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The brain is organized into networks at multiple resolutions, or scales, yet studies of func-

tional network development typically focus on a single scale. Here, we derive personalized

functional networks across 29 scales in a large sample of youths (n= 693, ages 8–23 years)

to identify multi-scale patterns of network re-organization related to neurocognitive devel-

opment. We found that developmental shifts in inter-network coupling reflect and strengthen

a functional hierarchy of cortical organization. Furthermore, we observed that scale-

dependent effects were present in lower-order, unimodal networks, but not higher-order,

transmodal networks. Finally, we found that network maturation had clear behavioral rele-

vance: the development of coupling in unimodal and transmodal networks are dissociably

related to the emergence of executive function. These results suggest that the development

of functional brain networks align with and refine a hierarchy linked to cognition.
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Graded transitions from bottom-up, feedforward projec-
tions to top-down, feedback projections create an ana-
tomic hierarchy of both regional1,2 and global3,4 cortical

organization. In turn, anatomical hierarchy supports a hierarchy
of cortical function. Whereas regional hierarchical organization
facilitates higher-order stimulus encoding in sensory networks1,
global hierarchical organization is thought to facilitate the
development of executive functioning (EF)5–7. Critically, initial
evidence suggests that global hierarchical organization is not
established in youth, but instead is a product of protracted
development8–10. Understanding the normative process by which
hierarchical cortical organization emerges and supports EF is
crucial, as deficits in the emergence of EF are associated with
lower academic achievement11,12, risk-taking behaviors13, and
most major psychiatric illnesses14–16.

Large-scale patterns of functional organization can be identi-
fied in humans using functional MRI (fMRI), which allows for
studies of development and cognition. Prior developmental
neuroimaging studies have found that a sensorimotor to asso-
ciation hierarchy represents a principal mode of functional cou-
pling in adults17, but not in infants8 or children9,10. These results
implicate development as central in the establishment of a nor-
mative cortical hierarchy, but the process by which this hierarchy
emerges is unclear. In parallel, recent studies of cognition in
neurodevelopment have found that functional segregation of
cortical networks near the top of the hierarchy from lower-order
networks supports the emergence of EF18–20. Although these
results further suggest a role of functional hierarchy in cognitive
development, other studies have produced discrepant results21–24,
leaving the role of cortical hierarchy in cognitive development
unclear. This lack of consensus across existing work may arise
due to two limitations that are shared across prior studies.

First, nearly all studies of functional network development only
examine a single network resolution or scale. Typically, investi-
gators use standard network atlases that specify a single number
of functional networks (e.g., 7, 14, or 17). However, it is
increasingly recognized that the brain is a multi-scale system, and
that studies of a specific resolution of subnetworks may be
limited25–28. Rather, evidence suggests that brain network orga-
nization emerges from neural coordination across overlapping
spatial scales25,29–31. Importantly, distinct brain-behavior rela-
tionships may be present at different scales32, with each scale
potentially offering complementary information regarding mul-
tifaceted processes such as development. As a result, current
accounts of brain development that rely on a single network scale
are almost certainly incomplete and may hamper our ability to
synthesize findings across studies where different scales were
examined33,34.

A second key limitation of prior studies of functional network
development is that they have not accounted for individual dif-
ferences in the spatial layout of brain networks on the cortical
mantle. Multiple independent studies in adults using different
datasets and distinct methods have provided convergent evidence
that there is prominent between-individual variability in the spatial
distribution (i.e., the functional topography) of large-scale networks
on the anatomic cortex35–39. In studies of adults, transmodal
association networks tend to have the greatest variability in func-
tional topography36–39; recent work has shown that this is also true
in children and adolescents40. Accounting for such individual
variation in functional topography may be critical for under-
standing the development of coupling between networks, as prior
work has shown that differences in spatial topography can be
aliased into estimates of connectivity35,41. Further, individual dif-
ferences in spatial topography and individual differences in con-
nectivity can have distinct associations with psychopathology42.
Finally, individual-specific–or “personalized”–networks may be

particularly relevant when evaluating development at multiple
scales, as individual variation in topography might depend in part
on network resolution43,44.

In this study, we sought to understand how multi-scale cortical
networks, occupying diverse positions across the sensorimotor-
association hierarchy, mature with age to support EF. We eval-
uated the development of multi-scale personalized networks in a
large sample of youth, with the goal of testing three interrelated
hypotheses. First, we hypothesized that across scales, patterns of
network development would vary across the sensorimotor-
association hierarchy, with association networks exhibiting
functional segregation relative to sensorimotor networks. Second,
we predicted that association network segregation would relate to
the maturation of EF in adolescence. Finally, we expected to find
evidence of multi-scale network development. Specifically, given
the diverse functions supported by brain organization at different
scales, we anticipated that different network scales would have
distinct associations with both age and EF.

Results
We studied 693 youths ages 8–23 years from the Philadelphia
Neurodevelopmental Cohort, who completed fMRI at 3 T and
had 27 min of high-quality data41,45. To derive multi-scale per-
sonalized functional networks, we used a specialized adaptation of
non-negative matrix factorization (NMF) that incorporates spa-
tial regularization46,47 (see Methods, Figure S1). To ensure cor-
respondence of personalized networks across participants, this
process was initialized by creating a group atlas, which was then
adapted to each individual’s data (see Methods). To evaluate
multiple resolutions, group atlases that included between 2 and 30
networks were created (Fig. 1 and Fig. S2A). Across this range of
scales, reconstruction error declined smoothly (Fig. S2B). To
evaluate the degree to which finer-grained functional networks
were nested within the network partitions obtained at the coarsest
scale, we evaluated each network for its spatial overlap with the
group atlas derived at K= 2 networks. Across scales, ~57% of all
networks fell within the unimodal partition, and 43% fell within
the transmodal partition (Fig. S3).

Examination of multi-scale personalized brain networks
revealed prominent differences in person-specific functional
neuroanatomy at all scales (Fig. 2a and Fig. S4); networks were
robust to NMF parameters chosen (Fig. S5). Prior work at a single
scale found that variability in functional neuroanatomy dis-
proportionately localizes to association cortices35–39. Here, to
quantify individual variability in-network topography, we calcu-
lated the median absolute deviation (MAD) of network loadings
at each cortical vertex across participants. To verify that varia-
bility was consistently greater within association cortices at
multiple scales, we compared network MAD at each scale to a
widely used map summarizing a functional hierarchy, derived
from the principal gradient of functional connectivity17 (see
Methods). Using a conservative spin-based spatial randomization
procedure that accounts for spatial auto-correlation48, we found
that MAD was positively correlated with functional hierarchy in
27 of the 29 scales evaluated (Fig. 2b; green). Furthermore, we
found that topographic variability became increasingly correlated
with the hierarchy at finer scales (Fig. 2c; r= 0.56, pboot < 0.001).
These results demonstrate that variability in functional neuroa-
natomy is increasingly prominent within association cortices at
finer-grained network resolutions.

Brain network coupling develops according to a hierarchical
sensorimotor-association axis. Having defined multi-scale per-
sonalized networks in a large sample of youth, we next sought to
examine how network coupling evolves with age. To summarize
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the functional coupling of each network to other networks, we
averaged between-network connectivity values across all perso-
nalized networks at each scale (Fig. S6). We hypothesized that
age-related changes in between-network coupling would vary
according to a network’s position on the sensorimotor-
association functional hierarchy. To test this hypothesis, we first
summarized each networks’ position along the functional hier-
archy, where higher values correspond to regions located in
association cortices and lower values are assigned to regions in
sensorimotor cortices (Fig. 3a). Specifically, the position of each
network in the functional hierarchy was operationalized by
extracting the average value of the principal gradient of functional
connectivity17 within each network’s boundaries. We related all
network-level age effects to this measure of functional hierarchy.

