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Abstract
Tusamitamab ravtansine (SAR408701) is an antibody-drug conjugate (ADC), combining a humanized monoclonal anti-

body (IgG1) targeting carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) and a potent cytotoxic

maytansinoid derivative, DM4, inhibiting microtubule assembly. SAR408701 is currently in clinical development for the

treatment of advanced solid tumors expressing CEACAM5. It is administered intravenously as a conjugated antibody with

an average Drug Antibody Ratio (DAR) of 3.8. During SAR408701 clinical development, four entities were measured in

plasma: conjugated antibody (SAR408701), naked antibody (NAB), DM4 and its methylated metabolite (MeDM4), both

being active. Average DAR and proportions of individual DAR species were also assessed in a subset of patients. An

integrated and semi-mechanistic population pharmacokinetic model describing the time-course of all entities in plasma and

DAR measurements has been developed. All DAR moieties were assumed to share the same drug disposition parameters,

excepted for clearance which differed for DAR0 (i.e. NAB entity). The conversion of higher DAR to lower DAR resulted

in a DAR-dependent ADC deconjugation and was represented as an irreversible first-order process. Each conjugated

antibody was assumed to contribute to DM4 formation. All data were fitted simultaneously and the model developed was

successful in describing the pharmacokinetic profile of each entity. Such a structural model could be translated to other

ADCs and gives insight of mechanistic processes governing ADC disposition. This framework will further be expanded to

evaluate covariates impact on SAR408701 pharmacokinetics and its derivatives, and thus can help identifying sources of

pharmacokinetic variability and potential efficacy and safety pharmacokinetic drivers.
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Semi-mechanistic

Introduction

Delivering potent cytotoxics to tumor cells using antibody-

drug conjugates (ADCs) has been shown to be an effective

strategy for cancer therapy, as demonstrated by approvals

of brentuximab vedotin (approved in 2011 for CD30-pos-

itive lymphomas [1]), trastuzumab emtansine (approved for

HER2-positive advanced breast cancer in 2012 [2]), gem-

tuzumab ozogamicin (reapproved in 2017, after market

withdrawal, for CD33-positive acute myeloid leukemia

[3]), inotuzumab ozogamicin (in 2017, for CD22-positive

B-cell precursor acute lymphoblastic leukaemia [4]),

polatuzumab vedotin (in 2019, for relapsed diffuse large

B-cell lymphoma [5]) and belantamab mafodotin, the latest

approved ADC in 2020 for multiple myeloma patients [6].
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Key steps of clinical development of approved ADCs are

summarized in Liu and Li’s review [7].

The high number of ADC candidates (approximately 80

under clinical development) and the nearly 600 ongoing

clinical trials [8] attest the growing interest toward such

therapeutics and the hopes of a safer and more efficient

antitumoral treatment.

SAR408701 is a first in class ADC directed against

carcinoembryonic antigen-related cell adhesion molecule 5

(CEACAM5). CEACAM5 belongs to the human carci-

noembryonic antigen family involved in cell adhesion,

differentiation, proliferation, and survival [9, 10]. Known

as a cell-surface glycoprotein, CEACAM5 is highly

expressed in several epithelial tumors, including colorectal

cancer, lung, and gastric adenocarcinoma. This antigen

displays a limited expression in normal tissues of epithelial

origin and can be found solely at the luminal surface of

columnar absorptive cells. In tumor tissues, due to loss of

cancer cell polarity, antigen distribution is extended around

the cell [9]. CEACAM5 is therefore considered as an

attractive target for drug delivery into tumors.

SAR408701 immunoconjugate combines a humanized

monoclonal antibody (IgG1) targeting CEACAM5 and

DM4, a potent maytansine derivative. The payload is

covalently bound to the antibody via an N-succinimidyl

4-(2-pyridyldithio) butyrate (SPDB) linker, stable in

plasma and cleavable inside cells after lysosomal degra-

dation. DM4 acts as a potent antimitotic agent that induces

mitotic arrest by inhibiting microtubule assembly and kills

tumor cells [11].

After binding to CEACAM5 antigens, SAR408701 is

internalized into cancer cells via antigen-mediated endo-

cytosis. Cleavage occurs intracellularly, allowing release of

the cytotoxic payload within the tumor cell. SAR408701 is

degraded to form the lysine-linked derivative (lysine-

SPDB-DM4) that gets further reduced in DM4. The free

maytansinoid thiol derivative DM4 is rapidly methylated

by an endogenous S-methyl transferase to form S-methyl-

DM4 (MeDM4). A subsequent NADPH-dependent oxida-

tion in liver yields the formation of the sulfoxide and sul-

fone derivatives, that are excreted into the bile [12]. All

three metabolites (Lysine-SPBD-DM4, DM4 and MeDM4)

have potent cytotoxic activity through binding to tubulin

and inhibiting microtubule polymerization [13, 14].

Due to physicochemical properties of the SPBD linker,

metabolites produced after SAR408701 degradation are

neutrally charged and undergo passive diffusion into

neighboring cells [15]. This so-called bystander effect

allows cells that are distant from vessels and cells that do

not express CEACAM5 to be exposed to DM4 and

MeDM4 cytotoxics and thus potentiates anti-tumoral drug

activity [16, 17]. As both DM4 and MeDM4 were observed

as circulating entities after administration of previous ADC

of the same construct (SAR3419: a mAb-SPDB-DM4 ADC

[18]) they were hence quantified following SAR408701

administration.

