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MEA‑Net: multilayer edge 
attention network for medical 
image segmentation
Huilin Liu1, Yue Feng1*, Hong Xu1,2, Shufen Liang1, Huizhu Liang1, Shengke Li1, Jiajian Zhu1, 
Shuai Yang3 & Fufeng Li3*

Medical image segmentation is a fundamental step in medical analysis and diagnosis. In recent 
years, deep learning networks have been used for precise segmentation. Numerous improved 
encoder–decoder structures have been proposed for various segmentation tasks. However, high‑
level features have gained more research attention than the abundant low‑level features in the 
early stages of segmentation. Consequently, the learning of edge feature maps has been limited, 
which can lead to ambiguous boundaries of the predicted results. Inspired by the encoder–decoder 
network and attention mechanism, this study investigates a novel multilayer edge attention network 
(MEA‑Net) to fully utilize the edge information in the encoding stages. MEA‑Net comprises three 
major components: a feature encoder module, a feature decoder module, and an edge module. 
An edge feature extraction module in the edge module is designed to produce edge feature maps 
by a sequence of convolution operations so as to integrate the inconsistent edge information from 
different encoding stages. A multilayer attention guidance module is designed to use each attention 
feature map to filter edge information and select important and useful features. Through experiments, 
MEA‑Net is evaluated on four medical image datasets, including tongue images, retinal vessel images, 
lung images, and clinical images. The evaluation values of the Accuracy of four medical image datasets 
are 0.9957, 0.9736, 0.9942, and 0.9993, respectively. The values of the Dice coefficient are 0.9902, 
0.8377, 0.9885, and 0.9704, respectively. Experimental results demonstrate that the network being 
studied outperforms current state‑of‑the‑art methods in terms of the five commonly used evaluation 
metrics. The proposed MEA‑Net can be used for the early diagnosis of relevant diseases. In addition, 
clinicians can obtain more accurate clinical information from segmented medical images.

Medical image segmentation is a key step in medical image applications. With the development of image pro-
cessing techniques and machine learning methods, several state-of-the-art deep learning (DL) algorithms have 
been applied to medical image segmentation owing to their excellent feature extraction  capability1–5. To obtain a 
segmentation model with high accuracy, DL-based models need to be trained with a significant amount of image 
data. However, it is difficult to obtain a tremendous amount of annotated image data because clinical experts 
annotate a large number of segmentation masks with pixels, which is an expensive and time-consuming  process6.

Hence, U-Net1 has been proposed for biomedical image segmentation because it requires only a small 
number of training samples and is commonly used in medical image analysis. Many variations based on the 
encoder–decoder structure have been proposed for different medical image segmentation  tasks7–10. DENSE-
Inception U-Net11 integrates the Inception-Res  module12,13, densely connecting the convolutional modules for 
extraction of features and deepening of the network without additional parameters. CE-Net14 applies different 
receptive fields to detect different sizes of targets, obtaining more high-level feature information in medical 
imaging.

On the other hand, many researchers have introduced attention mechanisms to obtain necessary 
 information15. Attention U-Net16 uses a novel attention gate module to highlight salient features between the 
encoding and decoding paths. GC-Net17 designs global context attention in the decoding path to produce more 
representative features.  CPFNet18 proposes multiple global pyramid guidance to obtain different levels of global 
context information in a skip connection.
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However, the aforementioned systems only use deep image features for segmentation, ignoring shallow image 
 features19. Although DL has been successfully used to improve the performance of medical image segmentation, 
the capability to suppress redundant information is still limited.

The deep layers of U-Net provide a high-level feature map with rich semantic information, and its shallow lay-
ers provide a low-level detailed feature map, such as edge, color, and  gradients20. With the development of U-Net 
variants, it is evident that rich low-level features are critical in medical image segmentation. Researchers have 
increasingly studied the influence of edge information on the performance of medical image  segmentation21–23.

To effectively use edge information, one of the low-level features, several new networks have been proposed 
to predict medical image segmentation. Shallow layers in the encoding path have richer detailed information and 
less semantic information. In contrast, deeper layers with large receptive fields have abundant semantic informa-
tion but lack detailed information.  TongueNet21 developed a morphological processing layer to detect the edges 
and refine the predicted results. Holistically-nested edge  detection22 focuses on rich hierarchical representations 
to resolve the challenging ambiguity in edge and object boundary detection. To capture richer convolutional 
features, the edge detection  module24 fully exploits multi-scale and multi-level information for edge detection, 
achieving remarkable performance. ET-Net25 designed an edge guidance module with an attention mechanism 
in the early stage such that it utilizes edge information to monitor and guide the segmentation process. AEC-
Net26 introduced an attention mechanism to learn edge and texture features simultaneously in the encoding path.

Motivated by the functional gaps in current attention mechanism systems, we propose a novel multilayer edge 
attention network (MEA-Net), as shown in Fig. 1. The network comprises two new blocks in the edge module: 
edge feature extraction (EFE) and multilayer attention guidance (MAG). EFE produces new edge feature maps 
in the early stages, and the MAG combines different individual feature maps with an attention mechanism to 
screen more abundant edge information.