Across all participants and independent of age, we found
greater average between-network coupling was present lower in
the functional hierarchy, whereas attenuated coupling was
present higher in the hierarchy (Fig. 3b). To rigorously model
linear and nonlinear changes in coupling over development, we
used generalized additive models (GAMs) with penalized splines
to examine how between-network coupling of each network was
associated with age. In these models, sex and in-scanner motion
were also included as covariates. We found that age-related
changes in between-network coupling were largely explained by a
network’s position in the functional hierarchy. Between-network
coupling of lower-order networks became more positive at older
ages, indicative of greater network integration. In contrast,
between-network coupling in higher-order networks became
more negative, reflecting increasing segregation. A network’s
position on the functional hierarchy explained most of the
variance in observed developmental effects (Fig. 3c; r=−0.84,
pboot < 0.001). Sensitivity analyses yielded similar results using
data from resting-state scans alone (Fig. S7a, b, d; r=−0.77,
pboot < 0.001) or from task scans alone (Fig. S8a, b, d; r=−0.83,
pboot < 0.001). Together, these results suggest that the

development of between-network coupling in youth is largely
described by dissociable processes of segregation and integration
across the functional hierarchy.

Next, we sought to identify intervals of significant age-related
change in-network coupling. To accomplish this, we calculated
the confidence interval of the derivative of the developmental
curve for each model. We found that age-related changes in
sensorimotor and association networks occurred over different
developmental periods: between-network coupling increased in
lower-order areas over the entire age range studied, whereas
decreases in between-network coupling in higher-order areas did
not extend beyond late adolescence (Fig. 3d). Consequently, in
addition to differences in the sign of developmental changes
described above, the temporal span of maturation in-network
coupling also systematically varied across the cortico-functional
hierarchy.

To provide a more nuanced understanding of the maturational
changes in between-network coupling described above, we next
evaluated the development of specific connections between
networks. As between-network connections can link networks
that have a similar hierarchical position (i.e., two association
networks) or may alternatively link a sensorimotor and associa-
tion network, we calculated the difference in hierarchical position
of the two networks connected by each edge. As the principal axis
captures variance in the cortical coupling, we expected networks
similarly positioned along this axis to share a degree of this
variance. As expected, we found that networks with similar
hierarchical positions had greater mean coupling, and networks
that were further apart in the functional hierarchy tended to have
weaker coupling across participants (r=−0.57, pboot < 0.001;
Fig. 4a). Critically, we additionally found that age-related changes
in-network edges were also explained by differences in their relative
position in the functional hierarchy (r=−0.49, pboot < 0.001;
Fig. 4b). Specifically, sensorimotor-to-sensorimotor edges tended
to strengthen with age, whereas edges that linked sensorimotor and

Fig. 1 Group-consensus functional networks at multiple scales. We used regularized non-negative matrix factorization (see Supplementary Fig. 1) to
derive personalized functional networks at 29 scales (2–30 networks). Tracking network membership of each vertex across scales reveals a nested
structure where finer-grained networks gradually emerge from coarse networks (top). Scales 4, 7, 13, and 20 are chosen for visualization; see bottom panel
for cortical projections. Colors reflect each network’s predominant overlap with a canonical atlas of 17 functional networks84.
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association networks weakened (Fig. 4c; pboot < 0.001); develop-
mental strengthening of association-to-association edges was
present but less prominent. Sensitivity analyses provided con-
vergent results using data from resting-state scans only (Fig. S7c;
r=−0.39, pboot= 0.005) and from task scans only (Fig. S8c;
r=−0.45, pboot < 0.001). These results demonstrate that functional
network development is characterized by increases in coupling
between hierarchically similar networks and decreases in coupling
between dissimilar networks—yielding increased differentiation
along the functional hierarchy with development.

It should be noted that previous studies have documented that
the physical distance between two brain regions explains the
patterning of functional maturation across network edges49–51.
As functional hierarchy is related to the intrinsic geometry of the
cortex52,53, we sought to verify that the effects of hierarchical
distance described above were not better explained by physical
distance. To do so, we compared the correlation between age
effects and Euclidean distance with the relationship between age
effects and hierarchical distance. While the correlation between
Euclidean distance and age effects was significant (r=−0.11,
pboot < 0.001; Fig. S9), it was substantially weaker than that
observed for hierarchical distance (r=−0.49, pboot < 0.001) and
the effect of hierarchical distance remained significant while co-
varying for Euclidean distance (partial r=−0.45, p < 0.001). This
result suggests that although the physical distance spanned by a
functional connection is weakly related to its developmental

pattern, developmental effects are better explained by the functional
distance that a connection spans across the sensorimotor-to-
association hierarchy.

Development has dissociable signatures at different networks
and scales. The above results demonstrate that functional net-
work development is largely captured by a network’s position on
a hierarchical axis of sensorimotor-to-associative function.
However, these analyses are agnostic to the multi-scale nature of
the personalized brain networks that we constructed. As a next
step, we evaluated whether developmental effects were dependent
on network scale. Initial inspection revealed that the relationship
between age and between-network coupling varied systematically
as a function of scale, with greater age effects in the sensorimotor
cortex at finer network scales (Fig. 5a). To quantify scale effects
while controlling for within-subject correlations over scales, we
used generalized estimating equations (GEEs) with exchangeable
correlation structures at each cortical vertex. We found that the
effect of scale on between-network coupling was strongest in the
sensorimotor cortex (Fig. 5b). Furthermore, we found evidence
that scale-moderated age effects, with maximal scale-by-age
interactions being observed in the sensorimotor cortex (Fig. 5c).

To further understand these scale-dependent age effects, we
compared the age effect across scales for networks that fall at
opposite ends of the sensorimotor-to-association hierarchy.

4 Networks 7 Networks 13 Networks 20 Networks
a

b

Z

Subj. 
   1

Subj. 
   2

Subj. 
   3

MAD

c
QFDR < 0.01

r  = 0.555
pboot < 0.001

Fig. 2 Variability in personalized networks across scales. a Variability in personalized networks is greatest in association cortex across scales. Exemplar
personalized networks at scales 4, 7, 13, and 20 are shown for three participants. Prominent individual differences in functional topography are present at
all scales, as quantified by median absolute deviation (MAD) of functional network loadings across participants (bottom row, z-scored within each scale).
b Variability of functional topography aligns with functional hierarchy. Spin-tests of the correlation between topographic variability and the principal
functional connectivity gradient17 at each scale reveal that variability is significantly correlated with a sensorimotor-to-association hierarchy at most scales
(green dots= significant correlations; yellow dots= non-significant correlations; black dots= spin-test null correlations, FDR false discovery rate).
c Greater alignment between a sensorimotor-to-association hierarchy and topographic variability is present at finer scales. Scatterplot depicts second-
order correlation of variability (MAD) and the principal gradient (from b) across scales. The statistical test is two-sided. Error bands depict the 95%
confidence interval.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30244-4

4 NATURE COMMUNICATIONS |         (2022) 13:2647 | https://doi.org/10.1038/s41467-022-30244-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Specifically, at each scale we identified networks that aligned most
closely with the somatomotor-A network and the default mode-B
network from the commonly used atlas defined by Yeo et al.
(Fig. 5d). This comparison revealed that age effects within the
somatomotor network were highly scale-dependent, with greater
increases in between-network coupling with age at finer scales. In
contrast, default-mode networks demonstrated consistent devel-
opmental segregation across scales. These results suggest that age-
related changes in-network coupling are differentially linked to
scale across the cortical hierarchy.

