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a b s t r a c t 

Background and Objective: At present, the COVID-19 epidemic is still spreading worldwide and wearing 

a mask in public areas is an effective way to prevent the spread of the respiratory virus. Although there 

are many deep learning methods used for detecting the face masks, there are few lightweight detectors 

having a good effect on small or medium-size face masks detection in the complicated environments. 

Methods: In this work we propose an efficient and lightweight detection method based on YOLOv4-tiny, 

and a face mask detection and monitoring system for mask wearing status. Two feasible improvement 

strategies, network structure optimization and K-means ++ clustering algorithm, are utilized for improv- 

ing the detection accuracy on the premise of ensuring the real-time face masks recognition. Particularly, 

the improved residual module and cross fusion module are designed to aim at extracting the features 

of small or medium-size targets effectively. Moreover, the enhanced dual attention mechanism and the 

improved spatial pyramid pooling module are employed for merging sufficiently the deep and shallow se- 

mantic information and expanding the receptive field. Afterwards, the detection accuracy is compensated 

through the combination of activation functions. Finally, the depthwise separable convolution module is 

used to reduce the quantity of parameters and improve the detection efficiency. Our proposed detector 

is evaluated on a public face mask dataset, and an ablation experiment is also provided to verify the 

effectiveness of our proposed model, which is compared with the state-of-the-art (SOTA) models as well. 

Results: Our proposed detector increases the AP (average precision) values in each category of the public 

face mask dataset compared with the original YOLOv4-tiny. The mAP (mean average precision) is im- 

proved by 4.56% and the speed reaches 92.81 FPS. Meanwhile, the quantity of parameters and the FLOPs 

(floating-point operations) are reduced by 1/3, 16.48%, respectively. 

Conclusions: The proposed detector achieves better overall detection performance compared with other 

SOTA detectors for real-time mask detection, demonstrated the superiority with both theoretical value 

and practical significance. The developed system also brings greater flexibility to the application of face 

mask detection in hospitals, campuses, communities, etc. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

At present, there are more than 200 million cases of infection 

ith the Corona Virus Disease 2019 (COVID-19) worldwide. Be- 

ause respiratory infection viruses, toxic and harmful gasses, and 

roplets suspended et al. in the air can enter the lungs of humans 

o cause pneumonia, toxic reactions and even nerve damage [1] . 

esponding to the rapid spread of the brutal virus, Governments 

ave started implementing new rules forcing people to wear face 

asks in public places [2] . During the epidemic, wearing dispos- 
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ble medical masks or type N95 respirators is a very important 

eans of protecting against other respiratory diseases not just for 

he COVID-19 [3] . It can provide good protection against the virus 

or people going out and also an extremely effective and econom- 

cal means of prevention and control for society [ 4 , 5 ]. Therefore, it

s of great practical significance to realize the detection for mask 

earing status in public places (such as hospitals, campuses etc.). 

In recent years, a large number of studies have used deep 

earning to complete object detection and are widely used in 

iomedicine [6–8] , lesions detection [9–11] , face detection [12–

4] and other fields [15–18] . The existing machine learning and 

eep learning methods have achieved some results in the task of 

ace mask detection [ 19 —22 ], however, there are still limitations in 

https://doi.org/10.1016/j.cmpb.2022.106888
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2022.106888&domain=pdf
https://doi.org/10.1016/j.cmpb.2022.106888
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he complicated environments. For example, the face mask detec- 

or for real-time has low recall, detection accuracy and speed; The 

verlap of the face masks and the shadow of the background result 

n missing detection of some small or medium-size targets; The 

arger detection models consume a lot of computer resources. Until 

he advent of You Only Look Once (YOLO) series (v1 [23] ,v2 [24] ,v3

25] ,v4 [26] ,v5 [27] ,X [28] et al.),as the advanced single-stage ob- 

ect detectors, they broke the dominance of the two-stage method 

n object detection. Among them, YOLOv4 is another milestone ob- 

ect detector. And it directly classifies and predicts the object at 

ach position in the entire original image. Contrasted to previous 

ersion, it modifies the backbone network, activation function, loss 

unction, data enhancement, etc. While maintaining a good accu- 

acy, it solved the pain point, the speed problem, in the detection. 

eanwhile, some lightweight detectors appeared, which greatly 

hortened the amount of model parameters and training time, such 

s MobileNet [29–31] , EfficientNet [32] , EfficientDet [33] , GhostNet 

34] and YOLOv3-tiny. Whereas YOLOv4-tiny is released by authors 

f YOLOv4. As a lightweight version, its parameters are merely 

bout 6 million, which is equivalent to 1/10 of the original. The 

etwork structure is simpler, the detection speed is faster. It also 

ses fewer computation resources, however, its detection accuracy 

s reduced. 

