
Integrative clustering methods for multi-omics data

Xiaoyu Zhang#, Zhenwei Zhou#, Hanfei Xu, Ching-Ti Liu
Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, 
USA

# These authors contributed equally to this work.

Abstract

Integrative analysis of multi-omics data has drawn much attention from the scientific community 

due to the technological advancements which have generated various omics data. Leveraging 

these multi-omics data potentially provides a more comprehensive view of the disease mechanism 

or biological processes. Integrative multi-omics clustering is an unsupervised integrative method 

specifically used to find coherent groups of samples or features by utilizing information across 

multi-omics data. It aims to better stratify diseases and to suggest biological mechanisms 

and potential targeted therapies for the diseases. However, applying integrative multi-omics 

clustering is both statistically and computationally challenging due to various reasons such as 

high dimensionality and heterogeneity. In this review, we summarized integrative multi-omics 

clustering methods into three general categories: concatenated clustering, clustering of clusters, 

and interactive clustering based on when and how the multi-omics data are processed for 

clustering. We further classified the methods into different approaches under each category 

based on the main statistical strategy used during clustering. In addition, we have provided 

recommended practices tailored to four real-life scenarios to help researchers to strategize their 

selection in integrative multi-omics clustering methods for their future studies.
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1 | INTRODUCTION

Integrative analysis of multi-omics data has drawn the scientific community’s attention. 

Recent technological advances have generated various omics data with the hope of gaining 
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greater insight into the underlying mechanism of diseases. For example, single-cell RNA 

sequencing has provided new biological mechanisms in some rare cell populations (B. 

Hwang et al., 2018; Stark et al., 2019); also, the newly developed Illumina EPIC array 

has revealed methylation differences associated with complex phenotypes (Mansell et al., 

2019); and mass spectrometry-based proteomics has played an essential part in studying 

proteins that could have a significant impact on biology and medicine (Aebersold & 

Mann, 2003). Leveraging these multi-omics data potentially provides a more comprehensive 

view of the disease mechanism or of the biological processes. Based on the research 

question(s), different integrative methods may respond to different demands. On the other 

hand, dimensions of different types of omics data vary tremendously and each of them 

has its own biological properties. For example, each sample may have around 20,000 

gene expression profiles, over 480,000 methylation sites, and millions of single-nucleotide 

polymorphism (SNP). Thus, the data types and the biological questions of interest should be 

both taken into consideration for multi-omics data analysis. For instance, when integrating 

SNP data and “other” types of omics data (e.g., transcriptomic, epigenomic, proteomic, and 

metabolomics), the idea that SNPs affect other omic markers may lead to genome-wide 

QTL analysis naturally (Sun & Hu, 2016). However, with various interaction networks 

between those “other” omics data types, the modeling strategy could be different from 

the one proposed for the integration of SNP data and a single type of “other” omics data 

(Dimitrakopoulos et al., 2018). Hasin et al. (2017) grouped multi-omics approaches into 

three categories, “genome first,” “phenotype first,” and “environment first,” depending on 

the focus of the investigation. This reflects the importance of determining the biological 

question before conducting the multi-omics analysis.

Disease subtyping is one of the major biological questions of interest which can be 

addressed by clustering methods. Integrative multi-omics clustering is an unsupervised 

integrative method specifically used to find coherent groups of samples or features by 

utilizing information across multi-omics data. It has wide applications, especially in cancer 

studies. For example, Curtis et al. (2012) integrated copy number and gene expression 

data and revealed novel subgroups of breast tumors with distinct clinical outcomes. The 

Cancer Genome Atlas Networks (TCGA) group further demonstrated the existence of four 

subtypes of breast cancer by combining data from different platforms, including genomic 

DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, 

and microRNA sequencing (Cancer Genome Atlas Network, 2012). Mo et al. (2013) showed 

distinct tumor subtypes of colorectal cancer through the integrative clustering approach. 

These multi-omics clustering results provided a novel molecular stratification of cancers, 

suggesting both the biological mechanisms and potential targeted therapies for the diseases.

However, applying integrative multi-omics clustering is both statistically and 

computationally challenging due to various reasons, for example, high dimensionality and 

heterogeneity. Many proposed integrative multi-omics clustering methods have intended to 

address these challenges. Several recent reviews have discussed those methods (Chauvel 

et al., 2019; Pierre-Jean et al., 2019; Rappoport & Shamir, 2018; Tini et al., 2019; D. 

Wang & Gu, 2016). Chauvel et al. evaluated and grouped six methods into two categories 

based on the mathematical techniques implemented in the integrative clustering. Tini et 

al. compared five methods and discussed their performance under different conditions of 
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noise and signal strength across data types. Pierre-Jean et al. extended the scope of their 

survey and included 13 methods. However, it lacked a systematic way to group methods, 

and its inclusion criteria mainly depended on the availability of R packages. Rappoport et 

al. gave a more comprehensive review, including multi-omics clustering methods developed 

either by the bioinformatic or machine learning community with a benchmark. But it lacked 

mathematical detail for each method. Wang et al. restricted their review to the application 

of cancer classifications. In general, these reviews did not provide a practical guideline 

for real-life applications. In this review, we summarized integrative multi-omics clustering 

methods based on not only the integrating strategy of the multi-omics data but also the 

statistical approach used during clustering. Specifically, we classified these methods into 

three categories: concatenated clustering, clustering of clusters, and interactive clustering. 

We further grouped the methods into different approaches under each category. In addition, 

we have provided recommended practices under different scenarios for real-life applications 

for future studies.

We organized the remainder of this review as follows: we first present the methods 

including their mathematical basis under three categories in Section 2. We then provide 

recommendations for researchers under four scenarios in Section 3. Finally, we conclude 

this review in Section 4 with the future challenges of integrative multi-omics clustering 

methods.

2 | METHODS

Throughout this review, we denote A as a matrix, a as a vector, a as a scalar, and AT as the 

transpose of the matrix A. This notation is consistent when using other letters. Xk denotes 

the n × pk data matrix from the kth type of omics data, where n is the number of samples, 

pk is the number of features in the kth type of omics data, and ∑K = 1
K pk = p (i.e., the total 

number of features is p). Therefore, Xij
k  is the value of the jth feature for the ith sample in 

the k th data type.

We classified integrative multi-omics clustering methods into three major categories based 

on when and how the multiple omics data are processed for clustering (Figure 1). (1) 

Concatenated clustering: first construct one data matrix based on all omics data and then 

perform the clustering analysis. (2) Clustering of clusters: either perform clustering on 

each omics dataset, followed by integrating the primary clustering results; or transform 

each omics dataset into a particular form to summarize the samples’ relationship, 

followed by combining the processed data thus yielding the final clustering results. 

(3) Interactive clustering: simultaneously integrate data and perform clustering through 

assigning parameters or component allocation variables to connect multi-omics data. 

Under each category, we further classified each method into different groups based on its 

implementation strategy. We summarized all the methods mentioned in this review with their 

corresponding category and approach in Table 1.
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2.1 | Concatenated clustering

One intuitive strategy for integrative multi-omics clustering is to combine different omics 

data first and then apply a direct clustering method. When combining omics data, one can 

either put all the omics data into a big composed matrix or one can search for the shared 

structure among the omics data. Some normalized procedures may be applied to combine 

omics data to make them comparable. Performing dimension reduction by searching for 

the shared structure in the combined omics data can assist the following clustering. In the 

clustering analysis for multi-omics data, finding shared information from different omics 

is an inevitable part. The methods in this category find shared information first, and then 

perform clustering, which is different from the methods in another two categories discuss 

later. We further summarized methods into the following five groups based on their primary 

statistical approach.