Multi-scale network coupling is associated with executive
function. Having delineated developmental changes in between-
network coupling, we next sought to understand the implications
for individual differences in executive function (EF). First, we
modeled the association between-network coupling and EF,
controlling for developmental effects by including age as a
penalized spline; other model covariates included sex and motion
as in prior analyses. We found that the relationship between EF
and between-network coupling was quadratically related to the
functional hierarchy (Fig. 6a; pboot= 0.003); this quadratic

c

d 10 Years 16 Years 21 Yearsa
5

-5

0

-0.04

-0.02

 0

0.02

Unimodal-to-Transmodal Gradient

b 10 Years 21 Years

r = -0.840
β = -0.012
pboot< 0.001
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pattern was markedly different than the linear relationship
between hierarchy and age effects (see Fig. 3c for comparison).
Specifically, decreased between-network coupling at both
extremes of the hierarchy was associated with greater EF, with
maximal effects being seen in sensorimotor and default-mode
networks. In contrast, greater coupling of several visual, ventral
attention, and fronto-parietal networks were associated with
greater EF.

To further understand these effects, we next performed high-
resolution analyses at each cortical vertex to detail associations
between EF and between-network coupling across scales.
Consistent with network-level results, reduced between-network
coupling in default-mode regions like the medial prefrontal cortex
and precuneus was associated with greater EF across scales
(Fig. 6b). In contrast, greater between-network coupling in the
dorsolateral prefrontal cortex, anterior insula, and calcarine
fissure was associated with greater EF across scales. Sensorimotor
cortices again exhibited scale-dependent associations: higher
between-network coupling in the sensorimotor cortex was
associated with reduced EF, but only at finer scales. To further
assess the role of network scale, we used GEEs to examine
whether there was an interaction between EF and scale on
between-network coupling at each cortical location. This analysis
revealed prominent scale effects, primarily in sensorimotor
cortices (Fig. 6c). To further illustrate the differential effects of
network scale, we again contrasted networks that lie at opposite
ends of the functional hierarchy (Fig. 6d). We found that network
scale did not moderate the association between default-mode
network coupling and EF; greater default-mode segregation was
associated with better EF across scales. However, somatomotor
network associations with EF were highly dependent on
network scale.

Having found evidence of both scale-dependent and scale-
independent associations between EF and network coupling, we
next examined the degree to which these complex patterns of
coupling could jointly predict individual differences in EF. To do
so, we fit a multivariate ridge regression model to predict EF
using data from all scales, while controlling for age and in-
scanner motion. We found that this multivariate model accurately
predicted the EF of unseen participants (see Methods; Fig. 6e;
r= 0.52, ppermut < 0.001). Similar results were obtained in
sensitivity analyses that considered data only from resting-state
or task fMRI runs (Fig. S7e, rrest= 0.34, ppermut < 0.001; Fig. S8e,
rtask= 0.54, ppermut < 0.001). These results emphasize that EF is
supported by multi-scale patterns of functional coupling.

Finally, to assess the specificity of the relationship between
functional network coupling and EF, we also evaluated associa-
tions with other major domains of cognition, including episodic
memory and social cognition. For episodic memory, segregation

of the most unimodal networks was similarly associated with
episodic memory (Fig. S10a). However, transmodal segregation
was not associated with episodic memory performance, and no
quadratic relationship with functional hierarchy was observed
(pboot= 0.269). A similar assessment of the social cognition factor
revealed no significant associations with network-level coupling
after correction for multiple comparisons (Fig. S10b). Edge-level
ridge regression analyses revealed reduced model performance for
both episodic memory (r= 0.33, ppermut < 0.001, Fig. S10c) and
social cognition (r= 0.14, ppermut= 0.024, Fig. S10d). Taken
together, these results suggest some degree of specificity for links
between multi-scale network connectivity and EF.

Discussion
In this study, we demonstrated that variation in the development
of person-specific functional networks is intrinsically related to
fundamental properties of brain organization. Specifically, we
found that developmental patterns differentially unfold along the
hierarchical sensorimotor to association axis of organization:
unimodal sensorimotor networks became more integrated with
age, while transmodal association networks became more segre-
gated. This dissociable pattern of maturation had unique rele-
vance for the development of cognition: while greater segregation
of association networks was associated with better EF, develop-
mental integration of sensorimotor networks was associated with
worse EF. By examining functional network development and
associations with EF across a range of macroscale networks, we
additionally identified scale-dependent effects, which were pre-
dominantly present in somatomotor networks. Taken together,
these results provide a new framework that incorporates multi-
scale cortical organization for understanding how functional
network maturation allows for the development of cognition
in youth.

Functional network development differs by position in a
unimodal to transmodal hierarchy. Previous work in adults36–39

has established that between-individual variability of functional
topography is greatest in the association cortex. In our prior
report40 we demonstrated that this is also true in youth. Such
marked variability of functional topography in association cor-
tices may be a result of protracted and environmentally sensitive
development in these higher-order cortices, facilitating con-
tinuous adaptation to individual-specific needs5,54. Here, we
extended prior findings by demonstrating that topographic
variability aligns with a functional hierarchy across multiple
network scales. Furthermore, we found that variability of func-
tional topography increasingly localizes to association cortices as
the number of functional networks increases. As this scale-

Fig. 3 Network development in youth unfolds along a functional hierarchy. a We define functional hierarchy according to the widely used principal
gradient of functional connectivity from Margulies et al. (2016), which describes each location on the cortex on a unimodal-to-transmodal continuum.
b Between-network coupling is modeled for every network at each scale using Generalized Additive Models (GAMs) with penalized splines to account for
linear and nonlinear effects of age. Each solid line represents the developmental pattern of one network at one scale; colors indicate the position of that
network on the functional hierarchy. Dashed lines and corresponding brain maps represent estimated between-network coupling at each age, averaged
across scales. Between-network coupling of sensorimotor networks (purple lines) increases with age, indicating increased integration. In contrast, the
coupling of association networks (yellow lines) declines with age, reflecting increased segregation. c Age effects of each network (from b) are plotted
versus their position on the functional hierarchy (from a). Networks that do not display significant change over development are shaded in gray
(QFDR > 0.05). The position of each network on the functional hierarchy explains the majority of variance in age effects (r=−0.840, β=−0.012,
pboot < 0.001, two-sided). d We quantified the duration, magnitude, and direction of maturational changes in coupling for each network using the
derivatives of the fitted splines (from b). Top: annualized change in between-network coupling at 10, 16, and 21 years old, averaged across scales. Bottom:
change per year in average between-network coupling of each network across the age range studied; as in b, each line represents the developmental
pattern of a given network at a single scale. While integration of sensorimotor networks increases over the entire age range sampled, segregation of
association networks generally plateaus near the end of adolescence.
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dependency might be just one of many shifts in between-
participant variability over scales32,43, our results highlight the
importance of scale and precision functional mapping techniques
for investigations of individual differences in functional network
coupling.

We found strong evidence that developmental changes in
between-network coupling align with a sensorimotor-to-
association hierarchy. Even prior to adolescence, sensorimotor
networks tended to have greater between-network coupling,
which was primarily driven by their coupling with other lower-
order networks. In contrast, association networks were more
functionally segregated even among the youngest of our
participants. From ages 8–23 years, this pattern became more
prominent: between-network coupling further strengthened in
lower-order networks and weakened with age in higher-order
networks. Together, these developmental effects served to further
distinguish the functional hierarchy that is now well described in
adults and broadly aligns with recent reports using independent
methods and datasets9,10. This functional differentiation of
cortical hierarchy over development is consistent with evidence
that cortical myeloarchitecture further differentiates between
sensorimotor and association regions during adolescence55, and
that higher-order structural networks become increasingly
dissimilar from lower-order networks with age56. Coupling
between hierarchically similar networks may be partially
attributable to the propagation of infra-slow cortical waves along
functional hierarchies25,57–59; however, additional research is
needed to examine how such waves evolve in development. Taken
together, our results suggest that functional network development
in youth both aligns with and strengthens the sensorimotor-to-
association hierarchy seen in adulthood.