To solve the above exiting problems to balance the detection 

ccuracy and speed, in this paper we utilize the variants of YOLO 

nd propose a new variant of YOLOv4-tiny for small or medium- 

ize face masks detection, named SMD-YOLO. It is mainly used for 

asks detections of small or medium faces in size. It improves 

he detection accuracy of the model on the premise of meeting 

he real-time performance. This detection method we proposed is 

 more lightweight model for detecting faces with masks, faces 

ithout masks, and masks wearing incorrectly during the COVID- 

9 pandemic. Meanwhile, we also develop a face mask detection 

nd monitoring system using the detector. The main contributions 

nd innovations will bring greater flexibility to the application of 

ace mask detection in the hospitals, campuses etc. 

The following are the primary contributions of this work: 

1. A face mask detection and monitoring system is developed for 

mask wearing status by using an improved variant of YOLOv4- 

tiny network with two feasible improvement strategies: net- 

work structure optimization and K-means ++ clustering algo- 

rithm. 

2. Our proposed detector improves the detection accuracy with 

less weight parameters and calculation amount while meet- 

ing the real-time requirements by employing improved residual 

module, cross fusion module, enhanced dual attention mecha- 

nism, improved spatial pyramid pooling module, modified acti- 

vation function and depthwise separable convolution module. 

3. We evaluate the performance of the proposed detector adopting 

an ablation experiment based on YOLOv4-tiny. The mAP rela- 

tive to the original detector is improved by 4.56% and the speed 

reaches 92.81 FPS. Meanwhile, the quantity of parameters and 

the FLOPs are reduced by 1/3, 16.48%, respectively. 

4. The proposed detector is compared with a few state-of-the-art 

detectors to demonstrate the superiority of our proposed model 

balancing the accuracy and speed through comprehensive eval- 

uation of various indicators. 

The rest of this article is organized as follows: Section 2 reviews 

revious related work. Section 3 describes our face mask detection 

nd monitoring system and proposed detection method in detail. 

ection 4 introduces the experimental details and results, includ- 

ng the face mask dataset, the experimental environment, and the 

esults of the experiments. Section 5 discusses and analyzes the 

xperimental results. And Section 6 presents the conclusion and 

uture prospects of this paper. 
2 
. Related research 

In recent years, face detection has always been a research 

otspot in object detection. The task of face masks recognition 

n public areas can be achieved by deploying an efficient object 

ecognition algorithm on surveillance devices. The different shapes 

nd postures of people wearing masks, the influence of ambient 

ight and occlusion interference, etc. make the detection task more 

ifficult and more challenging [35] . Novel proposals by improving 

he existing masks detectors, face detectors or other object detec- 

ors can achieve enthralling results and escalate the research in 

his domain. 