This study demonstrates three aspects as follows:

1. The EFE module captures and preserves edge information in the early encoding path.
2. The MAG module suppresses irrelevant information and chooses discriminative and effective features.
3. Experiments conducted on three publicly available datasets and one clinical image dataset, results indicate 

that MEA-Net performs well for different segmentation tasks.

Methods
Overview. The architecture of the proposed network is illustrated in Fig. 1. The proposed MEA-Net consists 
of three main parts: a feature encoder, a feature decoder, and an edge module. The feature encoder employs a 
sequence of convolution and down-sampling to extract various feature maps. The feature decoder is composed 
of three cascaded decoding blocks, which are used to concatenate features from the encoding and decoding 
paths. The edge module contains the EFE and MAG modules. The EFE module is used to capture edge informa-
tion and produce edge attention maps in the early stages. The MAG module is used to filter edge information 
with different attention maps and obtain representative feature maps. Finally, the predicted map and edge map 
are combined, and then a convolution operation is performed to achieve the best prediction.

Figure 1.  Overview of the MEA-Net (a feature encoder, a feature decoder, and an edge module).
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Feature encoder. The encoder modules in encoder–decoder  networks14,18,27,28 typically use ResNet as the 
pretraining model. However, the pretraining model is trained by datasets such as  Cityscape29 and  ImageNet30, 
which are used in semantic scene  segmentation17. It is unsuitable for medical image segmentation. Therefore, we 
have designed a new feature encoder to extract more information as shown in Fig. 2. To extract local informa-
tion, a simple 3 × 3 convolution with a rectified linear unit (ReLU) and a batch normalization (BN) is used at 
the beginning of each feature encoder to enlarge the receptive field and allow for the capturing of more complex 
features. Following the 3 × 3 convolution module, two asymmetric  convolutions31,32 (3 × 1 and 1 × 3) with ReLU 
and BN are used to reduce computational complexity. We have also added a residual connection of the 1 × 1 
convolutional layer including ReLU and BN to obtain some additional spatial information in medical image 
segmentation.

Feature decoder. To restore high-resolution feature maps efficiently and better save useful information, 
new decoder blocks are used in the decoder path. In Ref 1, feature maps from the decoding path are only linked 
to the correspondingly copied feature maps from the encoding path, so a semantic gap between the two sets of 
features emerges. Therefore, we have designed a new feature decoder to bridge the gap and fuse the feature maps 
from different paths as shown in Fig. 3. Motivated by the skip connection and attention mechanism, the feature 
decoder includes two branches. In the first branch, low-level features undergo a 1 × 1 convolution to generate 
detailed information features. In the second branch, high-level features undergo a 1 × 1 convolution to produce 
new features that are restored to the same size as low-level features by bilinear interpolation. Then, these new 
features undergo global max pooling to realize the global context features. Then, two 1 × 1 convolutional lay-
ers with different non-linearity activation functions (i.e., ReLU and Sigmoid) are used to generate the relevant 
weights. Next, these new features are multiplied by these weights to obtain the global features. Finally, the global 
features are combined with the output of the first branch to produce more representative feature maps in the 
decoding path.

Edge module. Low-level features in the early stages preserve sufficient edge information. Low-level infor-
mation may be progressively weakened when it is gradually transmitted to deeper  layers33. To make good use of 
this edge information, we have designed the EFE and MAG modules, as shown in Figs. 4 and 5.

EFE. The receptive fields of the feature maps in the Encoding Block1 (E1) and the Encoding Block2 (E2) are 
different. Therefore, directly combining them can result in unsatisfactory results. Inspired by this problem, the 
developed EFE module (Fig. 4) can provide ample edge attention maps and preserve local edge characteristics in 
the early stages. First, the features of both E1 and E2 are mapped into 16 channels by a 3 × 3 convolution. Next, 
the generated feature maps from E2 are upsampled to the same resolution as E1. The two new feature maps are 
combined to capture and produce edge attention maps. The number of attention maps is 16, so we can obtain 16 
different attention maps with various edge information. The EFE module can be summarized as follows:

(1)A = Conv3×3(X1)+ U[Conv3×3(X2)]

Figure 2.  Encoding block.

Figure 3.  Decoding block.
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where A donates the output of the EFE module in the edge module, X1 and X2 are the inputs of EFEproduced 
from E1 and the E2 respectively, Conv3×3(·) represents the 3 × 3 convolution operation followed by one ReLU 
and one batch normalization, and U[·] denotes a bilinear interpolation upsampling with a rate of 2.

MAG. As discussed in the introduction, a large amount of edge information in the early stages can refine the 
spatial information of high-level features and restore image details. Motivated by the attention pooling  module34 
which associates attention outputs and feature maps, the MAG module (Fig. 5) is proposed to filter edge infor-
mation and choose discriminative and effective features. The multilayer attention maps produced by the EFE 
module have different channel information. Each attention map A1, ...,Am is multiplied by X1 to produce new 
features Upart with an attention bias. Then, partial feature maps Upart are summed to form the total feature maps 
Utotal.