Based on promising preclinical data presented by

Decary et al. [19], SAR408701 appeared to be a promising

candidate for clinical development. It is therefore currently

tested in patients with advanced solid tumors expressing

CEACAM5. SAR408701 is administered intravenously as

a conjugated antibody containing species with different

payload densities. The number of cytotoxic molecules per

antibody is defined as the drug-to-antibody ratio (DAR).

DAR distribution is heterogeneous and ranges from 0 to 8,

with an average DAR in the administered solution of 3.8.

During TED13751 first in human (FIH) clinical study

(ClinicalTrials.gov Identifier: NCT02187848), SAR408701

(i.e., conjugated antibody with at least one payload:

DARC1), unconjugated DM4 and MeDM4 were measured

in plasma. While total antibody (i.e., conjugated antibody

and naked antibody: DARC0) is usually measured during

ADCs development, an innovative approach [20] allowed

specific quantification of naked antibody (NAB) in

TED13751 study. Moreover, new assays have also recently

been developed [21, 22] to measure individual DAR moi-

eties. DAR was therefore characterized in a subset of

TED13751 patients and expressed as average DAR and

proportions of individual DAR species over time.

Our objective was to elaborate a model framework that

investigates SAR408701 disposition mechanisms, to sup-

port its ongoing clinical development. This model aimed to

integrate ADC prior knowledge by fitting simultaneously

PK data of SAR408701, NAB, DM4 and MeDM4,

including DAR measurements in cancer patients. Out-

comes of such model were to characterize each entity PK

properties, to derive each entity individual exposure

parameters to determine the best efficacy and safety PK

driver, to support CMC for batches specification and sub-

sequently it will allow investigation of sources of PK

variability for each entity.

Methods

Clinical study

Data from TED13751 study were included in the analysis

[23]. In this study, SAR408701 was administered as a

single agent by intravenous infusion every 2 weeks (Q2W,

1 cycle=2 weeks) or every 3 weeks (Q3W, 1 cycle=3

weeks) in adult patients with advanced solid tumors. This

open-label, non-randomized trial was divided in several

cohorts regrouped in the escalation and expansion phases.

Patients cohorts and doses are summarized in Table 1.
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This study was approved by the Medical Ethics Com-

mittee and conducted in accordance with the International

Conference on Harmonization guidelines for Good Clinical

Practice. All patients provided written informed consent.

Bioanalytical methods

Blood samples for PK assessment were collected at spec-

ified time-points of each cycle, with full PK profile in most

of patients at cycle 1 and cycle 4. Several analytes mea-

sured by different types of assays were used for population

PK analysis.

SAR408701 concentrations

SAR408701 ADC concentrations were measured in plasma

samples using a validated immunoassay performed on the

Gyrolab xP platform. The assay quantified conjugated

antibody with at least one DM4 payload covalently bound,

up to a lower limit of quantification (LLOQ) of 0.500 lg/
mL.

NAB concentrations

NAB concentrations were quantified using an innovative

approach, previously developed for another ADC of the

same construct [20]. This assay first required a pre-treat-

ment, where SAR408701 was removed from the incurred

samples by an immune and magnetic separation process

that involved biotinylated anti-DM4 monoclonal antibodies

immobilized on streptavidin beads. This first purification

step was followed by a competitive immuno-enzymatic

assay with a LLOQ of 1 lg/mL. To avoid bioanalytical

interference of SAR408701 on NAB quantification, sam-

ples were diluted to reach SAR408701 concentrations

below 15 lg/mL. Consequently, NAB LLOQ in

TED13751 study varied from 1 to 9.60 lg/mL depending

on SAR408701 concentration in each sample.

DM4 and MeDM4 concentrations

Unconjugated DM4 and MeDM4 concentrations were

determined in acidified plasma samples, using a validated

Liquid-Chromatography assay coupled with tandem Mass

Table 1 Number of patients in TED13751 study per cohort and dose level

Cohorts Dose levels

Escalation

cohorts

Main escalation Q2W (n=31) 5 mg/m2 (n=2)

10 mg/m2 (n=4)

20 mg/m2 (n=1)

40 mg/m2 (n=3)

80 mg/m2 (n=3)

100 mg/m2 (n=6)

120 mg/m2 (n=9)

150 mg/m2 (n=3)

Escalation Q2W with loading dose at cycle 1 followed by 100 mg/m2 Q2W (n=28) 120 mg/m2 (n=3)

135 mg/m2 (n=4)

150 mg/m2 (n=8)

170 mg/m2

(n=13)

Escalation Q3W (n=15) 120 mg/m2 (n=9)

150 mg/m2 (n=3)

170 mg/m2 (n=6)

190 mg/m2 (n=3)

Expansion

cohorts

Colorectal cancer (n=46) 100 mg/m2 Q2W

(n=180)Gastric carcinoma (n=16)

Non-squamous non-small cell lung cancer (NSCLC), high CEACAM5 expressors (CEACAM5 target

expression C2? in intensity in at least 50% of the tumor cell population, n=64)

Non-squamous NSCLC, low CEACAM5 expressors (CEACAM5 target expression C2? in intensity in

between C1% and\50% of the tumor cell population, n=28)

Small cell lung cancer (SCLC, n=26)
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Spectrometry (LC-MS/MS). The LLOQ was 0.2 ng/mL for

both analytes.