Lin et al. [36] proposed an modified LeNet (MLeNet) network 

or detecting masked faces in the wild through video surveillance 

nd violence video retrieval. The authors modified the number of 

nits in output layer and increased the number of feature maps 

ith smaller filter size to manually design a learn-based feature 

nd classifier training paradigm. The proposed work increased the 

raining dataset by horizontal reflection and learned MLeNet via 

ombining both pre-training and fine-tuning. The final accuracy 

ate of 71% was achieved on a real-world masked face detection 

ataset. Ge et al. [37] proposed a novel dataset of Masked Faces 

MAFA) with 30,811 Internet images and 35,806 masked faces, 

nd a model based on a convolutional neural network called LLE- 

NNs to find the normal and masked face in the wild. The pro- 

osed model was composed of proposal, embedding and verifi- 

ation modules. On the MAFA dataset, the AP value of their LLE- 

NNs model reached up to 76.4%. Hussain et al. [38] presented an 

nternet of Things-based Smart Screening and Disinfection Walk- 

hrough Gate (SSDWG) for all public areas entrance. The authors 

mplemented a self-designed real-time deep learning models clas- 

ified individuals who wear the face mask properly and without a 

ace mask on a combination dataset of MAFA, Masked Face-Net and 

ing. Moreover, using a transfer learning approach, they achieved 

 detection accuracy rate of 99.81%. Loey et al. [39] proposed a 

ybrid model using deep and classical machine learning for face 

ask detection. Resnet50 was used as the feature extraction net- 

ork (FEN), meanwhile decision trees, Support Vector Machine 

SVM), and ensemble algorithm were employed for the classifica- 

ion process of face masks. On the Real-World Masked Face Dataset 

RMFD), the Simulated Masked Face Dataset (SMFD) and the La- 

eled Faces in the Wild (LFW) dataset, the proposed technique 

chieved more than 99% detection accuracy, respectively. At the 

ame year, Loey et al. [40] also proposed a blended face mask de- 

ection method which combined ResNet-50 as the feature extrac- 

ion component with YOLOv2 as the detection component. Mean 

ntersection over Union (IOU) was used to estimate the best num- 

er of anchor boxes as well. The authors obtained the final 81% AP 

sing the Adam optimizer and transfer learning on the two public 

edical Masks Dataset (MMD) and Face Mask Dataset (FMD). 

Singh et al. [41] accomplished the task of face masks detec- 

ion using YOLOv3 and Faster R-CNN [42] on the custom dataset 

hich is composed of MAFA, WIDER FACE and many manually 

repared images. By taking IOU = 0.5, the authors achieved the 

P value of 55% and 62%, respectively. Wu et al. [43] proposed 

 novel face mask detection framework (FMD-YOLO), which deep 

esidual network was combined with Res2Net module in the FEN 

nd an enhanced path aggregation network was used for feature 

usion. Moreover, to improve the detection efficiency and accu- 

acy, localization loss was designed and adopted in model train- 

ng phase and Matrix NMS method was employed in the inference 

tage. Finally, on the two public dataset MD-2 and MD-3, the au- 

hors achieved the mAP value of 66.4% and 57.5% at IOU = 0.5 

evel, respectively. Su et al. [44] proposed a modified YOLOv3 for 

etecting faces and determine whether people are wearing mask, 

nd fused transfer learning and MobileNet for mask classification. 
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he authors employed EfficientNet as the backbone network and 

hose CIOU as the loss function. In the dataset combined MAFA 

nd WIDER Face, the mAP value of 96.03% and the FPS value of 

4.62 are achieved. Cao et al. [45] proposed a novel object detector 

amely MaskHunter for the real-time mask detection. The authors 

odified CSPDarknet19 in the backbone on the basis of YOLOv4, 

nd introduced SPP modules, the feature pyramid network (FPN) 

odules and path aggregation network (PAN) modules in the neck. 

n addition, a novel improved Mosaic data augmentation method 

nd a novel mask-guided module were proposed to enhance the 

iscrimination ability of face mask especially in the night environ- 

ent. The Average Precision (AP) value of 94% and the speed value 

f 74 FPS were achieved in the end. Jiang et al. [46] proposed a

ask detector Squeeze and Excitation (SE)-YOLOv3 with relatively 

alanced effectiveness and efficiency. The authors integrated the 

ttention mechanism in the backbone network of YOLOv3, em- 

loyed GloU as regression loss. The mAP of 71.9% was obtained 

n their proposed Properly Wearing Masked Face Detection Dataset 

PWMFD), which is 8.6% higher than the original network, and the 

peed is almost identical. The detection time of an image reached 

3.2 ms. Yu et al. [47] proposed a face mask recognition and stan- 

ard wear detection algorithm based on the improved YOLOv4. 

he authors adopted adaptive image scaling algorithms, introduced 

odified CSPDarkNet53 and PANet network structures in the fea- 

ure layer. The results tested on the dataset screening from the 

ublished RMFD and MaskedFace-Net and showed that the mAP 

nd speed can reach 98.3% and 54.57 FPS, respectively. 

Nagrath et al. [48] proposed a face masks classification model 

y combining Single Shot Detector (SSD) as a detector with Mo- 

ileNetv2 [49] as a classifier to realize the real-time detection for 

eople wearing or not wearing face masks. It has a classifica- 

ion accuracy of 92.64% and a speed of 15.71 FPS on the custom 

ataset. Kumar et al. [50] proposed a novel face masks detection 

ataset consisting of 52,635 images for four different categories 

amely, with masks, without masks, masks incorrectly, and mask 

rea. Further, the authors tested with eight variants of the YOLO, 

nd among all tiny variants YOLOv4-tiny achieved a mAP value 

f 57.71%. Finally, new architectures modifications were proposed 

n the FEN so that mAP was improved by 2.54% for YOLOv4-tiny. 

n the same year, these authors [51] proposed a novel face mask 

ision system that is based on an improved YOLOv4-tiny object 

etector with spatial pyramid pooling (SPP) [52] module and ad- 

itional YOLO detection layer as well. By using K-means ++ clus- 

ering to extract the best priors for anchor boxes, the proposed 

mproved network achieved a mAP value of 64.31% on their pub- 
able 1 

esearch progress of the related work. 