After that, these new features Utotal go through a squeeze & excitation (SE)  block35 to improve the ability to 
extract the global edge features. First, the feature maps Utotal=[u1, u2, · · ·, uC] are considered a combination 
of channels ui ∈ R

H×W , performing spatial squeeze by a global average pooling layer and producing a vector 
z ∈ R

1×1×C with its kth element:

where 
(

i, j
)

 is the location of the input feature maps, H and W represent the spatial height and width.
Then, to make full use of the edge information aggregated in the squeeze operation, the excitation operation 

is used to capture channel-wise dependencies by a simple gating mechanism with a sigmoid activation 35

where W1 ∈ R
C× C

16 and W2 ∈ R
C
16×C refer to the weight of two fully connected layers respectively. δ(·) denotes 

the ReLU function and σ(·) is a sigmoid layer to reset the value of the activations of z̃ between the interval [0,1].

(2)Utotal =

N
∑

m=1

(

Upartm

)

=

N
∑

m=1

(Am ⊗ X1) (N = 16)

(3)zk = Fsqueeze(u) =
1

H ×W

H
∑

i

W
∑

j
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(
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)

(4)s = Fexcitation(z) = σ(z̃)=σ(W1(δ(W2z)))

Figure 4.  Edge feature extraction.
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These activations are adaptively tuned to ignore unnecessary channels and emphasize the important ones. 
The final output of the block is obtained by rescaling Utotal with the activations s:

Finally, the feature maps Ũ pass through one of two branches: a 1 × 1 convolution operation to produce the 
edge features Y1 in the decoding path, and another 1 × 1 convolution operation to predict the edge segmentation 
Y2 for early supervision.

where Conv1×1(·) represents the 1 × 1 convolution operation, followed by one ReLU activation and one batch 
normalization.

Loss function. The loss function for medical image segmentation typically considers class distribution 
imbalance. In our experiment, the tongue region is larger than the retinal vessel region in the image. To adapt 
the characteristics of different datasets, the Dice  loss36,37 is used in the edge module, whereas the binary cross-
entropy loss  function38 is employed in the final segmentation results. These two functions’ formulas are as fol-
lows:

(5)Ũ = FSE(Utotal) = Fscale(Utotal , s) = [s1u1, s2u2, · · ·, sCuC]

(6)Y1 = Conv1×1

(

Ũ
)

(7)Y2 = Conv1×1

(

Ũ
)

(8)LDice = 1−

2
N
∑

i
p(k, i)g(k, i)

N
∑

i
p2(k, i)+

N
∑

i
g2(k, i)

(9)LBCE = −g(k, i) log
[

p(k, i)
]

−
(

1− g(k, i)
)

log
[

1− p(k, i)
]

Figure 5.  Multilayer attention guidance.
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where N represents the number of pixels, and p(k, i) ∈ [0, 1] and g(k, i) ∈ {0, 1} are, respectively, the predicted 
image and ground truth for class k.

Finally, we design a joint loss Ltotal consisting of Dice loss LDice and cross-entropy loss LBCE to perform all 
segmentation tasks. The formula is defined as follows:

The weight α is set to 0.3 via experiments with different weights, which can obtain the best segmentation 
performance.

Experimental setup. In this section, we first introduce the medical image datasets, experiment settings, 
and evaluation metrics in our experiment.

Dataset statement. In the experiment, our approach was evaluated on three publicly available medical image 
datasets and one clinical tongue image dataset. All the experiments were carried out in compliance with relevant 
guidelines and regulations. Informed consent was obtained from all participants and/or their legal guardians.

1. The tongue image segmentation task was to segment the tongue body from the  TongeImageDataset39. The 
tongue dataset contains 300 images with their respective label images published by BioHit. The size of each 
tongue image is 768 × 576 pixels. These images have been resized to 512 × 512 pixels. These samples were 
randomly split into the training, validation, and test sets with a ratio of 8:1:1.

2. The public digital retinal images for vessel extraction (DRIVE) dataset came from a diabetic retinopathy 
screening program in the  Netherlands40. It contains 40 images and their corresponding label images. The 
image dimension is 512 × 512 pixels. It can be freely downloaded from the official website. The 40 images 
were divided into 20 images for training and 20 images for testing. In addition, the 20 training images were 
randomly split into 16 for training and 4 for validation.

3. The two-dimensional (2D) CT lung images were obtained from the Lung Nodule Analysis (LUNA) 
 competition41. We used this dataset to further evaluate the performance of the proposed MEA-Net. The 
challenge dataset contains 267 lung 2D images and their respective label images. The size of the images is 
512 × 512 pixels. In the experiment, 267 2D samples were randomly divided into 213 training, 27 validation, 
and 27 test images.