DAR quantification in plasma

Quantification of DAR in plasma samples was evaluated by

Liquid Chromatography coupled with High Resolution

Mass Spectrometry (LC-HRMS) in a subset of patients

[21, 22, 24]. In this assay the relative intensities of each

DAR moiety were quantified in plasma and proportions of

individual DAR species were derived over time. Average

DAR per sample was then calculated from each DAR

distribution.

DAR quantification in administered drug solution

DAR was also assessed in 4 administered batches of

TED13751 study by visible UV (UV/Vis) spectroscopy

[25]. DAR value was determined in the administered

solution, using measured absorbances of SAR408701 ADC

and extinction coefficients of NAB and DM4.

Population PK modeling

Population PK model included PK data of SAR408701,

NAB, DM4, MeDM4, average DAR and proportions of

individual DAR species over time. As all entities were

fitted simultaneously, DM4, MeDM4 and NAB concen-

trations were converted to ADC molar equivalent (nor-

malization by SAR408701 molecular mass, Table 2).

PK parameters were assumed to follow a log-normal

distribution and interindividual variability (IIV) was esti-

mated on most of the parameters as follow:

Pi ¼ PTV � exp gP;i
� �

Where Pi is the individual patient parameter, PTV the

population parameter typical value and gP;i the individual

random effect for this parameter, normally distributed with

a variance xp
2.

Residual variability was modelled with combined error

model for SAR408701, proportional error model for DM4,

MeDM4 and NAB, and additive error model for DAR as

follow:

Obsi ¼ f i þ ai þ bi � f ið Þ:ri
Where Obsi is the individual observation for a given entity,

f i the predicted concentration for this entity, ri a random

effect with normal distribution, zero mean and unity stan-

dard deviation, ai the additive error term and bi the pro-

portional error term.

Initially, combined error model was used for all ana-

lytes, but preliminary investigation indicated that the error

models mentioned above provided the same fit as com-

bined error models.

Parameters were estimated using the parametric non-

linear mixed-effect modelling software Monolix (2020R1)

with stochastic approximation expectation-maximization

algorithm (SAEM) combined to Markov Chain Monte

Carlo procedure. Relative Standard Errors (RSE) were

calculated via estimation of the Fisher Information Matrix

and log-likelihood calculation was estimated using impor-

tance sampling method. Pre and post data processing were

performed with R software (V 3.6.1).

Model selection and evaluation

The best model was determined by Objective Function

value, Bayesian Information Criteria (OF and BIC

respectively), physiological relevance of parameter esti-

mates, precision of estimates (RSE), visual inspection of

the fitted individual profiles and overall goodness-of-fit

(GOF) plots. GOF plots included plots of observed con-

centrations versus model population and individual pre-

dicted concentrations, as well as population and individual

weighted residuals (PWRES and iWRES) versus time and

versus model predicted concentrations.

The final model was qualified by inspection of predic-

tion-corrected visual predictive check (pc-VPC) [26] and

normal prediction distribution error (NPDE) [27] plots.

NPDE and pc-VPC were performed with Monte-Carlo

simulations. Five hundred datasets, identical in structure to

the original dataset, were simulated. For pc-VPC, in each

bin the observed and simulated data were normalized based

on the typical population prediction for the median time in

the bin to remove the variability coming from binning

across independent variables. Final pc-VPC were presented

at cycle 1 and at cycle 4 (rich data collected). Empirical

percentiles of observed data were compared to theoretical

percentiles (at a level of 90%). For a true model, empirical

Table 2 SAR408701, NAB, DM4 and MeDM4 molecular weight

Entity Molecular weight (g/mol)

SAR408701 150,000*

NAB 144,522

DM4 780

MeDM4 794

*SAR408701 molecular weight varies slightly as a function of DAR,

but it was assumed that each drug conjugate contributed to a negli-

gible amount of the global molecular weight. The 150,000 g/mol

molecular weight used for SAR408701 was an average molecular

weight determined for an ADC with three [linker-DM4] complexes

attached to the antibody

384 Journal of Pharmacokinetics and Pharmacodynamics (2022) 49:381–394

123



percentiles should remain within the corresponding pre-

diction intervals.

Model development

A semi-mechanistic integrated model characterizing the

kinetics of all entities (SAR408701, DM4, MeDM4, NAB)

in plasma, average DAR decrease over time and propor-

tions of individual DAR species was developed and is

presented Fig. 1. According to the parsimony rule, the

model building was kept as simple as possible to ensure

parameter identifiability and avoid overparameterization

while reflecting mechanistic behaviour for each entity.

Details of model ordinary differential equations (ODE) can

be found in Online Resource 1 (initial condition for each

ODE was set to zero).The model can be presented in sev-

eral building blocks:

ADC model

To characterize the PK of SAR408701, species from DAR1

(i.e. ADC with one DM4 molecule) to DAR8 (i.e. ADC

with eight DM4 molecules) were explicitly represented.

Each DAR species was described by a two-compartment

PK model and assumed to share with other DAR species

the same distribution (same value of central volume: Vc,

peripheral volume: Vp and intercompartmental clearance:

Q) and the same proteolytic elimination (through central

clearance parameter: CLADC). CLADC was thus assumed to

be DAR independent (a DAR dependent clearance model

was tested but did not improve model prediction criteria).

Conversion of higher DAR to lower DAR species was

modelled as an irreversible first-order process in central

compartment. First-order rates (defined by kdec,i parame-

ters) were estimated for each conversion from DARn to

DARn-1. Due to very low levels of DAR7 and DAR8

proportions, kdec7 and kdec8 parameters could not be esti-

mated accurately and were assumed to be equal to kdec6.