Work Year Method Dataset 

Lin et al. [36] 2016 MLeNet Custom 

Ge et al. [37] 2017 LLE-CNNs MAFA 

Hussain et al. [38] 2021 CNN Custom 

Loey et al. [39] 2021 ResNet50 + SVM RMFD SMFD LFW 

Loey et al. [40] 2021 YOLOv2 + ResNet Custom 

Singh et al. [41] 2021 YOLOv3 Custom 

Faster R-CNN 

Wu et al. [43] 2022 FMD-YOLO MD-2 

MD-3 

Su et al. [44] 2022 Efficient-YOLOv3 FMD 

Cao et al. [45] 2020 MaskHunter Custom 

Jiang et al. [46] 2021 (SE)-YOLOv3 PWMFD 

Yu et al. [47] 2021 Improved YOLOv4 Custom 

Nagrath et al. [48] 2021 SSD + MobileNetv2 Custom 

Kumar et al. [51] 2021 YOLOv4-tiny-SPP Custom 

Roy et al. [53] 2020 YOLOv3 MOXA 

YOLOv3-tiny 

SSD 

Faster R-CNN 

3 
ished dataset [50] which was 6.6% higher than the original. Roy 

t al. [53] proposed the Moxa3K Benchmark Dataset (MOXA) con- 

isting of 30 0 0 images for persons with masks and without masks. 

o meet the monitoring platform with limited computing power, 

he authors used a few popular detectors such as YOLOv3, YOLOv3- 

iny, SSD and Faster R-CNN, and evaluated on their MOXA dataset. 

he mAP value of 63.99%, 56.27%, 46.52% and 60.05% were at- 

ained, respectively. Moreover, YOLOv3-tiny and SSD acquired the 

38 FPS, 67.1 FPS speed, respectively. The research progress of re- 

ated work is shown in Table 1 . 

To sum up, there is a lacking exploration of a few lightweight 

etectors suitable for real-time surveillance applications, but it can 

e achieved by enhancing and improving the exiting state-of-the- 

rt object detection model. To avoid threatening the health and 

afety of public areas, at present, the detection task of incorrect 

earing of masks can be more of a concern because it is more 

ikely to cause misjudgment. Therefore, we propose an improved 

ace mask detector integrated into a face mask detection and mon- 

toring system on the basis of YOLOv4-tiny to achieve better per- 

ormance. 

. Methods 

In this section, to prevent people from removing masks or not 

earing them correctly in public places, we introduced a face mask 

etection and monitoring system to use for ensuring the propor- 

ion of people wearing masks correctly in areas. And to achieve 

etter overall performance, a novel efficient and lightweight de- 

ection method SMD-YOLO based on YOLOv4-tiny for small or 

edium-size masks wearing status are described in detail. 

.1. Face mask detection and monitoring system 

The face mask detection and monitoring system is developed 

or this work including four major components, namely the moni- 

oring system (scene monitor), detecting control system (face mask 

etector, statistics and controller), alarm system (acousto-optic 

larm and voice prompt) and restricted flow system (such as gate). 

o be specific, firstly the monitoring system is used to obtain the 

ideos and images of the environment to be detected and upload 

t to the detecting control system after collection by wireless or 

ired transmission. Then, in the detecting control system, the face 

ask detector detects the face mask wearing status of people in 

his area for transmitting to the statistics module. Moreover, the 

roportion of wearing masks properly will be calculated and the 
Public Task Result 