4. The clinical tongue image dataset in this study was collected from the Shanghai University of Traditional 
Chinese Medicine, Shanghai, China. Informed consent to publish identifying images has been obtained. The 
tongue images were captured by specialized equipment in an open environment. The images were annotated 
by clinical experts. An additional problem is that images captured in an open environment are vulnerable 
to light intensity, complex backgrounds, and other factors that would make segmentation more difficult. 
There are 300 tongue images with a dimension of 1080 × 1440 in the original dataset but have been resized 
to 512 × 512 due to computational limitations. In our experiments, we used 80% of the dataset for training, 
whereas the remaining 20% were used for validation and testing.

Experiment settings. The implementation is based on the public PyTorch platform. The training and testing 
beds are Windows 10 systems with an NVIDIA GeForce RTX 2080 TI graphics card. During training, we used 
the Adam  optimizer42 to train our network with batch size 4, with its hyperparameters set to the default values, 
where the initial learning rate lr = 2e−3, betas = (0.5, 0.999). The maximum epoch is 300.

Meanwhile, data augmentation was applied to avoid model overfitting including rotation, flip, translation, 
and mirroring. The images of all training datasets and their labels are used as input images into all methods. 
We also used five-fold cross-validation on four datasets. These results are shown in Tables 1, 2, 3, 4. The cross-
validation approach was used to evaluate the performance of the network and obtain as much valid information 
as possible from the small dataset.

(10)Ltotal = αLDice + (1− α)LBCE

Table 1.  Performance comparison on tongue segmentation (mean ± standard deviation). Significant values are 
in bold.

Network Accuracy Sensitivity Dice AUC BF-score

U-Net1 0.9954 ± 0.0029 0.9890 ± 0.0117 0.9886 ± 0.0066 0.9917 ± 0.0060 0.8817 ± 0.1017

Attention U-Net16 0.9953 ± 0.0045 0.9882 ± 0.0183 0.9884 ± 0.0093 0.9902 ± 0.0092 0.9013 ± 0.0882

R2U-Net45 0.9941 ± 0.0057 0.9786 ± 0.0244 0.9850 ± 0.0124 0.9814 ± 0.0121 0.7788 ± 0.1563

ResNet5013 0.9940 ± 0.0017 0.9850 ± 0.0094 0.9881 ± 0.0040 0.9906 ± 0.0044 0.8856 ± 0.1309

CE-Net14 0.9952 ± 0.0015 0.9897 ± 0.0067 0.9898 ± 0.0031 0.9879 ± 0.0032 0.8945 ± 0.1013

MultiResUNet7 0.9934 ± 0.0029 0.9805 ± 0.0142 0.9843 ± 0.0064 0.9909 ± 0.0069 0.8702 ± 0.1110

nnUnet43 0.9954 ± 0.0012 0.9874 ± 0.0046 0.9903 ± 0.0037 0.9927 ± 0.0034 0.8101 ± 0.0836

MEA-Net (ours) 0.9957 ± 0.0010 0.9904 ± 0.0015 0.9902 ± 0.0022 0.9938 ± 0.0010 0.9075 ± 0.0841
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Methods for comparison. Several comparison methods were selected for application to four datasets, such as 
U-Net1,  MutiResUNet7,  ResNet5013, CE-Net14, Attention U-Net16, and  nnUnet43. Meanwhile, some of the com-
parison methods were applied to specific datasets. For example, ET-Net25 and AEC-Net26 were applied to the 
DRIVE and LUNA datasets. All comparison experiments were carried out by the above hardware equipment 
with the parameter settings of the relevant papers.

Evaluation metrics. To evaluate segmentation performance, we used accuracy (Acc), sensitivity (Sen), and the 
Dice coefficient (Dice) to measure the accuracy of semantic segmentation for medical images, which are, respec-
tively, defined as follows Eqs. (11)–(13). Besides, BF-Score is calculated to decide whether a boundary point has 
a match or  not44, which is defined as Eq. (14):

(11)Accuracy =

∑N
i=1

TP+TN
TP+TN+FP+FN

N

(12)Sensitivity =

∑N
i=1

TP
TP+FN

N

Table 2.  Performance comparison on retinal vessel image segmentation (mean ± standard deviation). 
Significant values are in bold.

Network Accuracy Sensitivity Dice AUC BF-Score

U-Net1 0.9635 ± 0.0075 0.7638 ± 0.0496 0.8060 ± 0.0097 0.8433 ± 0.0238 0.6831 ± 0.0878

CE-Net14 0.9545 ± 0.0068 0.8125 ± 0.0443 0.8067 ± 0.0139 0.9005 ± 0.0214 0.6936 ± 0.1033

ET-Net25 0.9560 ± 0.0076 0.7893 ± 0.1257 0.8081 ± 0.0419 0.8988 ± 0.0582 0.7014 ± 0.1044

AEC-Net26 0.9674 ± 0.0087 0.8173 ± 0.0479 0.8288 ± 0.0242 0.8444 ± 0.0227 0.7027 ± 0.1137

AA-UNet5 0.9542 ± 0.0052 0.8079 ± 0.0576 0.8204 ± 0.0144 0.8907 ± 0.0271 0.6885 ± 0.0950