2.1.1 | Joint latent model—This group of methods assumes that all omics data share a 

set of low dimensional latent variables, which generate the observed high-dimensional data. 

Mathematically, we can write the general model for the kth omics data Xk, as:

XkT
= W kZ + Ek,

Z Nq(0, I),

where Z, a q × n matrix, is the joint latent structure shared by all K types of omics data, 

Wk is the omics-specific loading matrix, and Ek is the uncorrelated error matrix with zero 

mean and diagonal covariance matrix ψk = diag σ1
k2

, …, σpk
k2

. The core of this approach is 

to find the joint latent variables, followed by any type of standard clustering algorithm, 

such as K-means, hierarchical clustering, on the joint latent variables to obtain the final 

clustering results. In general, this type of approach is easy to implement; however, it has 

two major challenges: the difficulty in the biological interpretations of latent variables as 

well as the data heterogeneity among different omics data. Due to different scales, it often 

requires proper data normalization prior to the analysis. Below, we have illustrated a few 

representative methods.

iCluster (Shen et al., 2009) assumes a Gaussian joint latent model for which a low 

dimensional cluster membership matrix is shared by all omics data on the same samples. 

We can derive the joint likelihood on the assumption of conditional independence of 

observed omics data given the shared latent variable Z which collectively captures the 

correlative structure between omics data. iCluster incorporates a lasso type (L1-norm) 

penalty on the loading matrix W to identify essential features and uses the Expectation-

Maximization (EM) algorithm to get the mean of the cluster membership matrix on 

which a final cluster assignment can be achieved through a standard K-means. iCluster 

is only applicable to continuous data. iClusterPlus (Mo et al., 2013), the extended iCluster, 

accommodates continuous, binary, count, and multicategory data through generalized linear 
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models. However, both iCluster and iClusterPlus suffer from an intense computational 

burden due to evaluating an excessive number of tuning parameters and different numbers 

of clusters for the analysis. iClusterBayes (Mo et al., 2018) was thus developed to solve 

this issue. Instead of using regularization in the likelihood to select features, iClusterBayes 

introduced an additional indicator variable with value 0 or 1 for Bayesian variable selection. 

With a prior distribution setting for parameters, the Metropolis-Hasting algorithm can be 

applied to jointly sample the latent and indicator variables from their posterior distribution 

for statistical inference. As there is no longer a need to fine-tune parameters like in iCluster 

or iClusterPlus, iClusterBayes is more computationally efficient.

Instead of using the EM algorithm as suggested, above, for the iCluster series, moCluster 

(Meng et al., 2016) utilizes the sparse consensus principal component analysis and the 

nonlinear iterative partial least squares algorithm to estimate the latent variables. This 

method was reported to be 100× to 1000× faster than iCluster/iClusterPlus since it can 

converge to a deterministic solution. However, it requires a delicate normalization procedure. 

In addition to the centering and scaling features in each dataset, the authors also weight each 

data matrix by the inverse of its first eigenvalue to allow different matrices to contribute 

comparable variance to the first few joint latent variables.

2.1.2 | Low-rank approximation—This type of approach aims to find the low-

dimensional subspace of high-dimensional data and cluster on the reduced subspace. It 

shares a similar intuition with the joint latent model approach, that is, it assumes a 

low-dimensional matrix, which well represents the clustering structure of samples across 

different omics data. The main difference is that the low-rank approximation approach 

enforces certain constraints on data to introduce low-rank or low-dimensional space instead 

of assuming joint latent variables although there could be overlapping between these two 

approaches for some methods.

Low-rank-approximation-based multi-omics data clustering (LRAcluster) (Wu et al., 2015) 

develops its low-rank approximation based on an integrative probabilistic model. It assumes 

different datasets are independent conditioning on the parameter matrix. It sets low-rank 

constraints on the stacked parameter matrix Θ leading to a penalty of model complexity in 

the joint likelihood of data. The objective function becomes min
Θ

∑K = 1
K L Θk; Xk + μ|Θ|*, 

where L(.) is the negative log likelihood function of data based on the probabilistic model 

(continuous data using Gaussian distribution, binary data using a Bernoulli distribution, 

and count data using a Poisson distribution), μ is a tuning parameter and |.|* denotes the 

nuclear norm of the matrix. Singular value thresholding-like method is used to optimize the 

objective function, and K-means is applied to find the final clustering assignment on the 

low-dimensional subspace. One appealing part of this method is that its objective function is 

convex, which leads to a global solution.

Joint and individual variation explained (JIVE) (Lock et al., 2013; O’Connell & Lock, 

2016) decomposes each omics dataset into three parts: a low-rank approximation for 

joint variation, a low-rank individual variation, and residual noise. It can be expressed 
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as XkT
= Jk + Ak + Ek, J = J1T

, …, JKT T
, where Jk is the submatrix of joint structure J 

associated with Xk, Ak is the individual structure of Xk, and Ek is the error matrix with zero 

expectation. Meanwhile, the joint and individual variations are assumed to be uncorrelated. 

Low-rank constraints are set for both joint variation and individual variation (i.e., rank(J) = 

q, rank(Ak) = qk). By minimizing the sum of squared error, the joint and individual structure 

can be estimated iteratively. A cluster analysis on either the joint structure or the individual 

structure can help cluster samples either based on all the omics data or concerning each 

omics dataset. Besides, JIVE can be viewed as an extension of the joint latent model by 

adding an omics-specific term: XkT
= W kZ + UkSk + Ek, where the q × n matrix Z is the 

common score, summarizing the sample variability across K omics data, and Wk is the 

pk × q loading matrix for the first q components. UkSk is the additional omics-specific 

term where Uk is the loading matrix, and Sk is the score matrix for the kth omics data. 

Thus, the joint and individual structures, J and Ak, can be estimated through singular 

value decomposition-type methods. However, this method is not robust to outliers and only 

applicable to continuous data.

2.1.3 | Non-negative matrix factorization—The basic idea of the non-negative 

matrix factorization (NMF) approach is to approximately decompose the kth omics data 

matrix Xk into a product of two non-negative matrices, that is, one common basis matrix Z 
and one omics-specific coefficient matrix Wk. The n × q matrix Z can be used to identify the 

sample clustering membership and the q × pk matrix Wk can be used to identify features that 

contribute to clusters. The objective function can be formulated as:

min
Z, W 1, …, W K

∑
k = 1

K
‖Xk − ZW k‖F, s . t . Z ≥ 0andW k ≥ 0,

where ‖.‖F denotes the Frobenius norm. It can be solved through a multiplicative algorithm 

(Lee & Seung, 1999). This approach is closely related to the joint latent model approach 

when assuming Z is the common latent structure even though a non-negativity constraint is 

used here. However, the objective function of NMF is not convex, potentially leading to a 

local solution only.