No Detection AP = 71% 

Yes Detection AP = 76.1% 

No Classification AC = 99.81% 

Yes Classification AC = 99.64% 

No Detection AP = 81% 

Yes Detection AP = 55% 

AP = 62% 

Yes Detection mAP = 66.4% 

Yes mAP = 57.5% 

Yes Detection mAP = 96.03%, Speed = 14.62 FPS 

No Detection AP = 94%, Speed = 74 FPS 

Yes Detection mAP = 71.9%, Speed = 23 FPS 

No Detection mAP = 98.3%, Speed = 54.57 FPS 

Yes Classification AC = 92.64%, Speed = 15FPS 

Yes Detection mAP = 64.31% 

Yes Detection mAP = 63.99% 

mAP = 56.27%, Speed = 138 FPS 

mAP = 46.52%, Speed = 67.1FPS 

mAP = 60.05% 
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Fig. 1. Workflow of the face mask detection and monitoring system. 
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alculated result can be delivered to the controller. Finally, the con- 

roller triggers to perform corresponding operations by comparing 

he set thresholds. If the proportion of wearing masks properly is 

ess than the set threshold, it will be fed back to alarm system 

or activating the acousto-optic alarm and voice prompts and re- 

tricted flow equipment for turning off the entrance of the gate. 

n the contrary, turn off the regional current limiting to maintain 

ormal access. The detailed workflow of the proposed face mask 

etection and monitoring system is shown in Fig. 1 . 

The face mask detector of the above detecting control system is 

he most important part of the proposed the face mask detection 

nd monitoring system, which can be on a computer system or 

lso belong to different com puting systems from the statistics and 

ontroller modules. Since the accuracy of face mask detector di- 

ectly affects the subsequent operation of the alarm and restricted 

ow devices, it is indispensable to develop a lightweight face mask 

etection method with high detection accuracy during the COVID- 

9 pandemic. 

.2. Proposed SMD-YOLO detector 

YOLOv4-tiny is a lightweight version based on YOLOv4, which 

tilizes the CSPDarknet53-tiny network contained 28 layers as the 

ackbone network. Three CSPBlock modules are adopted to replace 

he ResBlock modules in the original residual network. Two feature 

ayers (13 × 13 and 26 × 26) are used for object classification, and 

he FPN is used to merge the effective feature layers to improve the 

etection accuracy. YOLOv4-tiny also employs the CSPnet structure 

nd performs channel segmentation in the feature extraction net- 

ork. 

In this part, we fine-tune the YOLOv4-tiny network. The opti- 

ized YOLOv4-tiny network address 3 shortcomings in the original 

odel. 1) Poor detection ability and relatively low recall for small 

nd medium-sized face masks. 2) Interference on face mask de- 

ection from background environments such as light, building and 

ecoration. 3) The larger model is difficult to deploy on small and 

eal-time computing equipment. For the former, it is generally be- 

ause of the shallow depth of the network that the feature maps 

or small and medium-sized objects are not expressed enough. For 

he middle, it lacks the means to quickly filter out high-value in- 

ormation from a large number of features. For the latter, currently 

bject detection needs to seek further improvements in precision 

nd less storage consumption. The structure scheme diagram of the 

roposed novel SMD-YOLO detector is shown in Fig. 2 . 
4

The SMD-YOLO detector adequately fuses the feature informa- 

ion of deep and shallow layers to benefit for small targets detec- 

ion through combining the improved residual module with cross 

usion module. Then, by means of the modified SPP module, atten- 

ion mechanism, activation function and depthwise separable con- 

olution, the small or medium-size targets of the images are at- 

ached more importance to, meanwhile, redundant information is 

emoved to reduce the influence of background. Finally, the detec- 

or can improve the detection accuracy with less weight parame- 

ers and calculation amount while meeting the real-time require- 

ents. 

.2.1. Improved residual module 

In different scenarios, the feature extraction is very important 

o classify for face mask detection. The convolution layer of mask 

eature extraction network can effectively analyze the features of 

asks. According to the principle of convolution operation [54] , 

he number of convolution parameters is related to the size of the 

onvolution kernel, the number of input and output feature map 

hannels. Let ( K , K , C int , C out ) represent a standard convolution op- 

ration. Where C int , C out denote the number of input channels and 

utput channels of a K × K convolutional layer, respectively. In the 

ase of ignoring bias, the quantity of the convolution parameters is 

 × K × C int × C out . Thus, the convolutional parameter number has a 

ignificant impact on the training time, operation speed and light- 

ess of neural networks. In addition, the number of convolutional 

ayers also affects the number of convolutional parameters. Adding 

 convolutional layer inside the residual module can decompose 

he problems that need to be learned hierarchically by means of 

eepening the network. It is more effective for the network to 

earn local features, and helpful to improve the classification ac- 

uracy of each target. 