DGFAU-Net19 0.9577 ± 0.0065 0.7583 ± 0.0459 0.7576 ± 0.0084 0.8821 ± 0.0220 0.6972 ± 0.1035

CSAU46 0.9601 ± 0.0057 0.8229 ± 0.0419 0.8297 ± 0.0105 0.7281 ± 0.0201 0.6622 ± 0.1110

nnUnet43 0.9690 ± 0.0040 0.7873 ± 0.0364 0.8115 ± 0.0120 0.9109 ± 0.0246 0.8064 ± 0.1360

MEA-Net (ours) 0.9736 ± 0.0064 0.8349 ± 0.0594 0.8377 ± 0.0131 0.9113 ± 0.0282 0.8987 ± 0.0216

Table 3.  Performance comparison on lung segmentation (mean ± standard deviation). Significant values are in 
bold.

Network Accuracy Sensitivity Dice AUC BF-Score

U-Net1 0.9923 ± 0.0024 0.9824 ± 0.0078 0.9834 ± 0.0083 0.9818 ± 0.0031 0.9135 ± 0.0851

ET-Net25 0.9868 ± 0.0069 0.9765 ± 0.0104 0.9832 ± 0.0177 0.9911 ± 0.0053 0.9014 ± 0.0940

AEC-Net26 0.9927 ± 0.0019 0.9810 ± 0.0094 0.9843 ± 0.0071 0.9917 ± 0.0038 0.9083 ± 0.0890

CE-Net14 0.9935 ± 0.0019 0.9876 ± 0.0089 0.9852 ± 0.0057 0.9916 ± 0.0038 0.9208 ± 0.0970

Attention U-Net16 0.9922 ± 0.0023 0.9765 ± 0.0112 0.9832 ± 0.0067 0.9908 ± 0.0052 0.9197 ± 0.0848

CPFNet18 0.9895 ± 0.0022 0.9837 ± 0.0083 0.9843 ± 0.0071 0.9907 ± 0.0032 0.9129 ± 0.0466

MultiResUNet7 0.9932 ± 0.0024 0.9903 ± 0.0085 0.9829 ± 0.0071 0.9922 ± 0.0035 0.9183 ± 0.0455

nnUnet43 0.9937 ± 0.0028 0.9907 ± 0.0054 0.9823 ± 0.0078 0.9922 ± 0.0045 0.9164 ± 0.0450

MEA-Net (ours) 0.9942 ± 0.0022 0.9903 ± 0.0103 0.9858 ± 0.0057 0.9923 ± 0.0046 0.9332 ± 0.0362

Table 4.  Performance comparison on clinical tongue image segmentation (mean ± standarddeviation). 
Significant values are in bold.

Network Accuracy Sensitivity Dice AUC BF-Score

U-Net1 0.9985 ± 0.0024 0.8836 ± 0.2339 0.9025 ± 0.2010 0.7913 ± 0.1169 0.8969 ± 0.1799

CE-Net14 0.9987 ± 0.0011 0.9356 ± 0.1711 0.9231 ± 0.1681 0.8823 ± 0.0855 0.9372 ± 0.0820

MutiResUNet7 0.9984 ± 0.0022 0.9147 ± 0.1825 0.9183 ± 0.1386 0.8818 ± 0.0912 0.8893 ± 0.1593

Attention U-Net16 0.9983 ± 0.0029 0.8791 ± 0.2533 0.8862 ± 0.2170 0.8773 ± 0.1266 0.8603 ± 0.2204

ResNet5013 0.9990 ± 0.0005 0.9417 ± 0.0644 0.9547 ± 0.0375 0.8659 ± 0.0322 0.9260 ± 0.1028

nnUnet43 0.9993 ± 0.0005 0.9687 ± 0.0275 0.9678 ± 0.0198 0.9833 ± 0.0151 0.8783 ± 0.1554

MEA-Net (ours) 0.9993 ± 0.0004 0.9701 ± 0.0208 0.9704 ± 0.0141 0.9849 ± 0.0104 0.9521 ± 0.0657
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where TP, FP, TN, and FN denote true positives, false positives, true negatives, and false negatives, respectively. 
N is the total number of test images.

The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of 
the models. The AUC will be equal to 1 when the model is perfect.

Results
Tongue image segmentation. We compared the proposed MEA-Net with existing state-of-the-art algo-
rithms, including U-Net1, Attention U-Net16, R2U-Net45,  ResNet5013, CE-Net14,  MultiResUNet7, and  nnUnet43. 
As shown in Table 1, our proposed MEA-Net achieved 0.9957, 0.9904, and 0.9902 in terms of Acc, Sen, and Dice. 
Compared with MultiResUNet, the Acc, Sen, and Dice of the proposed method increased by 0.0023, 0.0099, and 
0.0059, respectively. Furthermore, the AUC of the proposed network reached 0.9938.