Functional network differentiation supports executive func-
tion. EF is supported by coordinated recruitment of distributed
networks of brain regions60–62. We found that the segregation of
networks located at the two opposing ends of the sensorimotor to
association hierarchy (i.e., somatomotor and default-mode net-
works) was associated with cognitive performance. Conversely,

a

b

c
A B

C

B A B

Neurodevelopment

A

C C

r = -0.485
β = -0.004
pboot< 0.001

r = -0.568
β = -0.012
pboot< 0.001

Lower-order 
Network

Higher-order
Network

Fig. 4 Maturation of between-network coupling aligns with the position
of each network in the functional hierarchy. a Mean between-network
coupling is largely captured by relative position along the sensorimotor to
association axis. The inter-network coupling of each pair of networks at
each scale is modeled using a GAM to estimate their values at age 8. Here,
those values are plotted versus the difference in the hierarchical position of
the two networks being evaluated. Each data point represents the coupling
of a network pair at a given scale. Each half of the circle is colored according
to constituent networks’ maximum overlap with the 7-network solution
defined by Yeo et al. (2011); network pairs that do not significantly change
with age after FDR correction (Q < 0.05) are shaded in gray. As expected,
networks at a similar position along the functional hierarchy tend to have
higher coupling (r=−0.568, β=−0.012, pboot < 0.001, two-sided). b Age
effects quantifying the development of between-network coupling is
similarly aligned with the relative position of networks along the functional
hierarchy. Age effects of every network pair at each scale are plotted versus
their hierarchical distance and colored as in a. Network pairs without
significant age effects are plotted in gray. Developmental effects on
pairwise coupling between networks are associated with the hierarchical
distance between networks (r=−0.49, pboot < 0.001, two-sided). c Top:
schematic summarizing developmental effects. Development is associated
with strengthening of network coupling between lower-order networks and
weakening of coupling between lower and higher-order networks; thicker
lines represent greater functional coupling. Bottom: topographical plot of
the observed age effect as a function of absolute (rather than relative)
network hierarchy values across all network pairs. Increased coupling with
age between functionally similar networks is prominent for sensorimotor
networks (bottom left), and less prominent for association networks (top
right). Age-related decreases in coupling occur in sensorimotor-association
network pairs (top left and bottom right).
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we demonstrated that increased integration of networks more
centrally positioned within the axis supported EF. As such, two
dissociable patterns of normative network development observed
across the cortical functional hierarchy differentially relate to the
development of EF. Specifically, whereas normative develop-
mental segregation of transmodal association networks was
positively associated with EF, unimodal integration was positively
associated with age but negatively associated with EF. These
results in part explain the existing heterogeneous literature, which
has reported that refinement of both functional network segre-
gation and integration is important for neurocognitive
development19,63–65. However, our results also specify that the
degree to which developmental integration versus segregation is
advantageous for EF may largely depend on a network’s role
within the functional hierarchy.

That both sensorimotor and DMN segregation were associated
with greater EF accords with recent work demonstrating that the
overall balance of network activity shifts across the functional
hierarchy when individuals are engaged in externally oriented
versus internally guided cognition. Prior work has shown that
localized activity within networks at the bottom of the hierarchy
supports cognition when it is reliant on immediate perceptual
input66. In contrast, greater segregation of unimodal networks
from transmodal networks supports cognition that is dependent
on internally-oriented processing, including memory or theory of
mind18,66,67. Furthermore, the association between EF and
integration of control networks situated more centrally in the
hierarchy is supported by prior literature emphasizing the role of
these networks in top-down control68–70. Speculatively, these
results suggest that functional segregation at the extremes of the
functional hierarchy, in tandem with the integration of control
networks situated in the middle of the hierarchy, may serve to
reduce cross-modal interference71,72 while facilitating coordina-
tion of brain networks specialized for top-down cognitive
control67–69.

We found that transmodal cortical segregation increased with
age in youth and is associated with enhanced EF. In contrast,
unimodal cortical integration increased with age but was
associated with poorer EF. This discrepancy could stem from
differences in the pace of maturation between parts of the cortex.
In late life, cortical networks reintegrate, losing the segregation
that is achieved earlier in maturation73–79. Notably, this
integration at the end of the lifespan has been shown to mediate
cognitive decline in both normal aging and neurodegenerative
disease76–79. Our data suggest that the inflection point between
maturational segregation and integration may be temporally
staggered across a normative hierarchy, with lower-order net-
works beginning reintegration prior to transmodal networks,
which are still segregating in youth. Consequently, we hypothe-
size that processes seen in aging may have begun in lower-order
sensorimotor networks in adolescence.

Multi-scale patterns of network development are associated
with executive function. Prior work has primarily investigated
organizational regimes of 280, 317, 481, 582, 683, 784, 1350, and 1784

functional subdivisions of the brain. In line with an emergent body
of literature regarding multi-scale brain organization26,32,85,86, the
scale-dependencies that we observed suggest that previous, single-
scale descriptions of neurodevelopment only partially describe
cortical network reorganization in youth. Notably, we present new
evidence that scale and hierarchical positioning interact. We
observed differential effects of scale on both development and EF
across the functional hierarchy, with scale effects being dis-
proportionately present in unimodal cortices. Coarse segregation of
unimodal networks from transmodal networks with age was con-
current with fine-grained integration within unimodal networks. In
contrast, no such scale dependence was seen in transmodal net-
works. A similar scale-dependence was present in associations with
EF: coarse segregation and fine-grained integration of motor areas
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Fig. 5 The interactions between-network scale and developmental coupling is maximal in sensorimotor cortex. a The effect of age on average vertex-
wise between-network coupling at two scales (4 and 20). Age effects are modeled using GAMs with penalized splines; thresholded at QFDR < 0.05. Scale-
dependent age effects can be observed in sensorimotor cortex: while no developmental increase in between-network coupling was seen in somatomotor
cortex at scale 4, such an increase is evident at scale 20. b Across ages, between-network coupling of the sensorimotor cortex is strongly influenced by
scale. Generalized estimating equations (GEEs) reveal that the effect of scale (χ2) differentially influences the strength of between-network coupling across
the cortex. Locations within unimodal sensorimotor cortex exhibit the strongest scale-dependence in their mean between-network coupling (QFDR < 0.05).
c Scale differentially interacts with age-dependent developmental associations with coupling across the cortex. GEEs are used to examine the degree of
scale-moderated developmental effects (age-by-scale interaction; thresholded at Q < 0.05); maximal effects are present in the sensorimotor cortex. d Scale
differentially interacts with age-dependent developmental effects in sensorimotor and association networks. Specifically, age effects in lower-order
networks tend to be more scale-dependent than those in higher-order networks. The effect of age across scales is plotted for networks predominantly
overlapping with the lowest-order (blue; Somatomotor-A) and highest-order (red; Default Mode-B) networks, as quantified from the functional hierarchy.
Statistical tests are two-sided. Error bands depict the 95% confidence interval.
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were both associated with worse EF. These effects of network scale
might be driven in part by a greater propensity for unimodal
functional networks to host nested multi-scale organizations than
their transmodal counterparts87,88.