Measurements of DAR8 relative proportion were excluded

from the analysis as the observed data were close to zero in

most patients and induced model instability. All kdec,i
parameters were assumed to have the same IIV. Attempts

to have different IIV parameters for each kdec,i did not

improved the fit but resulted in poor precision of IIV

estimates.

SAR408701 ADC concentration measured in plasma,

was defined as follows:

CADC ¼ CDAR1 þ CDAR2 þ CDAR3 þ CDAR4 þ CDAR5

þ CDAR6 þ CDAR7 þ CDAR8

Where CADC is the estimated SAR408701 plasma con-

centration and CDARi the individual ADC DARi estimated

plasma concentration.

Models with peripheral DM4 deconjugation and com-

bined central and peripheral DM4 deconjugation were

tested but did not improve model prediction criteria.

NAB model

NAB was represented as the DAR0 species and shared with

conjugated antibody the same distribution parameters (Vc,

Vp and Q) but not the same clearance. A specific CLNAB

parameter was estimated. SAR408701 and NAB elimina-

tion were linear as no evidence of target-mediated drug

disposition at the tested doses was found. Non-linear
Fig. 1 Semi-mechanistic pharmacokinetic model of tusamitamab

ravtansine, a DM4 conjugated ADC
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elimination and combined linear/non-linear elimination

were nevertheless evaluated for each analyte but didn’t

improved data fitting, thus confirming linear PK of conju-

gated antibody and NAB.

Administered DAR fraction

SAR408701 administered dose was fractioned between all

DAR compartments. Initially, DAR administered fractions

(FDARi) and there corresponding IIV were fixed at values

measured in dose material batches: median values for

parameter estimates and coefficients of variation for IIV

(Table 3). As diagnostics plots revealed that NAB fit

seemed biased, FNAB was allowed to be estimated, but the

total fraction was kept to 100% by proportional decrease of

all other fractions (details can be found in Online Resource

1).

DM4 and MeDM4 models

DM4 disposition was described by a one compartment PK

model, with first-order elimination. Each DARC1 decon-

jugation process was assumed to contribute to DM4 for-

mation by releasing one DM4 molecule.

Models with CLADC contributing to DM4 formation

were tested but did not improve model prediction criteria.

MeDM4 was modelled sequentially with a one com-

partment model and first order formation process directly

from DM4 elimination.

DM4 and MeDM4 kinetics were characterized by the

following ordinary differential equations:

dADM4

dt
¼ ½kdec1:ADAR1 þ kdec2:ADAR2 þ kdec3:ADAR3

þ kdec4:ADAR4 þ kdec5:ADAR5 þ kdec6:ðADAR6

þ ADAR7 þ ADAR8Þ� �
CLDM4

VDM4

:ADM4

dAMeDM4

dt
¼ FRMeDM4:

CLDM4

VDM4

:ADM4 �
CLMeDM4

VMeDM4

:AMeDM4

Where ADM4 and AMeDM4 represent the amount of DM4 and

MeDM4 respectively, kdeci the individual DAR deconju-

gated rate, CLDM4 and CLMeDM4 the apparent clearance of

DM4 and MeDM4 respectively, VDM4 and VMeDM4 the

distribution volume of DM4 and MeDM4 respectively

(fixed to 1) and FRMeDM4 the apparent relative fraction of

DM4 elimination related to MeDM4 formation. Models

with estimated VDM4 and VMeDM4were tested but did not

improve the fit, likely due to formation-limited kinetics of

DM4 and model inability to estimate FRMeDM4 and VMeDM4

at the same time.

Average DAR prediction and individual DAR relative
proportion

Derived average DAR, as a function of time, was defined

as the ratio between total DM4 conjugated to SAR408701

over total antibody concentration (NAB and conjugated

antibody), according to the following equations:

CTAB ¼ CADC þ CNAB

DM4conjugated;tot ¼ CDAR1 þ 2� CDAR2 þ 3� CDAR3

þ 4� CDAR4 þ 5� CDAR5 þ 6� CDAR6

þ 7� CDAR7 þ 8� CDAR8

DARaverage ¼
DM4conjugated;tot

CTAB

Where CTAB represents the concentration of total antibody,

DM4conjugated;tot the concentration of total conjugated DM4

and DARaverage the average DAR predicted.

Proportions of individual DAR species were derived as

followed:

NABproportion ¼ 100� CNAB

CTAB
; DAR1proportion ¼ 100� CDAR1

CTAB
; …

Table 3 Model input: Proportion of each DAR in the administered dose

DAR Fraction of each DAR in 4 (out of 7) administered batches of TED13751 study [min-max] Coefficient of variation (CV)

FNAB [0.00–0.04] 91.3%

FDAR1 [0.08–0.10] 9.1%

FDAR2 [0.17–0.21] 9.1%

FDAR3 [0.21–0.24] 6.6%

FDAR4 [0.20–0.23] 5.9%

FDAR5 [0.13–0.16] 10.2%

FDAR6 [0.06–0.08] 13.2%

FDAR7 [0.02–0.04] 27.2%

FDAR8 [0.00–0.01] 66.7%
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Model simulations