As can be seen from Table 1, the above metrics of nnUnet were the same as those of our proposed MEA-Net. 
Although the difference in Dice values between the two networks was 0.001, the standard deviation in MEA-Net 
was smaller. The BF-Score of our proposed MEA-Net reached 0.9075, which was 0.0974 higher than that of nnU-
net. The performances of these methods are similar to that of the proposed network because the tongue images 
acquired in the controlled environment only contain the mouth area and part of the face area. The DL-based 
networks can better eliminate irrelevant areas (lips and teeth) with an Acc greater than 0.9. Figure 6 shows exam-
ples of tongue image segmentation for visual comparison. Each testing image has its corresponding Dice value 
in Fig. 6. (The subsequent figures are shown in the same way.) The visual comparisons are very close, so the Dice 
values of all compared methods for each example image further show the superiority of the proposed method.

(13)Dice =

∑N
i=1

2×TP
2×TP+FP+FN

N

(14)
BF − Score =

∑N
i=1

2× TP
TP+FP×

TP
TP+FN

TP
TP+FP+

TP
TP+FN

N

Figure 6.  Sample results of tongue image segmentation. (The Dice values for each legend are in brackets).
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Retinal vessel image segmentation. We compared the proposed MEA-Net with state-of-the-art algo-
rithms, including U-Net1, CE-Net14, ET-Net25, AEC-Net26, AA-UNet5, DGFAU-Net19,  CSAU46, and  nnUnet43. 
As shown in Table 2, our proposed MEA-Net achieved 0.9736, 0.8349, 0.8377, and 0.9113 in terms of Acc, Sen, 
Dice, and AUC, respectively, which were superior to those of other methods. The Dice and AUC of the proposed 
network were 0.0317 and 0.0680—higher than those of the classical U-Net, which implied that MEA-Net was 
suitable for retinal vessel segmentation. Compared to other comparison networks, nnUnet showed substantial 
improvements in the results, especially the BF-Score value. Our method achieved 0.8987 in BF-Score, which was 
0.0823 higher than that of nnUnet. Our method, ET-Net, and AEC-Net are all edge attention networks, but the 
results of our methods show an improvement over previous methods. Some examples for visual comparison are 
shown in Fig. 7, which show that more detailed blood vessels can be segmented and their edges are clearer in 
blue rectangles via MEA-Net. The Dice values were given below for each comparison method.

Lung image segmentation. We compared our method with other excellent encoder–decoder structures, 
including U-Net1, ET-Net25, AEC-Net26, CE-Net14, Attention U-Net16,  CPFNet18,  MultiResUNet7, and  nnUnet43. 
From the comparison shown in Table 3, the MEA-Net achieved 0.9942 in Acc, 0.9903 in Sen, and 0.9858 in 
Dice, which was better than U-Net. In comparison to the performances of ET-Net, Acc increased from 0.9868 
to 0.9942, Sen increased from 0.9765 to 0.9903, and Dice increased from 0.9832 to 0.9858 by 0.0026. In addi-
tion, the MEA-Net achieved 0.9923 in AUC which was higher than other methods, and proved that the new 
encoder–decoder structure with the edge module was beneficial for lung segmentation as well. The MEA-Net 
reached 0.9332 in BF-Score which was 0.0168 higher than that of nnUnet. Figure 8 shows some examples for 
visual comparison. It can be seen that it is difficult for the lung image segmentation task to segment details (in 
the red rectangles) in the lung. The proposed MEA-Net can use the edge module to detect the circle and restore 
the edge information (in the blue rectangles).

Clinical image segmentation. We compared the proposed MEA-Net with state-of-the-art algorithms, 
including U-Net1, CE-Net14,  MultiResUNet7, Attention U-Net16,  ResNet5013, and  nnUnet43. As shown in Table 4, 
our proposed MEA-Net achieved 0.9993, 0.9701, 0.9704, and 0.9849 in terms of Acc, Sen, Dice, and AUC respec-
tively. Compared to the performances of MultiResUNet, our method’s Acc increased from 0.9984 to 0.9993, its 
Sen increased from 0.9147 to 0.9701, and its Dice increaseds from 0.9183 to 0.9704 by 0.0521. Compared to 
U-Net, the proposed network had a great improvement in AUC and BF-Score, which increased by 0.1936 and 
0.0552. The proposed MEA-Net can still obtain satisfactory performances in an open environment. Some exam-

Figure 7.  Sample results of DRIVE segmentation. (The Dice values for each legend are in brackets).
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ples for visual comparison of clinical tongue image segmentation were shown in Fig. 9. The figure shows that 
MEA-Net has more detailed edge information than previous networks. For example, CE-Net not only produces 
disconnected lip areas but also loses the edge information of the tongue region. This may cause clinical experts 
to make incorrect image diagnoses.

Ablation studies. To further evaluate the effectiveness of MEA-Net, we conducted ablation studies using 
four different datasets as examples. The results were listed in Table 5. In the ablation studies, we used ResNet50 
instead of the feature encoder as the backbone and chose the encoder–decoder structure shown in Fig. 1 as the 
baseline. In Table 5, the performance of the proposed MEA-Net was higher than those of the other combinations.