Joint NMF (jNMF) (S. Zhang et al., 2012) applies the NMF framework to identify 

correlative modules (i.e., groups of correlated features for all or a subset of samples), 

also called multi-dimensional modules (md-modules), in multi-dimensional omics data, 

which can be further used to cluster samples. jNMF searches for the shared basis 

matrix Z across multi-omics datasets through minimizing the squared Euclidean error 

function: min
Z, W 1, …, W K

∑k = 1
K ‖Xk − ZW k‖F

2 .. The coefficient matrices Wk can be used 

to identify md-modules based on the user-defined criteria such as the largest entity of 

each column of Wk. Samples can be further grouped into either md-module-specific 

or not md-module-specific groups based on the columns of shared basis matrix Z for 

each md-module. jNMF uses the generalized multiplicative update rules to arrive at 
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the shared basis matrix and the coefficient matrices iteratively. Because it is a local 

optimization procedure, multiple attempts using different initial values are required 

to reach the final solution. Two proposed integrative NMF methods (iNMF and 

intNMF) were developed based on the aforementioned jNMF method. iNMF (Yang 

& Michailidis, 2016) extends jNMF to accommodate the heterogeneous effects from 

different omics data via an additional term VkWk. Its objective function then becomes 

min
Z, W 1, …, W K , V 1, …, V K

∑K = 1
K ‖Xk − Z + V k W k‖F

2 + λ∑K = 1
K ‖V kW k‖F

2 , V k ≥ 0. In other 

words, iNMF puts a penalty on the Frobenius norm of the heterogeneous term to retain 

identifiability. It is more robust to heterogeneous noise across different omics data. 

Moreover, iNMF can additionally incorporate an L1-norm penalty on the elements of the 

coefficient matrix Wk to induce sparsity in feature selection. intNMF (Chalise & Fridley, 

2017), in contrast, focuses on clustering samples using different omics data. It does not 

assume any distribution of data and uses weights θk to combine different data with objective 

function as min
Z, W 1, …, W K

∑K = 1
K θk‖Xk − ZW k‖2 . Defined by the users, the weights θk for 

example, can be the maximum of the mean sums of squares among all omics data divided by 

the mean sum of squares of each omics data (i . e . , θk =
max mean ‖Xk‖2 , k = 1, …, K

mean ‖Xk‖2
. Instead 

of a multiplicative update algorithm, intNMF uses alternating least square algorithms to 

arrive at the estimation since the objective function becomes convex in Z given Wk and vice 

versa. Only basis matrix Z has to be initialized. The final sample clustering membership is 

determined by the largest entry in each row of basis matrix Z.

2.1.4 | K-Means related—The K-means method originally discussed partitioning 

observations into k sets through minimizing the within-cluster sum of squares (WCSS) 

(MacQueen, 1967). Assuming the total number of clusters is D, we denote G = (G1, …, GD) 

the clustering results, with Gd be the collection of samples in cluster d. We can write the 

objective function of the K-means as:

min
G

∑
d = 1

D 1
nd

WCSS Gd = min
G

∑
d = 1

D 1
nd ∑

i, i′ ∈ Gd
∑
j

Xi, j − Xi′, j
2,

where nd is the number of samples in cluster d, j stands for the jth feature. Minimizing the 

WCSS is equivalent to maximizing the between-cluster sum of squares (BCSS) since the 

total sum of squares (TSS) is a constant (i.e., TSS = WCSS + BCSS). Some extensions 

of K-means methods were proposed to handle omics data (Friedman & Meulman, 2004; 

Witten & Tibshirani, 2010). Sparse K-means, for example, can effectively select features 

and perform sample clustering simultaneously (Witten & Tibshirani, 2010). It targets at 

maximizing the weighted BCSS, subject to constraints on the weights to enforce a sparse 

solution. To apply a K-means-related approach to multi-omics data, a specific normalization 

procedure is required to make features from different omics data comparable. This method 

requires a preselected number of clusters, and it can only apply to continuous data.
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Integrative sparse K-means (IS-K means) (Huo & Tseng, 2017) extends sparse K-means to 

deal with multi-omics data through normalizing the BCSS by the TSS, Rj(G) =
BCSSj(G)
TSSj(G) . 

Also, it incorporates overlapping group structure of features through adding a group lasso 

penalty term in the objective function to select biologically meaningful features in the 

clustering procedure. The feature group information can come from prior knowledge like 

biological databases.

2.1.5 | Graph-based—A graph-based approach considers the network structures 

between features such as pathways among genes, proteins, and so on when integrating 

multiple omics data. The probabilistic graphical model (PGM) is often used to represent 

the regulatory structure with parameter inferences, and prior knowledge on the pathways is 

usually required for this type of approach.

PAthway Recognition Algorithm using Data Integration on Genomic Models (PARADIGM) 

(Vaske et al., 2010) develops a PGM based on factor graphs that can integrate different 

genomic and functional genomic datasets to infer the molecular pathways altered in a 

patient sample. Each node in the factor graph represents different measurement levels of 

genes, proteins, and so on and can be either activated, nominal, or deactivated relative to a 

control level. It generates an integrated pathway activity (IPA) matrix whose rows represent 

different entities (e.g., a protein-coding gene, a small molecule, a complex, a gene family, 

or an abstract process) and columns represent samples based on multi-omics data. Entities 

belonging to the same pathway will be grouped in rows. Each element of the IPA matrix is 

an IPA score, a signed analog of the log-likelihood ratio, representing how likely the entity is 

activated/null/deactivated in the corresponding sample, for each pathway separately. The IPA 

matrix can then be used to cluster samples via hierarchical clustering. This method requires 

prior knowledge of pathways and requires users to upload the data to the designated website 

to run the analysis.

2.2 | Clustering of clusters

As the name of this category suggests, clustering of clusters shares the idea of obtaining 

clustering information from each omics first and then constructing an overall grouping that 

represents the relationship between samples followed by a final clustering. The primary 

clustering information can come from many places such as: directly clustering on each 

omics dataset, clustering on perturbed data, or constructing a sample-wise similarity matrix 

on each omics dataset. These approaches extract the shared information from different 

omics’ data after performing clustering for each omics. The methods in this category exhibit 

a different logic compared to the concatenated clustering, and avoid the possible information 

loss from the dimension reduction step. We summarized methods under this category into 

two groups, a perturbation-aided approach and a similarity-based approach, according to 

their main strategy.

2.2.1 | Perturbation-aided—The main goal of the perturbation-aided approach is to 

reach a more reliable clustering assignment with perturbed datasets by either using a 

resampling technique or adding noise to the original data. A standard clustering algorithm 
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can then be applied to each of the perturbed omics datasets and the agreement of clustering 

results can be assessed among multiple runs. Assuming that we have H perturbed datasets, 

an n × n connectivity matrix M(h) represents samples relationship for the hth perturbed data, 

where n is the number of samples:

Mij
(ℎ) = 1,  if sample i and j belong to the same cluster 

0,  otherwise  , ℎ = 1, …, H .

Then an overall n × n consensus matrix C can be calculated based on all connectivity 

matrices (i.e., M(h), h = 1, …, H) to help determine the final clustering. The construction of 

the consensus matric C varies among methods. In general, methods within this approach are 

robust to noisy data because of the perturbation procedure. More details about each method 

are described below.

Cluster-of-cluster assignments (COCA) (Hoadley et al., 2014) implemented the consensus 

clustering approach in the problem of integrative multi-omics clustering. Consensus 

clustering originates from the idea that the clustering results should be robust to the 

sampling variability (Monti et al., 2003). It uses a resampling technique to generate 

perturbed datasets followed by multiple runs of a standard clustering algorithm to create 

connectivity matrices. Then the consensus matrix C can be calculated as a normalized sum 

of connectivity matrices of all the perturbed datasets: Cij =
∑ℎMij

(ℎ)

∑ℎIij
(ℎ) , where the indicator 

function Iij
(ℎ) = 1 if both samples i and j are present in the hth perturbed dataset and 

0 otherwise. Thus, each entry of C represents the proportion of multiple runs that two 

samples are clustered together. Hierarchical clustering can then be applied to the distance 

matrix, 1 − C, to determine the final clustering memberships. COCA implemented the 

consensus clustering method to integrate multi-omics data, where connectivity matrices were 

built based on each omics dataset and then put them together to construct the consensus 

matrix C to represent samples’ relationship. The method was applied on six platforms of 

omics data including DNA copy number, DNA methylation, mRNA expression, microRNA 

expression, protein expression, and somatic point mutation, from 12 types of cancer and 

clustered samples into 11 major subtypes which have shown clinical importance from the 

Kaplan-Meier survival analysis.