The final semi-mechanistic model was used to simulate

typical profiles of SAR408701, NAB, DM4 and MeDM4,

in order to characterize each entity steady-state achieve-

ment and accumulation ratio based on Area Under the

Curve between 2 cycles (AUCTAU). The simulated dose

was 100 mg/m2 administered Q2W, up to cycle 50 (at

which steady state is considered reached). Steady state was

achieved when the difference between AUCTAU at cyclei
and AUCTAU at cycle50 was less than 5%. Accumulation

ratio was defined for AUCTAU and maximal concentration

(Cmax) as the ratio between parameter at steady-state and

parameter at cycle 1:

RaccCmax ¼
Cmax; ss

Cmax; cycle1

RaccAUCTAU ¼ AUCTAU; ss

AUCTAU; cycle1

Terminal half-life was calculated for each entity after

simulation of a typical single dose profile. Terminal half-

life was as follow:

half � life ¼ concentrationt1 � concentrationt2
t1� t2

The final model was also used to simulate SAR408701

typical profiles from DAR0 to DAR8 to assess individual

DAR kinetics and exposure over time.

Results

Data

Data from 254 patients of TED13751 FIH study were

included in the analysis. PK data were collected over 58

cycles (i.e. 29 months), with a median value of 4 cycles per

patient (i.e. 2 months). A total of 3746 SAR408701 plasma

concentrations, 3740 DM4 plasma concentrations, 3734

MeDM4 plasma concentrations and 3734 NAB plasma

concentrations were analysed. As values below the limits

of quantification (BLQ) represented 1%, 36%, 13% and

31% of total SAR408701, DM4, MeDM4 and NAB con-

centrations respectively, they were included in the analysis

and used as censored data. DAR was assessed in 13

patients out of the 254 patients enrolled in TED13751

study.

Spaghetti plots of SAR408701, DM4, MeDM4 and

NAB observed concentrations over time at cycle 1 are

presented in Online Resource 2a. Spaghetti plots of average

DAR and proportions of individual DAR species over time

after dose are presented in Online Resource 2b and 2c

respectively. Individual DAR8 relative proportion was not

quantifiable and is thus not represented in spaghetti plots

and not fitted in the model.

Semi-mechanistic integrated model

Parameters estimates of final semi-mechanistic model are

presented in Table 4.

SAR408701 and NAB concentrations were well

described by a combination of two-compartment models

(one for each DAR). Distribution volumes were low (as

expected for macromolecules) and close to physiological

blood volume, with Vc estimated at 3.37 L and Vp at

2.54 L. DM4 and MeDM4 PK were well described by 1

compartment model and linear elimination. Apparent DM4

clearance was estimated at 240 L/day with 36.5% IIV and

apparent MeDM4 clearance was estimated at 0.256 L/day

with 65.4% IIV. FNAB was estimated at 7.1%, with 41.8%

IIV.

Deconjugation rate values were DAR dependent and

increased from 0.0565 /day for kdec1 to 0.938 /day for kdec6,

with higher DAR experiencing higher kdec values. IIV was

estimated at 20.2% for all kdeci.

While they were allowed to be different, population

estimates of SAR408701 and NAB proteolytic clearance

(i.e. central clearance) were almost equal: SAR408701

proteolytic clearance was estimated at 0.392 L/d and NAB

clearance at 0.408 L/day. Combining central deconjugation

and proteolytic clearance, SAR408701 global clearance

ranged from 0.582 L/d (for DAR1) to 3.55 L/d (for

DARC6), with deconjugation clearance being the major

elimination pathway for high DAR species (Table 5).

Model qualification

Visual inspection of individual fits showed good prediction

of individual profiles for each entity. GOF plots and NPDE

(Online Resource 3 and 4) confirmed good consistency

between predicted and observed concentrations, with no

apparent bias in residuals plots over time, suggesting that

the semi-mechanistic model was successful in character-

izing simultaneously PK of SAR408701, NAB, DM4,

MeDM4 entities and DAR.

Prediction corrected visual predictive check showed that

the 10th, 50th and 90th empirical percentiles of observed

concentrations were in good agreement with the simulated

confidence intervals for SAR408701 (Fig. 2). DM4,

MeDM4 and NAB pc-VPC are presented in Online

Resource 5.

All model parameters were estimated with good preci-

sion and magnitude of residual variability for each entity

was low for ADC, NAB and DM4 (bADC = 8.9%, bDM4 =

33.5%, bNAB = 26.0%) but higher for MeDM4 (bMeDM4 =

50.0%), indicating good overall fit and no model
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misspecification. The moderate estimated error on MeDM4

arises partly from the high variability observed on MeDM4

profiles (Online Resource 2a): observed Cmax values range

at cycle 1 from 0.00050 lM to 0.050 lM for some patients

who experienced very high Cmax.