Finer scales systematically capture shorter “neural bridges”6

across the functional hierarchy. In other words, as higher
network resolutions distinguish increasingly similar subnet-
works, finer scales ultimately capture functional interactions
between networks that are more proximate in the functional
hierarchy. In our data, at the coarsest scale of two functional
subdivisions, between-network coupling reflects interactions
between only a single sensorimotor and association network. At
this resolution, network segregation between these two broad
classes of cortex increased with age. In contrast, finer scales
revealed that, along with overall developmental segregation of
sensorimotor and association networks, there is prominent
integration of functionally similar, finer-grained networks.
Consequently, our findings illustrate that different network
scales reveal different developmental effects across the func-
tional hierarchy. Several limitations to the current study should
be noted. Adolescent development represents a complex,
layered process not easily delineated by cross-sectional studies.
This is a particularly salient limitation for approaches seeking to
establish the role of brain maturation in cognitive development,
rather than their co-occurrence. Further, there are undoubtedly

individual differences in the pace of brain development, which
cannot be indexed with cross-sectional data89. Future long-
itudinal studies will be critical for understanding temporal
precedence in network maturation and how deviations from
normative neurodevelopment are associated with the emergence
of psychopathology90. Second, as children tend to move more
during MRI scans, in-scanner head motion continues to be a
concern for all neuroimaging studies of development91. Here,
we rigorously followed the best practices for mitigating the
influence of head motion on our results, including the use of a
top-performing preprocessing pipeline and co-varying for
motion in all hypothesis testing92. The use of these conservative
procedures limits the possibility that reported findings are
attributable to in-scanner motion. Third, we used data
combined across three fMRI runs, including two where an
fMRI task was regressed from the data93. This choice was
motivated by studies that have shown that functional networks
are primarily defined by individual-specific rather than task-
specific factors and that intrinsic networks during task
performance are similarly organized to those at rest94.
Importantly, by including task-regressed data, we were able to
generate individualized networks with 27 min of high-quality
data. Prior work suggests that parcellations created using a
timeseries of this length show high concordance with those
generated using 380 min of data95. Fourth, we studied multi-
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Fig. 6 Multi-scale network coupling is associated with executive function. a Network-level relationships between coupling and EF are quadratically
related to transmodality. Specifically, segregation of both sensorimotor and default-mode networks is associated with better EF. These associations with EF
are dissociable from normative developmental effects (Fig. 3c) where default-mode segregation and sensorimotor integration are observed. The statistical
test was two-sided. b Analyses at scales 4 and 20 reveal differing associations with EF. While between-network coupling of visual, insular, and dorsolateral
prefrontal cortical areas is consistently associated with greater EF (QFDR < 0.05), opposite associations with EF were present in motor cortex at coarse and
fine scales. c Tests of age-by-scale interactions using GEEs reveal that scale effects are strongest in the sensorimotor cortex. d Scale is differentially linked
to EF associations with coupling in higher-order and lower-order networks. As for age, effects in somatomotor networks tend to be more scale-dependent
than those in association networks. The effect of age across scales is plotted for networks predominantly overlapping with the lowest-order (blue;
Somatomotor-A) and highest-order (red; Default Mode-B) of the Yeo 17 networks. e Complex patterns of multi-scale coupling between personalized
networks accurately predicts EF in unseen data. Cross-validated ridge regression with nested parameter tuning was used to predict EF of unseen data using
each participant’s multivariate pattern of coupling across scales. Error bands depict the 95% confidence interval, statistical tests are two-sided for d and
one-sided for e. MSE = mean squared error.
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scale organization in the spatial domain; the brain also exhibits
multi-scale organization in the temporal domain96–99. Future
investigations using tools with greater temporal resolution may
be critical for simultaneously describing the spatial and
temporal multi-scale organization. Finally, the maturation of
subcortical structures is a critical component of
neurodevelopment100,101. Recent advances in precision102,103

and multi-scale104 functional mapping of subcortical regions
and hierarchies105 present an excellent opportunity for future
work to delineate the role of subcortical functional coupling in
neurocognitive development.

In conclusion, we leveraged advances in delineating persona-
lized functional networks to elucidate divergent patterns of
functional network development and to establish their relevance
for cognition. These results are important for understanding the
developmental refinement of cortical hierarchy that is prominent
in healthy adults. Moving forward, the process of this refinement
may be critically important for understanding executive dysfunc-
tion in those affected by mental illness. Examining abnormalities
of functional network reorganization in longitudinal clinical
samples will provide an important opportunity to test the
hypothesis that insufficient maturational segregation of associa-
tion networks confers risk to diverse psychiatric disorders.
Indeed, existing research suggests that abnormalities associated
with cross-disorder psychopathology are predominantly present
at the association end of the functional hierarchy15,106,107, and
that diverse psychopathology is associated with attenuated
segregation of higher-order networks108. Eventually, understand-
ing the normative development of individualized networks may
be a critical prerequisite for guiding personalized neuromodula-
tory interventions targeting both individual-specific functional
neuroanatomy and developmental phases with amenable
plasticity.

Methods
Participants. A total of 1601 participants were studied and compensated as part of
the Philadelphia Neurodevelopmental Cohort45. We excluded 340 participants due
to treatment with psychoactive medications, prior inpatient psychiatric treatment,
or incidentally encountered structural brain abnormalities. Among the 1261 par-
ticipants eligible for inclusion, 54 more were excluded from analyses due to low-
quality T1-weighted images or low-quality FreeSurfer reconstructions. Of the
1207 subjects with useable T1 images and adequate FreeSurfer reconstructions, 514
more participants were excluded for missing functional data or poor functional
image quality. For inclusion in analyses, all participants were required to have three
functional runs that passed quality assurance. As prior91,92, a functional run was
excluded if the mean relative root-mean square (RMS) framewise displacement was
higher than 0.2 mm, or it had more than 20 frames with motion exceeding
0.25 mm. This set of exclusion criteria resulted in a final sample of 693 participants
with a mean age of 15.93 years (SD= 2.33); the sample included 301 males and 392
females. All subjects or their parents/guardian provided informed consent, and
minors provided assent. All study procedures were approved by the Institutional
Review Boards of both the University of Pennsylvania and the Children’s Hospital
of Philadelphia.

Image acquisition. As previously described45, all MRI scans were acquired using
the same 3 T Siemens Trim Trio whole-body scanner and 32-channel head coil and
VB17 revision software at the Hospital of the University of Pennsylvania.

Structural MRI. Prior to functional MRI acquisitions, a 5 min magnetization-pre-
pared, rapid acquisition gradient-echo T1-weighted (MPRAGE) image (TR= 1810
ms; TE= 3.51 ms; TI= 1100 ms, FOV= 180 × 240 mm2, matrix= 192 × 256,
effective voxel resolution= 0.9 × 0.9 × 1 mm3) was acquired.

Functional MRI. We used one resting-state and two task-based (n-back and
emotion identification) fMRI scans for the current study. All fMRI scans were
acquired with the same single-shot, interleaved multi-slice, gradient-echo, echo-
planar imaging (GE-EPI) sequence sensitive to BOLD contrast with the following
parameters: TR= 3000 ms; TE= 32 ms; flip angle= 90°; FOV= 192 × 192mm2,
matrix= 64 × 64; 46 slices; slice thickness/gap= 3/0 mm, effective voxel resolu-
tion= 3.0 × 3.0 × 3.0 mm3. Resting-state scans consisted of 124 volumes, while the

n-back and emotion recognition scans consisted of 231 and 210 volumes, respec-
tively. Further details regarding the n-back60 and emotion recognition109 tasks
have been described in prior publications.

Field map. A B0 field map was derived for application of distortion correction proce-
dures, using a double-echo, gradient-recalled echo (GRE) sequence: TR= 1000ms;
TE1= 2.69ms; TE2= 5.27ms; 44 slices; slice thickness/gap= 4/0mm; FOV= 240mm;
effective voxel resolution= 3.8 × 3.8 × 4mm.

Scanning procedure. Before scanning, to acclimate subjects to the MRI environ-
ment, a mock scanning session where subjects practiced the task was conducted
using a decommissioned MRI scanner and head coil. Mock scanning was
accompanied by acoustic recordings of the noise produced by gradients coils for
each scanning pulse sequence. During these sessions, feedback regarding head
movement was provided using the MoTrack motion tracking system (Psychology
Software Tools). Motion feedback was given only during the mock scanning ses-
sion. To further minimize motion, before data acquisition, participants’ heads were
stabilized in the head coil using a single foam pad over each ear and a third over the
top of the head.