As shown in Table 5, the baseline achieved Dice values of 0.9865, 0.8331, 0.9852, and 0.9439 on TongueIm-
ageDataset, DRIVE, LUNA, and clinical images, respectively. In DRIVE and LUNA datasets, the Dice value of 
the proposed encoder–decoder structure was higher than that of U-Net and Backbone. Furthermore, when we 
appended the proposed edge module to the backbone (backbone + edge module), the performance in different 
datasets was slightly improved. It is demonstrated that both the new encoder–decoder structure and the edge 
module are beneficial for medical image segmentation in these datasets. ResNet50 with the edge module had a 
small improvement in terms of Dice, but the result was lower than that of the proposed network. These results 
indicate that pre-trained ResNet50 blocks are unsuitable for these medical image datasets.

To study the effect of EFE, we only added EFE to the baseline (baseline + EFE), and the results prove that the 
edge module could guide the network to learn edge information that is important for segmentation. In addi-
tion, we appended the MAG module to the baseline without the EFE module (baseline + MAG). For example, 

Figure 8.  Sample results of LUNA segmentation. (The Dice values for each legend are in brackets).
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compared with the baseline network, the Dice value in TongueImageDataset increased from 0.9865 to 0.9887 
by 0.0022, demonstrating that the MAG module has the learning capability to choose the edge information for 
the segmentation task.

We also conducted an ablation study for the EFE module. Different encoding blocks (including E1, E2 E3, 
and E4) were combined in comparative experiments. After a series of convolution upsampling operations, the 
output size of each compared EFE module was restored to the same size as that of E1. The EFE module produced 
feature maps with different channel information. Each feature map was then multiplied by E1 to produce new 
features with attentional bias, thus the output size of the EFE was the same as that of E1.

The proposed EFE module used different encoding stages to produce edge attention maps. First, we tested 
the EFE module with E1 (baseline + edge module (E1)) in four different datasets but the performance was not 
better than that of the proposed baseline. Next, we tested the EFE module with E1 and E2 (MEA-Net (E1 + E2)). 
The comparison results showed that our MEA-Net reached better results in four datasets. It can be observed that 

Figure 9.  Sample results of clinical image segmentation. (The Dice values for each legend are in brackets).
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this combination can use the edge information in the early stages to produce useful attention maps. In addition, 
we tested the EFE module with three encoding stages (baseline + edge module (E1 + E2 + E3)). In the DRIVE 
dataset, compared to MEA-Net, the Dice value decreased from 0.8377 to 0.8296 by 0.0081. The network may 
have redundant information even though the edge guidance maps are produced from three encoding stages. This 
shows that after E3 passes through two pooling layers, it loses several low-level features, preventing it from acting 
as the edge guidance feature in the decoding path. As the number of encoding blocks increases, the segmentation 
performance of the network does not improve but rather decreases.

Particularly when using an encoding block alone (like Edge Module (E3) and Edge Module (E4)), the per-
formance of the segmentation was significantly reduced. For example, the output size of E3 and E4 became very 
small in the encoding process. The directly upsampling operation to recover to the same size as E1 loses a lot of 
information. Meanwhile, a lack of rich edge information will be detrimental to the subsequent guided assign-
ment of weights by the MAG module.

Discussion. In this section, we discuss the performance of the proposed network compared to other net-
works in different medical image segmentation tasks. To capture and use the edge information in the encoding 
path and obtain a better performance in medical segmentation tasks, we proposed a new encoder–decoder 
structure with an edge module called MEA-Net. The edge module consists of EFE and MAG modules. The 
main focuses of the proposed network are as follows: (1) Design a new feature encoder to replace the pretrained 
backbone of ResNet50 to extract more information that better matches the characteristics of medical images. 
(2) Design a new feature decoder by skip connection and attention mechanism to fuse the various information 
between the encoding and decoding paths. (3) Propose the EFE and MAG module in the edge branch to obtain 
more detailed edge information and eliminate redundant information. (4) Test MEA-Net on four different medi-
cal datasets.

Previous state-of-the-art networks for medical image segmentation focused on how to use larger receptive 
fields to improve the ability to capture multiscale information. However, these networks ignore low-level features. 
Our proposed network focused on making full use of edge information, which is a low-level feature. We used BF-
Score as quantitative results of the edge segmentation. In the DRIVE database, the proposed network showed an 
improvement in BF-Score, as can detect and segment the detailed edges of the retinal vessel. As shown in Tables 1 
and 3, compared to other networks, the proposed MEA-Net improved the edge result as shown in higher BF-
Score. As shown in Fig. 8, some details in the lung were able to be detected and segmented. Because of the edge 
module, the network, during training, was able to obtain and send the circle information to the decoding path. 
In addition, the proposed network achieved excellent performance in clinical image segmentation, as shown in 
Table 4. Although images were taken in an open environment, the edge module was able to filter irrelevant edge 
information so that the network can detect the segmentation region.