Perturbation clustering for data INtegration and disease Subtyping (PINS) (T. Nguyen et al., 

2017) generates perturbed datasets by adding noise and aims to choose the optimal number 

of clusters through perturbation before conducting the final clustering. PINS first applies 

K-means on the original data and builds (D − 1) connectivity matrices M2, …, MD for 

all possible numbers of clusters, where D is the largest number of clusters considered. 

It then generates H perturbed datasets by adding Gaussian noise to the original data 

and repeating the same process to build connectivity matrices on each perturbed dataset. 

Then by averaging those connectivity matrices for each possible number of clusters, we 

can get perturbed connective matrices M′2, …, M′D. The difference matrix Md, with 

Mij
d = Mij

d − M′ijd , between the original and the perturbed connectivity matrix reflects the 
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stability of clustering. The smaller Mij
d , the more robust the connectivity between sample 

i and j, which can be used to determine the optimal number of clusters based on the most 

robust clustering results against perturbation. For K types of omics data, the optimal number 

of clusters is chosen based on each omics data as above and K connectivity matrices then 

can be built using the optimal number of clusters as M1, …, MK. Then the average pair-wise 

connectivity matrix (i.e., the consensus matrix) C can be calculated as Cij =
∑K = 1

K Mk

K . A 

similarity-based clustering algorithm such as hierarchical clustering can be applied on the 

distance matrix 1 − C to determine the final clustering memberships. PINS is robust against 

noise by building the resilience of sample connectivity under perturbations. However, its 

running time is relatively long and there is no weight adjustment for different omics data.

PINSPlus (H. Nguyen et al., 2019) extended PINS by utilizing ensemble strategy (i.e., 

applying more than one type of clustering algorithm) on the consensus matrix to identify the 

clustering that agrees the most among multi-omics data. Thus, it can ensure the identified 

clusters are consistent and robust against the choice of clustering algorithms. Also, an 

early stopping criterion is implemented for the process of building perturbed connectivity 

matrices. Together with parallel computing, the computational efficiency of PINSPlus is 

largely improved compared to PINS.

2.2.2 | Similarity-based—In general, this type of approach constructs a sample 

similarity matrix for each omics dataset first and then integrates similarity matrices across 

all omics data into one followed by the final clustering. Assuming each omics dataset, we 

have sample data (x1, …, xn) where xi, i = 1, …, n, is a vector for sample i with all features 

in that omics dataset. The key component of the similarity-based approach is to construct 

an n × n sample similarity matrix W based on different kernels defined by each method to 

represent the samples’ relationship. This approach becomes more popular these days since 

it can address the common challenges in the integrative multi-omics clustering methods. By 

constructing a sample-wise similarity matrix, it overcomes not only the data heterogeneity 

problem, but also the problem of small n large p. However, this approach generally cannot 

perform feature selection. Related methods are further described below.

Spectrum (John et al., 2020) extended the spectral clustering to be able to handle multi-

omics data. Spectral clustering was originally designed for single-view data as a similarity- 

and graph-based method. It mainly uses eigenvectors of the Laplacian matrix derived from 

the data to perform further clustering (Ng et al., 2001). Given a dataset with n samples and a 

similarity matrix W, it first constructs the similarity graph to model the local neighborhood 

relationships between samples and then computes the Laplacian matrix ℒ. It uses first d 
eigenvectors of ℒ to represent data and follows with the standard K-means (von Luxburg, 

2007). Equivalently, the objective function is maxtrace
U

UTℒU ,  s.t. UTU = I,s:t:UTU = I , 

where U is an n × d matrix. Apply the K-means algorithm on U to obtain the cluster 

memberships (Ng et al., 2001). Kumar et al. (2011) proposed a spectral clustering method 

under multi-view setting through a co-regularization framework with an objective function 
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of max
U1, …, UK

∑k = 1
K trace UkT

ℒkUk + λ∑1 ≤ k, l ≤ K, k ≠ l trace UkUkT
UlUlT ,  s.t. UkT

Uk = I. 

However, it was not designed for omics data. Spectrum, on the other hand, was developed 

for multi-omics data. The authors of Spectrum proposed a self-tuning density-aware kernel 

as W ij = exp
−ρ2 xi, xj

ϵiϵj CNN xi, xj + 1 , where, ρ(xi, xj) denotes the Euclidean distance between 

sample i and j, ϵi is local scaling parameter for sample i, CNN(xi, xj) is the number 

of samples in the inter-section between the two sets of nearest neighbors of sample i 
and j, based on Zelnik-Manor self-tuning kernel (Zelnik-Manor & Perona, 2005) and 

Zhang density-aware kernel (X. Zhang et al., 2011). Spectrum uses a tensor product graph 

integration and diffusion technique to combine similarity matrices across multi-omics data 

and reduce noise (Shu & Latecki, 2016). Finally, Laplacian matrix ℒ is constructed based 

on the combined similarity matrix and Gaussian mixture model clustering is used to get the 

final clustering memberships on the eigenvector matrix of ℒ.

Similarity network fusion (SNF) (B. Wang et al., 2014) is a well-represented method 

belonging to the similarity-based approach of integrative multi-omics clustering. SNF 

uses a scaled exponential similarity kernel to construct the sample similarity matrix W 

with W ij = exp −
ρ2 xi, xj

μϵi, j
, where, ρ(xi, xj) denotes the Euclidean distance for continuous 

variables between sample i and j, μ is a hyperparameter that can be empirically set and 

ϵi, j =
mean ρ xi, Ni + mean ρ xj, Nj + ρ xi, xj

3  which is used to eliminate the scaling problem, 

mean(ρ(xi, Ni)) is the average value of the distances between sample i and each of its 

neighbors. The authors proposed to use chi-squared distance for discrete variables and 

agreement-based measure for binary variables. After similarity matrices being constructed 

for samples from available datasets, they will be fused into one similarity matrix to represent 

the full spectrum of underlying data. An n × n normalized similarity matrix P and an n × 

n affinity matrix S are defined as below for the integration or fusion process for multiple 

similarity matrices based on different omics data:

Pij =

W ij
2∑l ≠ iW il

, j ≠ i

1
2 , j = i

andSij =
W ij

∑l ∈ NiW il
, j ∈ Ni

0,  otherwise 
,

where Ni is the set of neighbors for sample i. Then the similarity fusion process is conducted 

iteratively by:

P(t + 1)
k = Sk ×

∑m ≠ kP t
m

K − 1 × Sk T, k = 1, …, K,
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for the tth iterations and the kth omics data. The fused normalized similarity matrix is 

Pfused  =
∑K = 1

K P(t + 1)
k

K  after t iterations. Spectral clustering (Ng et al., 2001) then can be 

applied on the Pfused to generate the final clustering.