Steady state and accumulation

The final model was used to simulate typical profiles for

each entity (Fig. 3). As expected, simulations show low

levels of DM4, MeDM4 and NAB compared to conjugated

antibody and rapid elimination of DM4 entity. Terminal

half-life is estimated at 8.8 days for SAR408701 and 12.2

days for NAB. For DM4 and MeDM4, estimated terminal

half-life values (8.7 days) are almost equal to that of ADC

Table 4 Population pharmacokinetics parameter estimates from final semi-mechanistic model

Fixed effects Standard deviation of the random effect, xp (RSE%) Residual error (RSE%)

Parameter Estimate (RSE%)

FDAR8 (%) 0.9 (fixed) a aADC (lg/mL) = 1.03 (6)

FDAR7 (%) 2.8 (fixed) 0.272 (fixed) bADC = 8.9% (3)

FDAR6 (%) 7.1 (fixed) 0.132 (fixed) bDM4 = 33.5% (2)

FDAR5 (%) 14.2 (fixed) 0.102 (fixed) bMeDM4 = 50.0% (2)

FDAR4 (%) 19.9 (fixed) 0.059 (fixed) bNAB = 26.0% (2)

FDAR3 (%) 21.8 (fixed) 0.066 (fixed) aDARaverage
= 0.219 (6)

FDAR2 (%) 17.5 (fixed) 0.091 (fixed) aDAR7proportion (%) = 0.517 (9)

FDAR1 (%) 8.5 (fixed) 0.091 (fixed) aDAR6proportion (%) = 0.798 (7)

FNAB (%) 7.1 (3) 0.418 (7) aDAR5proportion (%) = 1.47 (7)

CLADC (L/day) 0.392 (3) 0.469 (5) aDAR4proportion (%) = 2.53 (7)

Vc (L) 3.37 (2) 0.245 (5) aDAR3proportion (%) = 3.26 (8)

Q (L/day) 0.543 (5) 0.529 (8) aDAR2proportion (%) = 3.48 (8)

Vp (L) 2.54 (5) 0.605 (8) aDAR1proportion (%) = 4.58 (6)

kdec8 (/day) 0.938 (4) 0.202 (8) aNABproportion
(%) = 9.93 (6)

kdec7 (/day)

kdec6 (/day)

kdec5 (/day) 0.751 (3)

kdec4 (/day) 0.525 (4)

kdec3 (/day) 0.340 (4)

kdec2 (/day) 0.181 (3)

kdec1 (/day) 0.0565 (2)

CLNAB (L/day) 0.408 (3) 0.345 (6)

CLDM4 (L/day) 240 (3) 0.365 (6)

CLMeDM4 (L/day) 0.256 (5) 0.654 (6)

FRMeDM4 0.0107 (5) 0.723 (5)

aIIV on FDAR8 was back calculated to ensure equilibrium among administered DAR fractions

Table 5 ADC clearance

pathways for each DAR
DAR Proteolytic clearance (L/d) Deconjugation clearance (L/d) Global clearance (L/d)

DARC6 0.392 3.16 3.55

DAR5 0.392 2.53 2.92

DAR4 0.392 1.77 2.16

DAR3 0.392 1.15 1.54

DAR2 0.392 0.611 1.00

DAR1 0.392 0.190 0.582

388 Journal of Pharmacokinetics and Pharmacodynamics (2022) 49:381–394

123



and thus reflects a formation limited kinetic process

experienced by these two entities. Steady state is reached

for Q2W administration at cycle 3 (i.e. day 42) for all

entities except for NAB. NAB equilibrium is achieved at

cycle 6 (i.e. day 84), with more accumulation than the other

entities explained by the additional NAB input coming

from successive DAR deconjugations. Racc for AUCTAU

ranges from 1.1 to 1.4 for SAR408701, DM4 and MeDM4

whereas it achieves 2.9 for NAB (Table 6). Typical

exposure parameters at cycle 1 for all entities and com-

parisons with SAR408701 exposure (Table 7) confirm that

DM4 and MeDM4 account for a very small proportion of

SAR408701 exposure (less than 5%).

DAR individual typical profiles

Final model was also used to perform typical simulations

of average DAR (Fig. 4) and individual DARi profiles

(Fig. 5). After drug administration, low levels and fast

decreases of high DAR species are observed, with no

accumulation across cycles (Fig. 5). While for low DAR

species, higher levels and slower decrease are observed

with accumulation across cycles. Average DAR ranges

across cycles from 1 to 3.3 (Fig. 4). The maximum average

DAR reduces slightly from 3.3 to 2.8 after repeated doses

of SAR408701 due to the accumulation of DAR0 and

DAR1. Both graphs show that low DAR species (i.e.

DAR1, DAR2, DAR3) are the major circulating species

after drug administration.

Fig. 2 SAR408701 prediction corrected VPC at cycle 1 and cycle 4.

The points represent the observed concentrations (in red the BLQ

values, handled as censored data), the solid lines represent the

median, 10th and 90th percentiles of the observed data and the blue

and red areas represent the prediction intervals for each percentile (at

a level of 90%). The shape of PK profiles may differ at cycle 4

because of dose delay that can be found across cycles for some

patients

Fig. 3 SAR408701, DM4, MeDM4 and NAB typical profile (after

100 mg/m2 Q2W dosing)
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Discussion

PK modelling of ADC is challenging as the administered

drug is a mixture of various DAR moieties that may have

different kinetics and different contributions to payload

release. Each DAR moiety is not commonly measured in

clinical samples. PK information is often limited to con-

jugated antibody (ADC carrying at least 1 drug molecule)

and total antibody (antibody irrespective of the drug load).

An innovative analytical approach, developed by Pascual

et al. [20], allows to selectively quantify naked antibody

after ADC administration. Payloads and derived relevant

metabolites are also generally measured, as they represent

active entities.

A usual first approach to characterize the PK of an ADC

and its derivatives is to analyse the PK of each entity

separately. For instance, Hibma and Knight [28] studied

the PK of gemtuzumab ozogamicin and elaborated separate

models for total antibody and unconjugated payload. These

models successfully described the PK of both entities.

While being descriptive, this type of modelling approach

may suffer from a lack of mechanistic basis which could

limit the scope of further PK simulations.