Image processing
Preprocessing. Structural images were processed with FreeSurfer (version 5.3) to
allow for the projection of functional timeseries to the cortical surface110. Func-
tional images were processed using a top-performing preprocessing pipeline
implemented using the eXtensible Connectivity Pipeline (XCP) Engine111, which
includes tools from FSL112,113 and AFNI114. This pipeline included (1) correction
for distortions induced by magnetic field inhomogeneity using FSL’s FUGUE
utility, (2) removal of the initial volumes of each acquisition, (3) realignment of all
volumes to a selected reference volume using FSL’s MCFLIRT, (4) interpolation of
intensity outliers in each voxel’s timeseries using AFNI’s 3dDespike utility, (5)
demeaning and removal of any linear or quadratic trends, and (6) co-registration of
functional data to the high-resolution structural image using boundary-based
registration115. Images were de-noised using a 36-parameter confound regression
model that has been shown to minimize associations with motion artifacts while
retaining signals of interest in distinct subnetworks92. This model included the six
framewise estimates of motion, the mean signal extracted from eroded white matter
and cerebrospinal fluid compartments, the mean signal extracted from the entire
brain, the derivatives of each of these nine parameters, and quadratic terms of each
of the nine parameters and their derivatives. Both the BOLD-weighted timeseries
and the artifactual model timeseries were temporally filtered using a first-order
Butterworth filter with a passband between 0.01 and 0.08 Hz to avoid mismatch in
the temporal domain116. Furthermore, to derive timeseries that were more com-
parable across runs, the task activation model was regressed from n-back and
emotion identification fMRI data93. The task activation model and nuisance matrix
were regressed out using AFNI’s 3dTproject.

For each modality, the fMRI timeseries of each participant was projected to
their own FreeSurfer surface reconstruction and smoothed on the surface of this
reconstruction with a 6 mm full-width half-maximum kernel. The smoothed data
were projected to the fsaverage5 template, which has 10,242 vertices on each
hemisphere (18,715 total vertices after removing the medial wall). Finally, we
concatenated the three fMRI acquisitions, yielding a timeseries of 27 min and 45 s
in total (555 volumes). As prior, we removed vertices with a low signal-to-noise
ratio117–119. We used the same SNR mask as in our prior work, which used the
same dataset40. After masking, 17,734 vertices remained for subsequent analyses.

Regularized non-negative matrix factorization. As previously described in
detail40,47, we used non-negative matrix factorization46,47 (NMF) to derive per-
sonalized functional networks. The NMF method decomposes the timeseries by
positively weighting cortical vertices that covary, leading to a highly specific and
reproducible parts-based representation46,120. Our approach was enhanced by a
group-consensus regularization term that preserves inter-individual correspon-
dence, as well as a data locality regularization term to mitigate imaging noise,
improve spatial smoothness, and enhance functional coherence of personalized
functional networks (see Li et al., 2017 for details of the method; see also: https://
github.com/hmlicas/Collaborative_Brain_Decomposition). As NMF requires non-
negative input, we shifted the timeseries of each vertex linearly to ensure all values
were positive. Finally, all vertex timeseries were normalized to their maximum
values such that all values ranged between 0 and 1.

Given a group of n subjects, each having fMRI data Xi ∈ RS × T, i= 1, …, n,
consisting of S vertices and T timepoints, we aimed to find K non-negative
functional networks Vi= (Vi

s,k)∈RS × K and their corresponding time courses
Ui= (Ui

t,k)∈RT × K for each subject, such that

Xi � Ui Vi
� �0þEi; s:t:Ui;Vi ≥ 0;81≤ i≤ n; ð1Þ

Where (Vi)′ is the transpose of (Vi) and Ei is independently and identically
distributed residual noise following a gaussian distribution. Both Ui and Vi were
constrained to be non-negative so that each functional network did not contain
anticorrelated functional units. A group-consensus regularization term was applied
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to ensure inter-individual correspondence, which was implemented as a group-
sparsity term on each column of Vi and formulated as

Rc ¼ ∑
K

k¼1
V1;:::;n

�;k
2;1

¼ ∑
K

k¼1

∑S
s¼1ð∑n

i¼1ðVi
s;kÞ2Þ1=2

ð∑S
s¼1∑

n
i¼1ðVi

s;kÞ2Þ1=2
ð2Þ

The data locality regularization term was applied to encourage spatial
smoothness and coherence of the functional networks using graph regularization
techniques121. The data locality regularization term was formulated as

Ri
M ¼ TrððViÞ0LiMViÞ; ð3Þ

where LiM ¼ Di
M �Wi

M is a Laplacian matrix for subject i, Wi
M is a pairwise

affinity matrix to measure spatial closeness or functional similarity between
different vertices, and Di

M is its corresponding degree matrix. The affinity between
each pair of spatially connected vertices (here, vertices a and b) was calculated as
ð1þ corrðXi

a;X
i
bÞÞ=2, where corrðXi

a;X
i
bÞ is the Pearson correlation coefficient

between timeseries Xi
a and Xi

b ; the pairwise affinity between non-connected vertices
was set to zero so that Wi

M would be sparse. We identified personalized functional
networks by optimizing a joint model with integrated data fitting and regularization
terms formulated as

min
Ui ;Við Þ

∑
n

i¼1
Xi � Ui Vi

� �� �2
FþλM ∑

n

i¼1
Ri
m þ λcRc;

s:t:Ui;Vi ≥ 0;Vi
:;k1 ¼ 1; 81≤ k≤K; 81≤ i≤ n

ð4Þ

Where λM ¼ β ´ ðT=K ´ nmÞ and λc ¼ α � ðn � T=KÞ are used to balance the data
fitting, data locality, and group-consensus regularization terms, nm is the number
of neighboring vertices, and α and β are free parameters leveraged to scale sparsity
and locality in derived network solutions, respectively. For this study, we used
previously validated parameters40,47 (Sparsity, locality= 1,10) across 29 values of K
(K= 2 to K= 30) corresponding to 29 scales of cortical organization. To evaluate
the spatial nesting of finer-grained functional networks within coarser networks, we
evaluated the degree to which each network from K= 3 to K= 30 overlapped with
the coarse network partitions derived at K= 2. Specifically, each vertex from the
fsaverage5 template was assigned to one of the two networks derived at K= 2,
corresponding to a single unimodal and transmodal network. At subsequent (finer)
scales, we evaluated A) which of the K= 2 networks that it predominantly
overlapped within space (e.g., unimodal or transmodal) and B) the percentage of
vertices that fell within that K= 2 network.

Defining personalized networks. Our approach to defining personalized networks
included three steps. In the first two steps, a group-consensus atlas was created. In
the third step, this group atlas was used to initialize network personalization for
each participant at each scale. Although individuals exhibit distinct network
topography, broad consistencies exist among individual-to-individual39,94. By first
generating a group atlas for personalization initialization, we ensured spatial cor-
respondence across all subjects and scales. This strategy has also been applied in
other studies of personalized networks121,122. For computational efficiency and to
avoid outlier-driven group atlases, a bootstrap strategy was utilized to perform the
group-level decomposition multiple times on a subset of randomly selected par-
ticipants. Subsequently, the resulting decompositions were fused to obtain one
robust initialization. As prior40,47, we randomly selected 100 subjects and tem-
porally concatenated their timeseries, resulting in a timeseries matrix with 55,500
rows (timepoints) and 17,734 columns (vertices). We applied the above-mentioned
regularized non-negative matrix factorization method with a random initialization
to decompose this group-level matrix46. A group-level network loading matrix V
was acquired, which had K rows and 17,734 columns. Each row of this matrix
represents a functional network, while each column represents the loadings of a
given cortical vertex. As prior40,46, this procedure was repeated 50 times, each time
with a different subset of subjects. Accordingly, this process yielded 50 different
group atlas estimations for each value of K.