Association-signal-annotation boosted SNF (ab-SNF) (Ruan et al., 2019) extended SNF 

by adding weights to features when constructing sample similarity matrix. The weights 

can be determined by the feature-level association strengths with the outcome, such as 

association p-value, as well as annotation signals, such as relationship indicators between 

a gene and a disease. More specifically, assuming we have a continuous feature m, we 

can calculate the p-value of feature m (i.e., pm), from the model comparing disease 

samples with normal samples at feature m. Then the feature-level weight can be defined 

as Wtm =
−log10 pm

∑m = 1
M −log10 pm

, where M is the total number of features of that data type. 

The weighted distance ρ xi, xj = ∑m = 1
M wtm Xim − Xjm

2. For a binary feature m, the 

weight can be an indicator function to represent whether a feature is important based 

on prior knowledge, such as if we know a gene m is a mutation gene for a certain 

disease, we can set wtm = 1 and wtm = 0 otherwise. Then the weighted distance becomes 

ρ xi, xj = ∑m = 1
M wtm Xim − Xjm . By incorporating the weights, ab-SNF was reported to 

outperform the original SNF in disease subtyping. However, SNF and ab-SNF both need 

a separate procedure to handle missing values if not all omics data available for each 

sample. This could be an issue in real-world practice. NEighborhood based Multi-Omics 

clustering (NEMO) (Rappoport & Shamir, 2019) was, therefore, developed to address this 

issue by allowing some samples to have only partial omics data available. It uses a similarity 

measure based on the radial basis function kernel (Buhmann, 2009) to construct a similarity 

matrix for the kth omics dataset, W ij
k = 1

2πϵijk
exp −

xi
k − xj

k

2ϵijk 2
 where is a normalizing factor 

which controls for the density of samples by averaging the squared distance of the ith 

and jth samples to their nearest neighbors and the squared distance between these two 

samples. Then NEMO defines the relative similarity matrix RS for each omics dataset 

to measure the similarity between two samples relative to their κ nearest neighbors, 

RSij
k =

W ijk

∑r ∈ rikW irk
× I j ∈ ηik +

W ijk

∑r ∈ ηjkW jrk
× I i ∈ ηjk , where I(.) is the indicator function. 

We can obtain the average relative similarity matrix ARS by averaging the relative similarity 

matrix across omics data with observed values, ARSij = 1
JMij

∑k ∈ JMijRSij
k , where JMij 

denotes the omic types available for both samples. Again, spectral clustering can be applied 

to the ARS to get the final clustering.

Cancer Integration via Multi-kernel Learning (CIMLR) (Ramazzotti et al., 2018) 

aims to integrate multi-omics data to reveal molecular subtypes of cancer. It is an 

extension of Single-cell Interpretation via Multi-kernel LeaRning (SIMLR) (B. Wang 

et al., 2017). Unlike SNF that uses one kernel to construct a sample similarity 

matrix, SIMLR is a multikernel learning method that learns the similarity matrix 
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that best fits the data by combing multiple kernels. SIMLR defines each kernel as: 

Kernel xi, xj = 1
ϵij 2π exp −

‖xi − xj‖2
2

2ϵij2
, where ϵij can be calculated with different scales: 

ϵij =
σ μi + μj

2 , μi =
∑l ∈ KNN xi ‖xi − xj‖2

κ , where KNN(xi) represents samples that are top 

κ neighbors of sample i. Thus, each kernel is decided by a pair of parameters (σ, κ). CIMLR 

extended SIMLR by constructing the same number of Gaussian kernels for K omics. All 

constructed kernels will be used to find the n × n sample similarity matrix W through the 

following optimization procedure:

min
W , L, v

− ∑i, j, mvmKernelm xi, xj W ij + β W
F
2 + γtr LT In − W L    + ρ∑mvmlogvm

 s.t. LTL = ID, ∑mvm = 1, vm ≥ 0, ∑jW ij = 1,  and W ij ≥ 0,

where D is the number of clusters, m is the kernel index over all kernels across K omics 

data, νm is the weight for the mth kernel, β and γ are non-negative tuning parameters, 

‖. ‖F denotes the Frobenius norm, and L is an auxiliary low-dimensional matrix enforcing 

the low rank constraint on W. It then applies K-means based on the similarity matrix W 
for the final clustering. Additionally, CIMLR can also perform feature selection through a 

hypergeometric test.

Regularized multiple kernels learning with locality preserving projections (rMKL-LPP) 

(Speicher & Pfeifer, 2015) is also a multikernel learning method that can integrate multi-

omics data and perform cancer subtype identification. It adopts the multiple kernels learning 

for dimensionality reduction (MKL-DR) framework (Lin et al., 2011) which integrates 

multiple kernel learning (i.e., optimizes the weights that linearly combines a set of kernel 

matrices to generate a unified kernel matrix) into the graph embedding (S. Yan et al., 2007) 

for dimensionality reduction. MKL-DR defines different types of kernels based on the data 

type, the mth dissimilarity-based kernel matrice Kernelm xi, xj = exp
−dm2 xi, xj

ϵm2
, where ϵm is 

a positive constant. rMKL-LPP extended MKL-DR by adding a regularization term to avoid 

overfitting and it applied locality preserving projections algorithm (LPP) (He & Niyogi, 

2003) for dimensionality reduction with the optimization problem as:

min
A, β

∑i, j = 1
n ATKiβ − A⊤Kjβ 2W ij s.t. ∑i, j = 1

n ATKiβ 2Rij = const . , β
1

= 1 ,

βm ≥ 0, m = 1, 2, …, M ⋅ Ki =
 Kernel 1 x1, xi ⋯  Kernel M x1, xi

⋮ ⋱ ⋮
 Kernel 1 xn, xi ⋯  Kernel M xn, xi

,

where A is an n × q projection matrix and q is user-defined (q is usually smaller than the 

number of features p to achieve dimension reduction), β is an M × 1 coefficient vector, 

Ki is an n × M kernel matrix for sample i which can be constructed by different kernel 

functions, M is the total number of kernels and each omics dataset may have multiple 

kernels. The (i, j)-entry of the similarity matrix W is equal to 1 if i ∈ Nκ(j) or j ∈ Nκ(i) and 
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0 otherwise, Nl(i) is the set of the κ nearest neighbors for sample i, and Rij = ∑l = 1
n W il, 

if i = j and 0 otherwise. A and β are iteratively optimized until convergence and K-means 

can be performed on the projected samples ATKiβ, i = (1, …, n) to obtain the final clustering. 

This method has the flexibility of incorporating multiple kernels per data type. This not only 

improves the performance but also removes the need of preselecting the optimal kernel. The 

authors applied this method on five cancer datasets and identified biologically meaningful 

subgroups for cancers with significantly different survival.

2.3 | Interactive clustering

Instead of performing two-step procedures like those above-mentioned, methods covered in 

this category conduct the integration and clustering simultaneously. These methods assign 

parameters or allocation variables to link the dependence across different omics data. Under 

such settings, a consistent clustering structure across multi-omics data is not necessary, 

which provides a more flexible setup. Methods in this category usually incorporate ideas of 

the Dirichlet mixture model and Bayesian statistics.