SAR408701 is a DM4 conjugated antibody, bearing up

to 8 DM4 molecules covalently bound to the antibody, with

an average DAR of 3.8. Among the SAR408701 deriva-

tives, DM4 and MeDM4 possess cytotoxic activity via

tubulin binding and inhibition of tumor cell proliferation.

These two entities are quantified in plasma at low levels:

DM4 and MeDM4 exposures represent approximately

0.40% and 3.5% (on an AUCTAU molar basis) of

SAR408701 exposure, respectively. During the TED13751

study, conjugated antibody, NAB, DM4 and MeDM4 were

measured in plasma in 254 patients. DAR was assessed in a

subset of 13 patients and derived as average DAR and

proportions of individual DAR species. The objectives of

the current work were to explore the mechanisms govern-

ing SAR408701 disposition, characterize PK and quantify

variability of all entities. This is the first published PK

model of an anti-CEACAM5 ADC conjugated to DM4. All

available data were integrated and fitted simultaneously in

a semi-mechanistic model.

Similar modelling approaches have been considered

previously to describe ADCs complex disposition. Semi-

mechanistic models were explored and built with clinical

or preclinical data, resulting in an enhanced comprehension

of ADCs behaviour.

Gibiansky and Gibiansky [29] extended the target-me-

diated drug disposition (TMDD) model and its approxi-

mations to predict ADCs and released toxins PK. In their

approach, ADC clearance and payload deconjugation rates

could either be considered drug load dependent or

Table 6 Terminal half-life,

steady-state and accumulation

ratio for each entity (after

100 mg/m2 Q2W dosing)

Entity Terminal half-life (days) Steady-state Racc for AUCTAU Racc for Cmax

SAR408701 8.8 Cycle 3 1.4 1.3

DM4 8.7a Cycle 3 1.1 1.1

MeDM4 8.7a Cycle 3 1.3 1.3

NAB 12.2 Cycle 6 2.9 2.5

aApparent terminal half-life: formation limited kinetic for DM4 and MeDM4

Table 7 Typical exposure

parameters at cycle 1 for each

entity (after 100 mg/m2 Q2W

dosing)

Entity Cycle 1 AUCTAU, i (lM.day) AUCTAU;i

AUCTAU;SAR408;701

Cycle 1 Cmax, i (lM) Cmax;i

Cmax;SAR408;701

SAR408701 250 1 0.326 1

DM4 1.00 0.40% 0.00208 0.64%

MeDM4 8.69 3.5% 0.00610 1.9%

NAB 32.5 13% 0.0249 7.6%

Fig. 4 Typical average DAR profile (after 100 mg/m2 Q2W dosing)
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independent. Their developed models were successful in

describing clinical PK data simulated from trastuzumab

emtansine (T-DM1) population PK models [30, 31].

Later on, Mittapalli et al. [32] adapted the Gibiansky

and Gibiansky’s model to describe the PK of depatux-

izumab mafodotin and its active metabolite. They devel-

oped a semi-mechanistic model integrating species from

DAR0 to DAR8 and assumed that each deconjugation

process produced 2 molecules of payload. They adequately

characterized the PK profile of each entity and confirmed

once again the value of such a mechanistic approach.

Semi-mechanistic models are also of interest during

drug development to predict human PK from experimental

preclinical data. Sukumaran et al. [33] presented an inte-

grated model that included explicit representation of all

DAR species, in which payload deconjugation and total

antibody clearance were modelled as DAR dependent

processes. Their model was built with rodents and

cynomolgus monkeys data and adequately predicted

human PK for an anti-STEAP-vs-MMAE ADC. Deng et al.

[33] also described the human PK of a novel THIOMABTM

antibody-antibiotic conjugate, with a cross species model

built with mice, rats and monkeys data. The main question

raised by these preclinical approaches remains the model

translatability. While monkey allometric scaling appears to

be a promising tool to predict human ADC PK in this

mechanistic framework, translatability is still challenging,

as multiple analytes and clearance pathways are involved

and should be scaled.

All these models provide a surrogate mechanistic char-

acterization of different DAR species, but individual DAR

measurements are not usually included in these analyses. In

fact, immunoassays commonly used measure total or

conjugated antibody but fail to distinguish ADC compo-

nents with different loads. Recent improvements in bio-

analytical field discussed by Zhu et al. [22], allowed a deep

characterization of ADC moieties by distinguishing the

number of payloads attached to each ADC. Considering

such DAR data in a mechanistic approach would enhance

model confidence and allow a more accurate prediction of

deconjugation processes.

Bender et al. [35] presented a preclinical mechanistic

PK analysis of T-DM1 in which relative intensities of each

DAR moiety in plasma were measured in monkeys by a

novel affinity capture LC-MS assay [21, 24]. Calculated

DAR intensities were converted to individual DAR plasma

concentrations that were included and fitted in their model,

to help elucidating the link between trastuzumab, T-DM1,

and DAR measurements.