Next, we combined the 50 group network atlases to obtain one robust group
network atlas with spectral clustering at each value of K. Specifically, we
concatenated the 50 group parcellations together across networks to obtain a
matrix with 50 × K rows (functional networks) and 17,734 columns (vertices).
Next, we calculated inter-network similarity as

Sij ¼ exp �
d2ij
σ2

 !
; ð5Þ

where dij ¼ 1� corr Networki;Networkj
� �

; corr Networki;Networkj
� �

is a

Pearson correlation coefficient between Networki and Networkj, and σ is the
median of dij across all possible pairs of functional networks. Then, we applied
normalized-cut-based spectral clustering123 to group the 50 × K functional
networks into K clusters. For each cluster, the functional network with the highest
overall similarity with all other networks in the same cluster was selected as the
most representative. The final group network atlas was composed of these
maximally representative network estimations at each of the 29 resolutions studied.

In the final step, we derived each individual’s specific network atlas using NMF,
initializing each participant-specific solution on the group-consensus atlas for any
given scale and optimizing NMF in accordance with each individual’s specific fMRI

timeseries (a 555 × 17,734 matrix). See Li et al., (2017) for further optimization
detail. This procedure yielded loading matrix Vi (K × 17,734 matrix) for each
participant, where each row is a functional network, each column is a vertex, and
the value in each cell quantifies the extent to which each vertex belongs to each
network. This probabilistic (soft) definition was converted into discrete (hard)
network definitions for the display and calculation of network statistics by labeling
each vertex in accordance with its highest loading. This procedure was repeated for
all 29 network resolutions.

Quantification and statistical analysis
Calculation of variability and spatial alignments of personalized networks. To
quantify the degree to which NMF captured individualized functional neuroa-
natomy regardless of the NMF parameters chosen, we created individualized
networks across a range of NMF parameters at both a coarse (K= 4) and fine
(K= 20) scale (locality= 5, 10, 20, sparsity= 0.5, 1, and 2). After recalculating
individualized networks for the 8 new parameter pairings at both scales, we cal-
culated Adjusted Rand Indices (ARI) to evaluate the correspondence between
networks derived from distinct parameterizations and our original individualized
functional networks (set at spatial regularization= 10, sparsity= 1). This step
yielded a distribution of within-subject ARI, or the similarity in individualized
network decompositions across parameterizations. To evaluate the degree to which
individual variability in functional network decompositions was driven by indivi-
dual variability in the functional imaging data rather than the NMF parameters
chosen, we compared the distributions of within-subject ARI to between-subject
ARI across parameters. Within and between-subject ARI were calculated between
our original individualized functional networks and the 16 new conditions for
K= 4 and K= 20, locality/sparsity= 5 and 0.5, 5 and 1, 5 and 2, 10 and 0.5, 10 and
2, 20 and 0.5, 20 and 1, 20 and 2.

In order to quantify cross-subject spatial variability in personalized networks,
we calculated the median absolute deviation (MAD) of personal network loadings
at each vertex across participants. MAD is a non-parametric measure of variance
that does not assume a normal distribution. First, we calculated MAD for each
network at each scale. Next, MAD was averaged across K networks to obtain a
single value of MAD at each vertex for any given scale K.

Functional hierarchy: In order to quantify networks in terms of their position
within a functional hierarchy, we used a widely adopted principal gradient of
functional connectivity17 (https://github.com/NeuroanatomyAndConnectivity/
gradient_analysis). The principal gradient is derived from the primary component
of variance in patterns of whole-brain functional connectivity, aligns with hier-
archical estimations derived from tract-tracing7, and reflects a unimodal-to-
transmodal continuum of cortical function17. As such, at each cortical vertex, the
value of this gradient reflects the loading of that vertex onto a cortical hierarchy,
with higher principal gradient values corresponding to higher positioning within
the hierarchy.

To maximize equivalence with prior studies, we used the original map of the
principal gradient provided by Margulies et al. (2016). This map was transformed
to fsaverage5 space using metric-resample from Connectome Workbench.
Functional hierarchy values for each network were quantified as the average
principal gradient value of each vertex within each network in group-consensus
space. These network-wise hierarchy values were used to analyze the spatial
distribution of the effects of age and executive function, as described below.

Reference networks: To allow for comparison with previously estimated cortical
systems, we quantified the overlap of each group-consensus network with a
commonly used 7 and 17-functional network parcellation84. To illustrate this
overlap, we assigned colors to the group and individualized networks in accordance
with their maximum overlap with networks from the 7 and 17-network
parcellations.

Spatial permutation testing (spin test): In order to evaluate the significance of the
localization of between-participant variability (MAD) to transmodal cortical areas,
we used a spatial permutation procedure called the spin test48,117,120,124 (https://
github.com/spin-test/spin-test). The spin test is a spatial permutation method
based on angular permutations of spherical projections at the cortical surface.
Critically, the spin test preserves the spatial covariance structure of the data,
providing a more conservative and realistic null distribution than randomly
shuffling locations. Due to varying spatial covariance structures across scales, we
conducted separate spin tests at each scale.

Modeling the association of scale with MAD-principal gradient colocalization: To
account for potential non-independence of MAD-principal gradient correlations
across scales, significance testing was performed using non-parametric bootstrap
resampling. Specifically, we recalculated MAD and the subsequent spatial corre-
lation with the principal gradient at each scale across 1000 bootstrap resamples to
generate a bootstrapped confidence interval of the second-order relationship
between the network scale and the MAD-principal gradient correlations.

Quantification of between-network coupling. We used functional connectivity (FC)
to quantify inter-regional coupling in the processed BOLD signals. Specifically, we
calculated between-network FC at three levels of analysis: network, edge, and
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vertex. At all levels, FC was quantified as the Pearson correlation between BOLD
timeseries. At the network level, between-network connectivity was quantified as a
network’s mean correlation with all other networks. At the edge level, between-
network connectivity was quantified as the mean vertex-by-vertex correlation
between vertices in both networks. At the vertex level, we evaluated each vertex’s
average correlation to vertices from all other networks. Between-network coupling
at each level was quantified separately at each scale for each participant.

Developmental analyses
Developmental modeling: Developmental effects were estimated using generalized
additive models125,126 (GAMs) with penalized splines in R (Version 3.6.3) using
the mgcv package127,128. To avoid over-fitting, nonlinearity was penalized using
restricted maximum likelihood (REML). Participant sex and in-scanner head
motion were included as covariates within each GAM. Head motion was quantified
as the mean framewise root-mean-square displacement across the three functional
runs for each subject. Age was modeled using a penalized thin-plate regression
spline; covariates were modeled as parametric regressors. This model can sum-
marized using the formula in Eq. 6:

FC � s age
� �þ βsex þ βheadmotion ð6Þ

To quantify the effect sizes of each age spline, we calculated the change in
adjusted R2 (ΔR2adj.) between the full model and a nested model that did not
include an effect of age. Statistical significance was assessed using analysis of
variance (ANOVA) to compare the full and nested models. Because ΔR2adj.
describes effect size but not direction (i.e., increasing or decreasing FC with age),
we extracted and applied the sign of the age coefficient from an equivalent linear
model as in prior work40. To estimate windows of significant age-related change for
each network-level model, we calculated the age range for which the 95%
confidence interval of estimated age splines did not include 0129,130. To calculate
the intervals, we used the gratia package in R131. Multiple comparisons were
controlled for with the false discovery rate (FDR) correction (q < .05).

Modeling the distribution of developmental effects across the functional hierarchy:
After analyzing the effect of age on between-network FC, we sought to evaluate the
spatial distribution of age effects along the principal gradient. At the network level,
we extracted the mean hierarchy value for each network at each scale and regressed
these values on the corresponding pattern of age effects (Eq. 7).

Age effectð4R2
adj:Þ � βhierarchy ð7Þ

To account for potential non-independence of age effects across scales,
significance testing was performed using non-parametric bootstrap resampling.
Specifically, we recalculated the age effects for each network and the resulting
transmodality relationship across 1000 bootstrap resamples to generate a
bootstrapped confidence interval. The effect size of the second-order model was
also described as a Spearman’s correlation coefficient.