As is exhibited in Fig. 3 , to enhance the feature extraction 

apability of network, a residual module, divided into enhanced 

nd lightweight modules, is improved to obtain more features. It 

s used for replacing the 3 original CSPBlock modules to achieve 

ulti-scale changes in channels. The enhanced module, shown in 

ig. 3 (b) , is to fully integrate and extract the feature map via using

 1 × 1 point convolutional layer and a 3 × 3 convolutional layer, 

efore the first 3 × 3 convolutional layer splitting in the CSPBlock. 

hile the lightweight module, shown in Fig. 3 (c) , replaces the first 

 × 3 convolutional layer of CSPBlock with 1 × 1 and 3 × 3 convo- 

utional layers to reduce the quantity of parameters for network’s 

onvolutional operations. 
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Fig. 2. Structure scheme diagram of SMD-YOLO detector. 

Fig. 3. Structure diagrams of partial residual module. (a) The first 3 × 3 convolution layer of original CSPBlock. (b) Design of an enhanced module based on (a) in SMD-YOLO. 

(c) Design of a lightweight module based on (a) in SMD-YOLO. 
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Taking the first CSPBlock (image size 104 × 104) as an example, 

he quantity of parameters in Fig. 3 (a), (b), (c) are 68 608, 89 088,

nd 52 224, respectively. Hence, the improved residual module can 

e optimized as an enhanced module with stronger feature extrac- 

ion capacity, or also as a lightweight module with fewer calcula- 

ion parameters. Considering not increasing too many parameters 

nd calculation meanwhile, we place a lightweight module in the 

ront and 2 enhanced modules in back to improve detection per- 

ormance for small or medium objects. 

.2.2. Cross fusion module 

Deep convolutional networks tend to lose key location infor- 

ation of small objects when extracting feature map information. 

enerally, the deepest feature map of the network contains only 

 single layer of semantic information, resulting in less semantic 
5 
nformation obtained by the shallow feature map through the re- 

erse path, which is not conducive to the detection of small tar- 

ets. Whereas the feature maps of different scales include different 

eature information and are more adaptable to objects of different 

izes. To enhance the expressive power of deep features, we design 

 lightweight deep feature cross fusion module increased on the 

asis of the original backbone network. The global and local con- 

extual information of deep multi-scale feature maps is extracted 

sing parallel paths, and the semantic information of the deepest 

eature maps is fused. It helps to determine the exact location of 

ifferent objects and better resolve the local ambiguity problem. 

he design scheme of a cross fusion module is demonstrated in 

ig. 4 . 

Down-sampling the feature map with 26 × 26 resolution after 

axpool-2 to convert to 13 × 13 resolution by means of a 3 × 3 
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Fig. 4. Design scheme of a cross fusion module. 
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Table 2 

Quantity of convolutional layer parameters comparison. 

Scale Layer K × K C int C out Parameters 

26 × 26 standard 3 × 3 384 256 884,736 

DSC 101,760 

13 × 13 standard 3 × 3 512 512 2359,296 

DSC 266,752 

t
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t
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o

onvolutional layer with stride 2. Subsequently, it is concatenated 

ith the 13 × 13 feature map after Maxpool-3 to form a feature 

ap possessed 13 × 13 resolution and 640 channels. Then, inte- 

rating the features through a convolutional layer with kernel size 

 and stride 1, the number of channels is restored to the origi- 

al 512. The above operations, a substitute of the Conv-3 which 

s taken up the most calculations and parameters in the original 

ackbone, would be used to formulate a cross fusion module. The 

urpose of our work is to reduce the entire quantity of convolution 

arameters, and to improve the lightweight and multi-resolution 

usion capability of the network. Thereby, the detection ability of 

he smaller objects can be optimized. 

In terms of the parameter number, the cross fusion module re- 

uces drastically to 622,592, which is 26.39% of the original 3 × 3 

tandard convolution 2359,296. Moreover, in the backbone, it fuses 

he 13 × 13 and 26 × 26 feature maps so that the input of the 

ubsequent FPN has richer semantic information, which is benefi- 

ial to improve the utilization of shallow features. 

.2.3. Depthwise separable convolution module 

In the YOLO Head, for object detection the detector extracts 

3 × 13 and 26 × 26 feature layers, which implements classifi- 

ation forecasting via two conventional convolutions in terms of 

tructure. Howard et al. [29] have confirmed in their research that 

epthwise separable convolution (DSC) can effectively decrease the 

mount of parameters and calculation compared with standard 

onvolution. 