2.3.1 | Dirichlet mixture model-based—This type of approach usually assumes 

that data originate from a Dirichlet mixture model with a general form: 

p(x) = ∑m = 1
M πmf x ∣ θm , m = 1, …, M, where p(x) denotes the probability density for data 

with M components, πm’s are mixture proportions, f is a parametric density with associated 

parameters θm and different types of data can be modeled using different densities. Let (u1, 

…, un) be the component allocation variables for n samples where ui ∈ {1, …, M}, i = 1, 

…, n and πm = P(ui = m). Under a Bayesian framework, Dirichlet priors are usually put on 

Π = (π1, …, πM). Gibbs sampling can be used to approximate the posterior distributions of 

parameters of interest and the posterior of component allocation variables are directly related 

to the final clustering of samples. When M → ∞, the model becomes a Dirichlet process 

(DP). On one hand, this approach provides flexible probabilistic models for different omics 

data. On the other hand, it naturally captures the clustering structure through decomposing 

data into M components. However, this approach usually requires one to specify many 

parameters in advance.

Multiple dataset integration (MDI) (Kirk et al., 2012) can integrate multiple omics data 

of different types (e.g., continuous, categorical, time series). It was originally designed for 

clustering genes but it can be easily applied for clustering samples. For n samples/genes 

from K omics data, MDI models each omics data using a Dirichlet-multinomial allocation 

(DMA) mixture model (Green & Richardson, 2001) with component allocation variables 

uik ∈{1, …M}, i = 1, …, n; k = 1, …, K; M is set by users and was set as n/2 here. 

MDI then links all DMA models at the level of the component allocation variables via the 

conditional prior p ui1, …, uiK ∣ ϕ ∝ ∏k = 1
K πuikk∏k = 1

K − 1 ∏l = k + 1
K 1 + ϕklI uik = uil , where 

ϕ is a collection of K(K − 1)/2 parameters that controls the strength of association between 

pair of omics data, πuikk is the mixture proportion associated with component uik in the kth 

DMA model. Gibbs sampling is used to approximate the parameters’ posterior probabilities. 

MDI first identifies the samples/genes that tend to be allocated to the same component 

across a subset of or all omics data followed by the final clustering using the sampled 
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component allocations. One main advantage of MDI is that it does not require the common 

clustering structure across all omics data. As there are many parameters to specify, the 

scalability of MDI needs improvement.

Bayesian consensus clustering (BCC) (Lock & Dunson, 2013) aims to simultaneously 

identify the dependence (i.e., overall clustering) and the heterogeneity (i.e., omics-specific 

clustering) across multi-omics data. Similar to MDI, BCC models each omics dataset with 

a Dirichlet mixture model. But BCC assumes there is an overall clustering across multi-

omics data and a separate omics-specific clustering adhere to the overall clustering. Let 

Let lik ∈ (1, …, M) represent the kth omics-specific component allocation variable and ui ∈ 

(1, …, M) represent the overall component allocation variable for sample i. The dependence 

between omics-specific clustering lk = l1k, …, lnk  and the overall clustering u = (u1, …, un) is 

modeled through the following:

P lik = m ∣ ui = v lik = m, ui, αk =
αk,  if ui = m

1 − αk
M − 1,  otherwise 

,

where αk ∈ 1
M , 1  controls the adherence of the kth omics data to the overall clustering. 

M is selected to maximize the mean of omics-specific adherence to the overall 

clustering. Then the probability for a sample belongs to an omics-specific cluster is 

P lik = m ∣ Π = πmαk + 1 − πm
1 − αk
M − 1 . And based on Bayes’ rule, the conditional distribution 

of ui can be written as P ui = m ∣ Π, Lk, αk
k = 1
K ∝ πm∏k = 1

K v lik, ui = m, αk . Again, through 

the Gibbs sampling procedure, posterior distributions of omics-specific and overall 

allocation variables can be estimated to determine the final clustering.

Patient-specific data fusion (PSDF) (Yuan et al., 2011) is based on Bayesian nonparametric 

modeling. Unlike MDI and BCC, it utilizes a two-level hierarchy of the DP mixture model 

(Antoniak, 1974; Ferguson, 1973) and mainly integrates two omics datasets (e.g., copy 

number and gene expression data). DP mixture model may be derived from the above 

general form of Dirichlet mixture model when M → ∞ (Rasmussen, 2000). The sample i 
is indicated as fused (ri = 1), if the clustering structure for this sample between two omics 

data is concordant, or as unfused (ri = 0) if it is contradictory. The prior probability of fusion 

is defined by P(ri = 1) = w, where w can be set by users, w = 0.5 in the PSDF paper. 

The hyperparameters of the hierarchical DP consist of the baseline probability measure H, 

and the concentration parameters γ and α0. This method allows the possibility of taking 

the product of likelihoods over the two omics data, so if sample i is fused, θi = (θ1i 

θ2i)~F3; if unfused, θ1i~F1 and θ2i~F2, where θ represents the likelihood parameters under 

each case. And then we have F1 DP α0, F0
(1) , F2 DP α0, F0

(2) , F3~DP(α0, F0), and F0(θ1, 

θ2)~DP(γ, H), where F0
(k) represents the marginal distribution of θk under F0, k = 1, 2. 

Additional indicator parameters for features are introduced for the feature selection purpose. 

Gibbs sampling is used to estimate the posterior probability of parameters of interest. By 
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incorporating the sample fusion information in the DP mixture model, it no longer requires 

the assumption of a consistent clustering structure between two omics datasets, which shares 

the intention with MDI. In principle, this method can be extended to integrate more than 

two omics datasets. However, the authors reported that it would become unwieldy if they 

did so. Another limitation of PSDF is that it can only handle discretized input data, so data 

preprocessing is required before modeling.

3 | IMPLEMENT RECOMMENDATION

We have surveyed a number of integrative multi-omics clustering methods based on their 

theoretical properties. When it comes to real-life applications, it is necessary to pinpoint 

the appropriate methods for the various circumstances. Here we list four different situations 

that researchers commonly face with recommended methods in Table 2. We also point 

out the difference between methods under the same scenario. Overall, we hope our 

recommendations can help researchers to strategize their analyses using integrative multi-

omics clustering for their future research.

Scenario I (feature selection):

Many large-scale cancer genomics studies have demonstrated the benefit of using proper 

integrative multi-omics clustering methods to generate biologically meaningful cancer 

subtypes and to identify potential therapeutic targets, for example, studies related to 

breast cancer, lung cancer, and stomach cancer (Cancer Genome Atlas Network, 2012; 

Cancer Genome Atlas Research Network, 2012, 2014). Therefore, the capabilities of 

clustering samples and feature selection are both desired, especially in translational research 

for precision medicine. The following methods would meet the needs: iCluster and its 

extensions (iClusterPlus and iClusterBayes), intNMF, IS-K means, CIMLR, and PSDF. 

iClusterPlus extended iCluster by allowing the integration of multi-type omics data through 

generalized linear models. iClusterBayes is more computationally efficient than iCluster and 

iClusterPlus based on a Bayesian model with no tuning parameters. intNMF is an NMF 

approach without assumption of model distribution. IS-K means can additionally incorporate 

prior knowledge to identify biologically meaningful driving features. CIMLR’s feature 

selection procedure cannot be achieved simultaneously with clustering. PSDF utilizes a 

more flexible nonparametric Bayesian method to cluster samples and select informative 

features but becomes unwieldy when applying to more than two omics datasets.