We next evaluated how the magnitude of the age effects corresponded to the
span of each edge (between-network connection) across the functional hierarchy.
We modeled this effect in two ways. First, we calculated the difference in the
hierarchy values for each pair of networks at each scale (“hierarchical distance”)
and regressed this difference on the age effects from the edge-wise developmental
models (Eq. 8).

Age effectð4R2
adj:Þ � βhierarchical distance ð8Þ

As above, significance was evaluated using non-parametric bootstrap
resampling. As a sensitivity analysis, we repeated this procedure using the average
Euclidean distance between vertices in the two networks comprising each edge.
Second, we sought to visualize the interaction between hierarchical distance and
age-related changes in coupling across network edges spanning different portions
of the functional hierarchy. In order to continuously model the relationship
between age-related changes in coupling and hierarchical distance across the
functional hierarchy, we fit a bivariate smooth interaction. Specifically, we modeled
the effect of transmodality on the edge-level age effects using a tensor product
smooth132 as in Eq. 9.

Age effect ΔR2adj:
� � � teðHierarchyNetworkA;HierarchyNetworkBÞ ð9Þ

To verify the statistical significance of this model, we performed the same non-
parametric bootstrap procedure as above using a simplified linear
interaction model.

Modeling scale-dependent developmental effects: In order to quantify and localize
the scale-dependence of developmental changes in between-network coupling, we
modeled the role of scale on coupling at each vertex. Model formulas and initial
model fits were estimated using GAMs (Eq. 10).

Network coupling � s Scaleð Þ þ βsex þ βheadmotion ð10Þ
GAM-derived coefficient estimates for scale, sex, and head motion were used to

initialize generalized estimating equations (GEEs). GEEs enabled us to account for
the covariance between same-subject measurements across scales without assuming
the independence of these observations. At each vertex, the effect of the scale was
assessed for statistical significance via a joint Wald test that compared the full
model to a nested model that did not include an effect of scale.

Age-by-scale interactions were modeled using the same procedure. First, GAMs
were used to generate initial model fits. Age-by-scale interactions were modeled as
a bivariate tensor product interaction (ti in mgcv) as in Eq. 11.

Network coupling � s Scaleð Þ þ s Age
� �þ tiðScale;AgeÞ þ βsex þ βheadmotion ð11Þ

Again, GEEs were used to account for the covariance between same-subject
measurements across scales without assuming independence. Statistical significance
was evaluated with a joint Wald test that compared the full model to a nested
model that did not include a bivariate interaction term.

Finally, to further understand scale-dependent age effects within areas
exhibiting age-by-scale interactions, we compared network-level developmental
effects across scales for networks that fall at opposite ends of the principal axis. We
grouped networks by their maximum overlap with the higher-resolution reference
atlas (the 17 network solution provided by Yeo et al.) and calculated average
transmodality values for each group of reference networks. The lowest
(Somatomotor-A) and highest (Default mode-B) transmodality networks were
chosen to depict differential scale dependence across the principal gradient. To
illustrate the effect of scale, we fit a penalized spline to the relationship between
scale and observed age effects for each network within each group.

Analyses of executive function
Cognitive assessment. The Penn computerized neurocognitive battery (Penn CNB)
was administered to all participants as part of a session separate from neuroima-
ging. The CNB consists of 14 tests adapted from tasks applied in functional neu-
roimaging to evaluate a broad range of cognitive domains133. These domains
include executive function (abstraction and mental flexibility, attention, working
memory), episodic memory (verbal, facial, spatial), complex cognition (verbal
reasoning, nonverbal reasoning, spatial processing), social cognition (emotion
identification, emotion differentiation, age differentiation), and sensorimotor and
motor speed. Accuracy for each test was z transformed. As previously described in
detail, factor analysis was used to summarize these accuracy scores into three
factors134, including executive and complex cognition, episodic memory, and social
cognition. Here, we focused on the executive and complex cognition factor score;
episodic memory and social cognition factor scores were evaluated in specificity
analyses.

Cognitive modeling: Analyses of associations with cognition were executed using
GAMs, as described above for developmental analyses. Specifically, EF was mod-
eled using a penalized regression spline, while co-varying for age using a penalized
regression spline; participant sex and mean head motion were included as linear
covariates (Eq. 12).

FC � s EFð Þ þ s age
� �þ βsex þ βheadmotion ð12Þ

As for developmental analyses, we calculated the effect size as the change in
adjusted R2 between the full model and a nested model that did not include the
effect of EF (ΔR2adj.).

Linking associations with EF to the principal gradient of brain organization: After
analyzing the effect of cognition on between-network FC, we sought to evaluate the
distribution of EF effects across the sensorimotor to association hierarchy. At the
network level, we extracted the mean hierarchy value for each network at each scale
and compared these values to the corresponding pattern of associations between
between-network coupling and EF. As for previous developmental analyses, in
order to assess the statistical significance of EF effect-hierarchy correspondence, we
also evaluated a second-order model over 1000 bootstrap resamples. However, here
we also included quadratic terms (Eq. 13).

EF Effect ΔR2adj:
� � � βHierarchy þ βHierarchy2 ð13Þ

The resulting bootstrapped confidence intervals for βHierarchy and βHierarchy2 were
then used for significance testing of these second-order effects.

Modeling scale-dependent cognitive effects: In order to quantify and localize the
scale dependence of associations between EF and between-network coupling, we
modeled the role of scale at each vertex. EF-by-scale interactions were modeled
using the same procedure as for developmental models. First, GAMs were used to
generate initial model fits. EF-by-scale interactions were modeled as a bivariate
tensor product interaction (ti in mgcv) as in Eq. 14.

FC � s EFð Þ þ s Scaleð Þ þ s Age
� �þ ti Scale; EFð Þ þ tiðScale;AgeÞ þ βsex þ βheadmotion

ð14Þ
Again, GEEs were used to account for the covariance between same-subject

measurements across scales without assuming independence. Statistical significance
was evaluated with a joint Wald test that compared the full model to a nested
model that did not include a bivariate interaction term.

Finally, to further understand scale-dependent cognitive effects within areas
exhibiting EF-by-scale interactions, we compared network-level cognitive effects
across scales for networks that fall at opposite ends of the functional hierarchy. To
model the effect of scale, we fit a penalized spline to the relationship between scale
and observed cognition effects for the lowest (Somatomotor-A) and highest
(Default mode-B) order networks.
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Multivariate EF predictions: As a final step, we sought to assess the degree to which
multivariate patterns of functional edge coupling across scales jointly explain
individual differences in executive function. To do this, we used ridge regression135.
We iteratively fit a regression model to two-thirds of our sample (462 participants)
and predicted executive function scores from functional coupling data in the left-
out testing third of participants (231 participants). In each iteration, we used nested
parameter optimization. Specifically, coefficients for each edge were fit with the 1st
third of the sample, and then the L2 penalty term was selected based on predictions
in the 2nd third of the sample. Finally, the degree to which functional coupling
explains EF was calculated using the unseen 3rd third of the sample. In that left-out
data that was not used in model training, we calculated the correlation between
actual and predicted EF, as well as the mean squared error (MSE). We repeated this
process 100 times to ensure that specific sample splits were not driving results, and
averaged predictions across iterations. To evaluate the statistical significance of
these predictions, we used permutation testing. Specifically, we repeated this pro-
cess 1000 times, and compared our outcome measure (correlation of predicted vs.
actual EF) versus the distribution of models where EF scores had been permuted
across participants.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Source data generated in this study have been deposited in the Zenodo database
under accession https://doi.org/10.5281/zenodo.6288879. The raw neuroimaging data are
protected and are not available due to data privacy laws.

Code availability
The PNC data are publicly available in the Database of Genotypes and Phenotypes:
accession number: phs00607.v3.p2; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000607.v3.p2. All analysis code is available here https://github.
com/PennLINC/multiscale, with detailed explanation provided at https://pennlinc.
github.io/multiscale/.
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