Different from the standard convolutional operation, the depth- 

ise separable convolution operation is divided into depthwise 

onvolution (DWConv) and pointwise convolution (PWConv). Al- 

hough it greatly reduces the parameters of the model, it is im- 

ortant that the feature extraction capability of the convolutional 

ayer is basically unaffected. At the same time, it also expands 

he activation range of neurons and effectively improves the accu- 

acy of model recognition. Assuming that a DSC layer with K × K 

epthwise convolution has the same quantity of the input and out- 

ut channel as the standard K × K convolutional layer. Thus, the 

uantity of parameters in this layer can be calculated as K × K ×
 int + C int × C out . We replace the 3 × 3 conventional convolution of 

etection head with a depthwise separable convolution to output 

he position and category confidence information of the mask. The 

tructure and parameters of the improved convolutional layer are 

espectively shown in Fig. 5 and Table 2 . 
6 
Therefore, the parameters of a DSC layer are less than 1/8 of 

hat of a standard 3 × 3 convolutional layer, saving a lot of pa- 

ameters. It means the improved can speed up the training and 

est processes. Using the DSC in the YOLO Head, it greatly fil- 

ers non-target information namely background and environment 

o improves target detection accuracy. 

.2.4. Enhanced dual attention mechanism 

With the primary objective of intensive feature expression abil- 

ty, an attention mechanism is introduced into the model through 

raining fewer parameters so that the important region of an input 

mage is focused [55–57] . Quite a few attention modules, such as 

queeze and exception network (SENet) [58] , convolutional block 

ttention module (CBAM) [59] , efficient channel attention (ECA- 

et) [60] , etc., have been proposed successively and been proved 

he effectiveness of them. Compared with SENet, which only pays 

ttention to channel features, CBAM is an attention module that 

ombines the spatial and the channel to effectively help the trans- 

ission of information in the network. It can enhance useful fea- 

ures in feature maps, suppress useless features, and achieve bet- 

er results in practical applications. While ECA is based on SENet 

mprovement. It only uses a small number of parameters using a 

ethod of adaptively selecting the size of one-dimensional con- 

olution kernels to achieve performance improvement. In this pa- 

er, we propose a fresh effective dual attention module (EDAM) for 

CNN combined CBAM with ECA. 

EDAM is still composed of a channel and spatial attention mod- 

le, enhancing the important spatial and channel features in the 

eature map so that the network can grasp the "key" learning of 

he target features during the training process, as shown in Fig. 6 . 

irstly, the input feature maps are processed through the chan- 

el attention module. Global average pooling F c a v g and global max- 

ooling F c max are used to extract richer high-level features. A fast 

ne-dimensional (1D) convolution under adaptive selection of k is 
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Fig. 5. Structure diagram of the improved prediction network. 

Fig. 6. Schematic diagram of an EDAM module. 
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dopted to aggregate the features in the k neighborhood channels. 

hen, the features generate the final channel attention module out- 

ut via a sigmoid activation, and the corresponding elements of 

he output are multiplied. In short, the channel attention is com- 

uted as equations (1): 

 c ( F ) = σ
(
Con v k ×k 

1 d 
( A v gP ool ( F ) ) + Con v k ×k 

1 d 
( MaxP ool ( F ) ) 

)
= σ

(
C on v k ×k 

1 d 

(
F c a v g 

)
+ C on v k ×k 

1 d 
( F c max ) 

) (1) 

here σ denotes the sigmoid function and Con v k ×k 
1 d 

represents 1D 

onvolution with kernel size k adaptively determined. The formula 

sed for computing k is given by equations (2): 

 = 

∣∣∣∣ log 2 C + b 

γ

∣∣∣∣
odd 

, γ = 2 , b = 1 (2) 

here C denotes channel dimension, and | ∗| odd indicates the near- 

st odd number of ∗. In this paper, γ and b are both hyper- 

arameters and set to 2 and 1 throughout subsequent experiments, 

espectively. 

The spatial attention module mainly explores the internal rela- 

ionship of feature maps at the spatial level, that is, the importance 

f salient regions, and complements the channel attention module. 

he output of the channel attention module is used as the input 

equired by the spatial attention module. Then, the feature map 

f the spatial attention module is obtained after a dilated convolu- 

ional layer with 7 × 7 kernel size. Dilation is the introduction of a 

ew parameter called the dilation rate into the standard convolu- 

ion. The dilation rate is used to control the spacing of each value 
7 
hen the convolution kernel processes the data to realize the in- 

rease of the convolution layer’s receptive field under the condition 

f the same amount of computation. In brief, the spatial attention 

s computed as Equations (3): 

 s 

(
F ′ 

)
= σ

(
f 7 ×7 
dilation 

(
A v gP ool 

(
F ′ 

))
; f 7 ×7 

dilation 

(
MaxP ool 

(
F ′ 

)))
= σ

(
f 7 ×7 
dilation 

(
F ′ s a v g ; F ′ s max 

))
(3) 

here σ denotes the sigmoid function and f 7 ×7 
dilation 

represents 

 dilated convolutional operation with the filter size of 7 × 7. 

he dilation parameter of convolutional operation in our work is 

et to 2. 