Scenario II (mixed-type data):

An unprecedented amount of mixed-type genomic data, binary (somatic mutation), 

categorical (copy number gain, normal, loss), and continuous (gene expression), for various 

cancers have been provided by large consortia or in public depositories such as TCGA 

http://cancergenome.nih/gov, Gene Expression Omnibus http://www.ncbi.nlm.nih/gov/geo/, 

and Sequence Read Archive http://www.ncbi.nlm.nih.gov/sra. The integrative clustering 

methods that can deal with mixed-type data are demanded for this scenario. Therefore, we 

recommended the following methods: iClusterPlus, iClusterBayes, moCluster, LRAcluster, 

MDI, SNF, CIMLR, rMKL-LPP, PINS, and PINSPlus. A generalized linear model is usually 

applied to incorporate mixed-type of data for likelihood-based methods such as iClusterPlus, 
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iClusterBayes, and LRAclusters. iClusterBayes, moCluster, and LRAclusters have less 

computational cost than iClusterPlus. moCluster requires different normalization steps for 

different types of data. LRAcluster can result in a stable global solution as its objective 

function is convex. MDI does not require a consistent clustering structure across multi-omics 

data. SNF, CIMLR, and rMKL-LPP all belong to the similarity-based approach which is 

generally more computationally efficient. SNF cannot select features. CIMLR can prioritize 

features through a hypergeometric test. rMKL-LPP uses multiple kernels learning method 

and adds a regularization term to avoid overfitting during the optimization procedure. PINS 

and PINPlus both are robust to noisy data, but can be computationally intensive.

Scenario III (computational efficiency):

Although computational capacity has exponentially increased over time, not every 

researcher has access to a cost-efficient computing infrastructure. Even with enough 

computational resources, the scalability and consumption of time could be a concern 

when analyzing multi-omics data. Computationally efficient methods become much more 

appealing under this setting. Therefore, methods belonging to similarity-based approach 

are recommended since they are quite efficient by integrating omics data in the space of 

samples, including SNF and its extensions ab-SNF and NEMO, CIMLR, and rMKL-LPP. 

In general, the similarity-based approach cannot perform feature selection. Spectrum uses 

its own proposed kernel to construct sample-wise similarity matrix. SNF uses Euclidean 

distance between samples and exponential similarity kernel to construct the similarity 

matrix. ab-SNF is a weighted version of SNF which incorporates phenotype information. 

NEMO extended SNF to include partially available data for samples. CIMLR and rMKL-

LPP are both multiple kernel learning methods with optimization procedure. CIMLR only 

considers Gaussian kernels, but it can select features. rMKL-LPP has the flexibility of 

incorporating different kernels per omics dataset.

Scenario IV (knowledge integration):

There is growing biological knowledge, for example, interactions between genes, the 

potential cis-acting regulatory mechanism between copy number variation, and methylation 

and gene expression. Researchers may want to utilize this accumulated knowledge to 

guide the clustering procedure for more biologically meaningful results. Also, there are 

many publicly available databases providing the related information, such as pathway 

databases KEGG (Ogata et al., 1999), Reactome (Joshi-Tope et al., 2005), Gene Ontology 

(Ashburner et al., 2000), and so on. However, only limited integrative multi-omics clustering 

methods can borrow prior biological information, including IS-K means and PARADIGM. 

IS-K means groups features based on prior knowledge (e.g., pathway information) and 

incorporates them in the objective function through a group lasso penalty. Thus, it can select 

critical groups (e.g., pathways) during the clustering procedure although it can only deal 

with continuous data. PARADIGM can incorporate pathway information, but it requires 

users to upload data to the designated website to perform the analysis.
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4 | CONCLUSION

We have summarized integrative multi-omics clustering methods into three general 

categories, concatenated clustering, clustering of clusters, and interactive clustering based 

on when and how multi-omics data are processed for clustering. Depending on the main 

strategy used during clustering, we further classified methods into different approaches 

under each category. We discussed the mathematical basis for each method and its strengths 

and weaknesses. One uniqueness of this work is that we also outlined four general scenarios 

with preferred methods for researchers to strategize their selection of integrative multi-omics 

clustering methods for their future studies.

Concatenated clustering is a straightforward strategy for integrative multi-omics clustering, 

following a natural logic that finds shared information first and performs clustering base 

on the shared information later. This is an obvious difference comparing to another two 

categories of methods. Joint latent model, low-rank approximation, and NMF intuit that a 

low-dimensional matrix can represent the sample clustering membership across multi-omics 

data. Notably, some methods can be grouped into more than one of these three approaches 

based on how the data matrix is decomposed. For example, JIVE can be viewed as a 

low-rank approximation approach if the data matrix is composed of the summation of 

low-rank constrained joint structure and individual structure, and an error matrix. JIVE also 

can be viewed as a joint latent model approach if the joint structure is further constructed 

by a product of a joint latent matrix and data-specific loading matrix. In addition, if all 

elements in the joint latent matrix and data specific loading matrix are restricted to be 

non-negative, JIVE even can be viewed as an NMF approach. Noisy data is commonly seen 

in the integrative analysis of multi-omics data, and concatenated clustering methods are 

generally sensitive to data with noise. Methods from clustering of clusters, on the contrary, 

perform well for noisy data. The perturbation-aided approach itself is based on perturbation 

generated by either resampling or adding noise to the original data. Therefore, methods 

from the perturbation-aided approach generally can provide a more reliable clustering result. 

Similarity-based approach such as Spectrum and SNF were also reported robust to noise 

(John et al., 2020; Tini et al., 2019). One major concern for clustering of clusters is 

whether the primary clustering information across different omics data is consistent before 

performing further integrative clustering. If not, the final clustering results may not be 

meaningful. Thus, it is worth applying some measures to evaluate the consistency of primary 

clustering results, such as the Rand index (Rand, 1971), adjusted Rand index (Hubert & 

Arabie, 1985), Jaccard similarity (Levandowsky & Winter, 1971), variation of information 

(Meilă, 2003), and so on.

As mentioned in the very beginning, determining the biological question before conducting 

the multi-omics analysis is very important. We focus on the disease subtyping using 

multi-omics data which can be addressed by the integrative multi-omics clustering methods 

included in this review. In addition, people may also be interested in identifying potential 

therapeutic targets for diseases which is related to clustering methods that can select 

features, as discussed in the above Scenario I of implement recommendation. Feature 

selection can be achieved by incorporating a penalty term in the objective function or 

by adding Bayesian indicator variables/parameters in many methods from concatenated 
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clustering and interactive clustering. However, most methods from clustering of clusters 
cannot perform feature selection because either the perturbation procedure or the similarity 

construction procedure relies on information from all features, except for CIMLR which 

includes a second step to select features through a hypergeometric test. Feature selection 

also has been studied in the model-based clustering methods which incorporate variable 

selection procedure although not under multi-omics settings (Fop & Murphy, 2018; Guo 

et al., 2010; Zhou et al., 2009). Besides, some of our included methods can address some 

specific questions other than disease subtyping. For example, jNMF can identify correlated 

profiles across different type of measures (e.g., gene expression, DNA methylation, 

microRNA expression); PARADIGM can infer sample-specific pathway activities from 

multi-omics data.

Some limitations of this review must be acknowledged. First, we focus more on integrative 

multi-omics clustering methods that can lead to direct sample assignments. Some other 

integrative clustering methods were not included here, for example, correlation and 

covariance-based methods and their extensions (Hotelling, 1936; D. Hwang et al., 2004; 

Witten & Tibshirani, 2009; Wold et al., 2001). They can also be interesting if researchers 

want to disentangle the correlations between omics data. Second, because we assume that 

the same group of features contributes to the clusters instead of different groups of features 

contributing to different clusters, only one-dimensional clustering methods were discussed 

here. For the two-dimensional clustering methods, for example, bi-clustering, people may 

consult with a recent systematic review by Padilha and Campello (2017). Third, we only 

listed four common scenarios with recommendations in this work for a general guidance or 

as a starting point. In real applications, situations can be much more complicated and require 

more effort to choose the appropriate method.