Based on these existing mechanistic frameworks, our

model included representation of all DAR species after IV

administration of a solution of SAR408701 to patients. On

a physiological level, ADC deconjugation is known to

depend on linker properties. SPBD linkers that attach DM4

payloads to SAR408701 antibody are designed to be

stable in plasma and cleavable inside tumor cells. But

despite their stability, deconjugation in plasma cannot be

ruled out and is therefore described in our model. The

deconjugation process was assumed to occur in central

compartment only, as additional peripheral deconjugation

didn’t improve model fit criteria. This assumption was also

supported by Lu et al. [36] and Deng et al. [34] who

Fig. 5 Typical individual DAR

profiles (after 100 mg/m2 Q2W

dosing)
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observed that peripheral deconjugation in targeted tumor

tissues could not be characterized separately and should be

lumped with apparent central deconjugation. Besides, DM4

and MeDM4 released from deconjugation in tumor cells

may diffuse through cellular membranes and reach the

circulation. The model central deconjugation processes

tried to account for all these physiological mechanisms

governing ADC deconjugation.

In our analysis ADC deconjugation was found to be

DAR dependent, with faster deconjugation rates estimated

for high DAR species and slower deconjugation rates for

low DAR species. This phenomenon of DAR dependent

deconjugation is a process widely described in literature.

Drug load is found to affect ADCs physical stability: Adem

et al. [37] showed that for MMAE ADCs, high DAR were

less stable than low DAR species. Moreover, in a mecha-

nistic PK characterization of T-DM1, Bender et al. [35]

showed that DM1 deconjugated fastest from the more

highly loaded trastuzumab molecules. This phenomenon

was also characterized with a Weibull distribution function

[36] as a more flexible way to describe T-DM1 DAR

dependent deconjugation.

Our model included a second elimination process,

reflecting SAR408701 catabolism and proteolysis, via a

central clearance parameter. Depending on ADC structure,

clearance can be either DAR dependent or independent.

Clearance of non-cleavable ADC is supposed to be less

influenced by DAR: Sukumaran et al. [33] showed that

ADCs with protease-cleavable linker experienced DAR

dependent clearance, while Mittapalli et al. [32] modelled

depatuxizumab mafodotin (designed with a noncleavable

maleimido-caproyl linker) with DAR independent clear-

ance. Since SAR408701 is composed of an optimized lin-

ker (stable in plasma but cleavable inside cells), its central

clearance is expected to be DAR independent. While DAR

dependent clearance was also tested in our model it didn’t

improve the model fit, strengthening the reasonable

assumption of a DAR independent elimination pathway for

SAR408701.

This mechanistic model helped understanding the fate of

each DAR moiety and allowed simulation of typical pro-

files for each DAR species. The simulations showed that

high DAR resulted in low concentrations and underwent

rapid elimination with no accumulation across cycles.

Conversely, low DAR species experienced a slower plasma

elimination and accumulated across cycles, thus generating

higher concentrations of low DAR species at steady state.

Another feature of such model is the simulation of various

DAR inputs in the administered solution: evaluating the

impact of different DAR distributions on individual DAR

kinetics may support the specifications of the administered

batches produced.

The estimated PK parameters of SAR408701 ADC were

in good agreement with allometric prediction made by

Bouillon-Pichault et al. [38]. Based on monkey and human

PK data of two other ADCs of the same construct, they

established allometric scaling for SAR408701 with mon-

key data and predicted human PK profile. This example

confirms the interest toward translational strategy, as a

valuable tool to design first in human clinical studies for

ADCs.

All model parameters were well estimated and GOF

plots showed good description of all entities PK profiles

given the complexity of the analysis performed: not only

the model fitted the 4 main analytes (SAR408701, NAB,

DM4 and MeDM4), but also average DAR and proportions

of individual DAR species. However, diagnostic plots of

proportions of individual NAB species indicated a potential

misfit of the model toward such data (Online Resource 3f).

The administered NAB fraction was estimated at 7.1%, a

little more than what was measured in some of the

administered batches. Nevertheless, allowing the model to

estimate this fraction improved prediction of NAB con-

centrations and overall model prediction criteria, without

impacting estimated values of the other population

parameters.

DM4 and MeDM4 were well described by sequential

one compartment PK models, with linear elimination. DM4

apparent clearance was much higher than MeDM4 appar-

ent clearance which resulted in much lower levels of DM4

concentrations. This is consistent with the known chemical

properties of DM4: being a thiol bearing molecule, DM4 is

very unstable and rapidly metabolized. DM4 and MeDM4

apparent terminal half-life values were equal to that of

ADC, due to formation limited kinetics process. Indeed, so

long half-life for small molecules would have been highly

unusual. This formation limited kinetics process explains

why distribution volumes couldn’t be estimated for these

two entities that are not directly administered.

Based on this semi-mechanistic PK model, identification

of potential covariates effect on conjugated antibody and

payloads disposition is warranted. Another key application

of this integrated model is that it allows prediction of

individual PK profiles and drug exposure for each circu-

lating entity (SAR408701, DM4 or MeDM4) that can

either be tested as candidate for exposure vs. response

analyses or integrated in a PK/PD modelling framework to

determine efficacy and safety PK drivers.

Conclusions

We developed a semi-mechanistic model that was able to

describe the PK profiles of SAR408701 conjugated anti-

body and its derivatives (DM4, MeDM4 and NAB).
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Additionally, the model predicted the PK profiles of all the

DAR species. This model, built with clinical data, inte-

grated DAR measurements and specific NAB concentra-

tions thanks to new bioanalytical methods. It aimed to

improve understanding of the complex PK behaviour of

DM4 conjugated ADCs. This model may be further used to

explore sources of PK variabilities and define potential

safety or efficacy PK drivers. As illustrated by many, this

type of mechanistic framework is applicable to other ADCs

formats, with different payloads or linker properties and

can support any step of drug development.
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