To further evaluate the effectiveness and robustness of MEA-Net, we performed several ablation experi-
ments, as shown in Table 5. The new encoder–decoder structure as the baseline showed to be more suitable 
than U-Net and the backbone. As U-Net only uses two common 3 × 3 convolutions to capture features, it is 
difficult to discover more information. ResNet50 applied the residual connection to deepen the network, but 
it was not beneficial for medical image segmentation. Table 5 shows that the performances of U-Net and the 
backbone of ResNet50 are weaker than the proposed feature encoder and decoder. In addition, we designed 

Table 5.  Ablation studies for the edge module on four datasets (mean ± standard deviation). Significant values 
are in bold.

Network

Tongue DRIVE LUNA Clinical

Dice

U-Net 0.9886 ± 0.0066 0.8060 ± 0.0097 0.9834 ± 0.0083 0.9025 ± 0.2010

U-Net + Edge Module 0.9899 ± 0.0205 0.8172 ± 0.0090 0.9828 ± 0.0126 0.9101 ± 0.0637

Backbone 0.9850 ± 0.0153 0.8306 ± 0.0835 0.9814 ± 0.0121 0.9547 ± 0.0375

Backbone + Edge Module 0.9885 ± 0.0139 0.8321 ± 0.0841 0.9852 ± 0.0053 0.9552 ± 0.0274

Baseline 0.9865 ± 0.0156 0.8331 ± 0.0516 0.9852 ± 0.0064 0.9439 ± 0.0540

Baseline + Edge Module (without MAG) 0.9885 ± 0.0219 0.8359 ± 0.0131 0.9857 ± 0.0096 0.9457 ± 0.0303

Baseline + Edge Module (without EFE) 0.9887 ± 0.0163 0.8330 ± 0.0513 0.9852 ± 0.0063 0.9472 ± 0.0307

Baseline + Edge Module (E1) 0.9858 ± 0.0398 0.8206 ± 0.0500 0.9811 ± 0.0098 0.9583 ± 0.0483

Baseline + Edge Module (E1 + E2 + E3) 0.9854 ± 0.0158 0.8296 ± 0.0091 0.9884 ± 0.0087 0.9523 ± 0.0165

Baseline + Edge Module (E1 + E2 + E3 + E4) 0.9842 ± 0.0215 0.8028 ± 0.0144 0.9850 ± 0.0061 0.9600 ± 0.0167

Baseline + Edge Module (E2) 0.9854 ± 0.0145 0.8050 ± 0.0152 0.9844 ± 0.0061 0.9648 ± 0.0194

Baseline + Edge Module (E2 + E3) 0.9878 ± 0.0099 0.8029 ± 0.0288 0.9842 ± 0.0068 0.9640 ± 0.0203

Baseline + Edge Module (E2 + E3 + E4) 0.9858 ± 0.0116 0.7913 ± 0.0140 0.9732 ± 0.0183 0.9602 ± 0.0149

Baseline + Edge Module (E3) 0.9882 ± 0.0092 0.7988 ± 0.0090 0.9791 ± 0.0113 0.9626 ± 0.0170

Baseline + Edge Module (E4) 0.9833 ± 0.0169 0.8029 ± 0.0104 0.9847 ± 0.0053 0.9549 ± 0.0311

Baseline + Edge Module (E3 + E4) 0.9806 ± 0.0231 0.7921 ± 0.0162 0.9805 ± 0.0081 0.9626 ± 0.0359

MEA-Net (E1 + E2) 0.9902 ± 0.0022 0.8377 ± 0.0131 0.9885 ± 0.0057 0.9704 ± 0.0141
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different combinations of the three models to validate the efficacy of the edge module. These Dice values have 
been slightly improved. This reveals that the proposed EFE and MAG modules can choose effective edge features 
and improve the performance of the network. The MAG module uses the characteristics of each attention map 
to obtain different edge information.

As shown in Table 5, the combination of E1 and E2 in the EFE module is the best option because E2 contains 
necessary edge information, and inversely, E3 and E4 have small-size high-dimensional information; thus, redun-
dant information can be easily produced during the upsampling operation. Experimental results demonstrate that 
the new encoder–decoder structure with the edge module in E1 and E2 uses edge information for segmentation 
tasks. This can explain why the proposed MEA-Net is more beneficial for medical image segmentation.

Even though the proposed network has achieved good results in different segmentation tasks, it still has 
some limitations: (1) The network concentrates on edge information and ignores high-level features in the 
encoding and decoding paths. (2) Our model is designed for 2D medical image segmentation. In recent years, 
three-dimensional (3D) medical applications have become increasingly desirable for various medical image 
segmentation tasks. (3) Compared with the other three datasets, the DRIVE dataset contains a relatively small 
number of images even though data augmentation can be applied to it. In our future work, we aim to use both 
low-level and high-level features based on the components of MAE-Net in 3D medical image  segmentation43.

In conclusion, our experimental results indicate that the developed MEA-Net can combine multilayer edge 
information in different encoding paths, which can improve segmentation performance in different tasks.
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