by disease 
comorbidities.
(a) Hazard ratios (HR) and 95% confidence intervals (CI) across five cohort studies after 

exclusion of individuals with coronary artery disease (CAD), hypertension (HT), and type-2 

diabetes (T2D) (sildenafil n = 56,518; diltiazem n = 113,600; losartan n = 275,116; 

glimepiride n = 52,623; metformin n = 303,008). (b-d) HR and 95% CI plots across five 

cohort studies in individuals with CAD (b) (sildenafil n = 19,093; diltiazem n = 51,771; 

losartan n = 111,592; glimepiride n = 30,083; metformin n = 91,705), HT (c) (sildenafil n = 
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49,541; diltiazem n = 119,097; losartan n = 339,940; glimepiride n = 74,018; metformin n 

= 275,328), or T2D (d) (sildenafil n = 21,978; diltiazem n = 51,300; losartan n = 156,308; 

glimepiride n = 100,298; metformin n = 367,754). Non-sildenafil exposure population 

were matched to the exposures (ratio 4:1) by adjusting the initiation time of sildenafil, 

enrollment history, sex, and disease comorbidities (CAD, T2D, and HT). Propensity score 

stratified Cox-proportional hazards models and two-sided log-rank test were used to conduct 

statistical inference for the hazard ratios.
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Figure 5. Sex-specific and age-specific subgroup analyses across five drug cohort studies.
(a) Hazard ratios (HR) and 95% confidence intervals (CI) across five drug cohort studies 

for males and females respectively (sildenafil female n = 2,280 and male n = 114,132; 

non-sildenafil female n = 8,182 and male n = 452,174; diltiazem female n = 150,137 and 

male n = 101,223; losartan female n = 385,454 and male n = 278,811; glimepiride female 

n = 72,689 and male n = 86,908; metformin female n = 344,944 and male n = 378,138). 

(b) HR and 95% CI plots across five cohort studies for mild older individuals (65–74 years) 

and older individuals (75–100 years) (sildenafil 65–74 n = 89,875 and ≥75 n = 26,537; non-

sildenafil 65–74 n = 264,209 and ≥75 n = 196,147; diltiazem 65–74 n = 115,892 and ≥75 n 

= 135,468; losartan 65–74 n = 389,084 and ≥75 n = 275,181; glimepiride 65–74 n = 97,243 

and ≥75 n = 62,354; metformin 65–74 n = 505,210 and ≥75 n = 217,872). Non-sildenafil 
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exposure population were matched to the exposures (ratio 4:1) by adjusting the initiation 

time of sildenafil, enrollment history, sex, and disease comorbidities (hypertension, type 2 

diabetes, and coronary artery disease). Propensity score stratified Cox-proportional hazards 

models and two-sided log-rank test were used to conduct statistical inference for the hazard 

ratios.
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Figure 6. Experimental validation of sildenafil’s likely mechanism-of-action in Alzheimer’s 
disease (AD).
(a) Network analyses highlighting the inferred mechanism-of-action for sildenafil in AD. 

The molecular mechanisms of sildenafil were investigated via integration of known drug 

targets and experimentally validated AD seed genes into brain-specific human protein-

protein interactome network (see Methods). Node size indicates the protein-coding gene 

expression level in brain compared with other 31 tissues from GTEx database. Larger size 

highlighting the high expression level in brain compared with other tissues. (b) Effects of 
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sildenafil on LPS-induced activation of glycogen synthase kinase 3 beta (GSK3β) (c) and 

cyclin-dependent kinase 5 (CDK5) (d) in human microglia HMC3 cells. HMC3 cells were 

pretreated with sildenafil and followed LPS treatment (1 μg/mL, 30 min). The total cell 

lysates were collected and subjected to Western blot analysis. (e) Timeline of differentiation 

of AD iPSCs into forebrain neurons and downstream drug treatment. (f) iPSC HVRDi001-

A-1 colonies, 5× magnification. Scale bar, 300 μm. (g) NPCs at day 7, 20× magnification. 

Scale bar, 100 μm. (h) Neural precursors at day 27, 20× magnification. Scale bar, 100 μm. (i) 
Anti-Tuj1 immunostaining of AD neurons after 6 days of treatment with DMSO or sildenafil 

(30 μM). Scale bar, 100 μm. (j) Decreased level of p-tau (181) after sildenafil treatment 

in neuronal lysates. Values are normalized to DMSO treatment group. Quantification data 

represent mean ± standard deviation (SD) of three independent experiments (n=3). P-value 

was computed by two-tailed student’s t-test. ***p < 0.001.
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Table 1.

Description of the patient data for pharmacoepidemiologic analysis.

Clinical characteristics Sildenafil Diltiazem Losartan Metformin Glimepiride Control

N 116,412 251,360 664,265 723,082 159,597 460,356

# of AD 93 5,046 8,998 8,050 2,237 1,175

Female (%) 2.0 59.7 58.0 47.7 45.5 2.0

Mean age (SD) 71.0 (5.8) 76.5 (8.3) 74.2 (7.8) 72.1 (6.8) 73.7 (7.5) 74.2 (7.2)

Geographics (%)

 Northeast 30.8 23.9 21.0 21.3 20.4 23.0

 North central 18.9 29.0 27.4 27.5 30.8 31.0

 South 29.9 31.3 33.7 34.2 37.8 29.8

 West 19.4 15.0 16.9 15.9 10.0 15.1

 Not available 1.0 0.6 0.8 1.0 1.0 1.0

Disease comorbidities (%)

 T2D 18.9 20.0 23.5 50.9 62.8 20.0

 HT 42.6 46.9 51.2 38.0 46.3 46.0

 CAD 16.4 20.6 16.8 12.7 18.8 17.3

We estimated the un-stratified Kaplan-Meier curves, conducted propensity score stratified (n strata = 10) two-sided log-rank test and Cox model. 
The AD frequency (1,175/460,356 [0.255%]) in control group was not cumulative AD incidence in the whole life for non-sildenafil users. In fact, 
these patients were diagnosed with AD during their follow up times (6 years), which had same length as the matched sildenafil exposure windows. 
AD: Alzheimer’s disease; T2D: Type 2 diabetes; HT: Hypertension; CAD: Coronary artery disease.
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