Even though many integrative multi-omics clustering methods have been developed as 

described above, many potential areas still require further investigation. For example, most 

methods require a common clustering structure shared by all omics data. This may not be 

the case in real-world data, especially when the omics data are generated from very different 

aspects of the same samples. How to properly assess this inconsistent clustering structure 

among multi-omics data is difficult. Even though we have methods like MDI and PSDF 

which can address part of this issue, they have limitations such as too many parameters 

to specify and computational cost. Therefore, there is still much work to do in this area. 

Current clustering methods generally assume that samples can all be grouped into some 

clusters. However, some samples may just be outliers due to many reasons, for example, 

mistakenly measured. Therefore, these samples should not be considered for any clusters. 

Currently, there is a paucity of methods that can deal with this situation. This could be 

especially important in biological studies. As the quick increase of our domain knowledge, 

methods that can incorporate prior information is worthy of further study in the near future. 

Currently there are several methods available for performing clustering while taking into 

account for prior knowledge (Dotan-Cohen et al., 2007; Huang & Pan, 2006; Tari et al., 

2009; Verbanck et al., 2013), as well as methods for integrative analysis for multi-omics 

data assisted by prior knowledge (de Tayrac et al., 2009; Tong et al., 2020; J. Yan et al., 

2018). It is an interesting and important research topic to develop methods for clustering of 

multi-omics data that take advantage of prior information.
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FIGURE 1. 
Three categories of integrative multi-omics clustering methods. Multi-omics data (e.g., 

DNA methylation, copy number variation, gene expression) are collected for each sample. 

Integrative multi-omics clustering methods can be used to analyze such data and produce 

sample clusters. We summarized those methods into three categories. Concatenated 
clustering: combine the multi-omics data into one matrix or search for the shared structure, 

followed by the final clustering; clustering of clusters: Obtain the clustering information 

from each omics dataset first and follow by the final clustering; interactive clustering: 

simultaneously integrate multi-omics data and perform clustering
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TABLE 1

Summary of integrative multi-omics clustering methods under three categories and different approaches

Category Approach Method Description Strength Weakness Implementation

Concatenated 
clustering

Joint latent 
model

iCluster 
(iClusterPlus, 
iClusterBayes)

Assume all omics 
data originate from 
a low dimensional 
latent matrix which 
can be used for the 
final clustering with 
probabilistic model

Feature selection Computationally 
intensive

R

moCluster Use the sparse 
consensus principal 
component to define a 
set of latent variables to 
get the final clustering

Efficient with 
convergence to a 
deterministic 
solution

Delicate 
normalization 
procedure required

R

Low-rank 
approximation

LRAcluster Assume different omics 
data are independent 
conditional on the 
stacked parameter 
matrix with low-rank 
constraints

Convex objective 
function leading 
to a global 
solution

No feature 
selection

R

JIVE Decompose each data 
into three parts: low-
rank approximation for 
joint variation, low-rank 
individual variation, 
and residual noise

Account for 
individual data 
variation; feature 
selection

Only applicable to 
continuous data; 
not robust to 
outliers

Matlab, R

Non-negative 
matrix 
factorization

jNMF (iNMF, 
intNMF)

Approximate each 
omics data by a product 
of two non-negative 
matrices and minimize 
the approximation error

Feature selection Local optimal 
solution only

Matlab, Python, 
R

K-means 
related

IS-K means Extend sparse K-means 
for multi-omics data 
through normalization 
and incorporate prior 
knowledge to select 
biologically meaningful 
features

Can incorporate 
prior knowledge

Only applicable to 
continuous data; 
delicate 
normalization 
procedure required

R

Graph-based PARADIGM Develop a probabilistic 
graphical model and 
construct an integrated 
pathway activity matrix 
for features which can 
be used for clustering

Can incorporate 
prior knowledge

Pathway 
knowledge 
required; need 
submit data into 
the designated 
website to run the 
analysis

Web/API

Clustering of 
clusters

Perturbation-
aided

COCA Implement consensus 
clustering approach 
(generate perturbed 
datasets through 
resampling)

Direct apply on 
different omics 
data without the 
need of 
normalization

No feature 
selection

NA

PINS 
(PINSPlus)

Generate perturbed 
datasets by adding 
Gaussian noise to 
the original data and 
choose the optimal 
number of clusters 
through perturbation

Robust to data 
with noise

No feature 
selection

R

Similarity-
based

Spectrum Construct sample-wise 
similarity matrix for 
each omics data using 
its proposed kernel first 
and then combine them 
to construct a Laplacian 
matrix followed by 

Robust to data 
with noise; 
computational 
efficient

No feature 
selection

R
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Category Approach Method Description Strength Weakness Implementation

spectral clustering to 
get the final clustering

SNF (ab-SNF, 
NEMO)

Construct sample-wise 
similarity matrix for 
each omics data first 
and then fuse them 
together followed by 
the final clustering

Computational 
efficient; can deal 
with mixed type 
of data

No feature 
selection

R, Matlab

CIMLR Multiple kernel learning 
method that learns 
the similarity matrix 
that best fits the data 
through an optimization 
procedure constructed 
by a set of Gaussian 
kernels

Feature selection Gaussian kernels 
only

R, Matlab

rMKL-LPP Multiple kernel 
learning method 
that simultaneously 
optimizes kernel weight 
and projects data into 
a lower dimensional 
space

Flexibility of 
incorporating 
multiple different 
kernels

No feature 
selection

Upon request

Interactive 
clustering

Dirichlet 
mixture 
model-based

MDI Use Dirichlet-
multinomial mixture 
model with data 
dependence captured 
by parameters at the 
allocation level

Can deal with 
mixed type of 
data; no 
requirement for a 
consistent 
clustering 
structure

Computational 
intense with many 
parameters to 
specify

Matlab

BCC Use Dirichlet 
mixture model to 
simultaneously identify 
the dependence and 
heterogeneity across 
multi-omics data

Allow 
heterogeneity of 
multi-omics data 
when identify the 
overall clustering

No feature 
selection; a 
consistent 
clustering structure 
required

R

PSDF Use two-level hierarchy 
of Dirichlet process 
mixture model to 
separate concordant 
samples with feature 
selection

Feature selection; 
No requirement 
for a consistent 
clustering 
structure

Only integrate two 
omics data; 
Discretization of 
input data required

Matlab

Notes: Methods in the parenthesis are extended methods based on the original method in front of the parentheses. NA, not available.
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TABLE 2

Four scenarios with recommended methods

Scenarios Required characteristics for 
method

Recommended methods

I. (Feature selection): The need to identify clinically 
relevant disease subtypes and driving molecular signatures 
which can be targeted for treatment

Performing both sample 
clustering and feature selection

iCluster; iClusterPlus; iClusterBayes; 
intNMF; IS-K means; CIMLR; PSDF

II. (Mixed-type data): Large scale genomic data of mixed-
type in large consortia

Integrating mixed type of data iClusterPlus; iClusterBayes; moCluster; 
LRAcluster; MDI; SNF; CIMLR; rMKL-
LPP; PINS; PINSPlus

III. (Computational efficiency): Concern on the 
computational resources and consumption of time

Computationally efficient Spectrum; SNF; ab-SNF; NEMO; CIMLR; 
rMKL-LPP

IV. (Knowledge integration): Leveraging the prior 
knowledge

Incorporating prior information IS-K means; PARADIGM
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