EDAM combines the advantages of both CBAM and ECA, which 

nhances ability of the model to extract features. It not only cap- 

ures information across channels, but also senses the size and the 

osition features of the face masks, which enables the model to 

ore accurately identify targets and lock onto target locations. 

.2.5. Spatial pyramid pooling dual attention module 

Spatial pyramid pooling in deep convolutional networks (SPP) 

52] is a structure in which the feature maps are merged into a 

xed-length feature vector through cross aggregation operations. 

here the Max-pool layer of SPP enlarges the receptive field while 

aintaining the translation invariance of the feature map. The SPP 

odule obtains the local receptive field and near-global receptive 

eld information of the feature map by using the Max-pool layer 

f different kernel sizes, and performs feature fusion. The opera- 

ion of fusing the receptive fields of different scales can effectively 
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Fig. 7. Structure diagram of a SPPDAM module. 
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nrich the expressive ability of the feature map and enhance the 

cceptance range of the output features of the backbone network. 

oreover, it also can separate important contextual information, 

nd effectively im prove the detection performance of the model. 

he problems about information loss and non-uniform scale could 

e solved. For strengthening the ability to detect small or medium- 

ize face masks of different scales, we propose an improved spatial 

yramid pooling dual attention module (SPPDAM) based on SPP to 

nhance the receptive field of deep semantic features. The struc- 

ure of a SPPDAM module is exhibited in Fig. 7 . 

Considering that there are relatively many face mask objects 

ith dense crowds, the max-pooling kernel size of SPP should be 

atched to the size of feature map that needs to be pooled as 

uch as possible. Therefore, we modify respectively the original 

ax-pooling kernel size to 3, 5, and 7. In this way, the most sig- 

ificant features could be retained at diverse scales, and the recep- 

ive field of feature maps for local region would be heightened. In 

he SPPDAM module, the max-pooling operations are executed for 

n input feature map (H, W, C) with three different kernel sizes of 

 × 3, 5 × 5 and 7 × 7 under stride 1. Where padding around the 

eature map is set to 1,2 and 3 to ensure that the input and output

imensions of the feature map remain unchanged. Concatenating 

he input to the feature maps equipped with cross local receptive 

eld after that, output result (H, W, 4C) for the mask location is 

btained through feeding into EDAM. Hence, more abundant lo- 

al feature information could be acquired, and more mask features 

ould be captured by the network to enhance the expression abil- 

ty of feature map feature information and achieve better detection 

ffect. 

.2.6. Modified activation function 

For faster detection, the LeakyReLU activation function is em- 

loyed for YOLOv4-tiny. Although LeakyReLU solves the problem of 

ead neuron, it cannot provide a consistent relationship prediction 

or positive and negative inputs so that the accuracy will inevitably 

ecrease. To prevent the accuracy from falling too seriously, the 

ctivation function of the network is modified to compensate the 

ccuracy. 

Due to the maximum’s unlimitedness, smoothness and non- 

onotonicity of SiLU, the saturation can be avoided, the nonlinear- 

ty can be increased meanwhile. When the input value is greater 

han 0, the SiLU and ReLU activation functions are roughly equal. 

hen the input value is less than 0, the activation function ap- 

roaches 0. More importantly, SiLU has better stability. It has been 

roved in Elfwing’s experiments [61] that the global minimum can 

ct as a "soft bottom" to suppress the updating of the weight value 

nd avoid gradient explosion in the case that the derivative is 0. 
8 
hus, we use SiLU instead of LeakyReLU to become the activation 

unction of backbone, the shallow part, of the network. 

Meanwhile, in the deep of network, the Swish function can pro- 

ide better accuracy than the ReLU without sacrificing too much 

etection speed [ 62 , 63 ]. In a lightweight model, computing the sig- 

oid function is expensive. In order to reduce the computational 

ost, a Hardswish function with comparable Swish performance is 

sed [64] . While the Hardswish, proposed by Howard [31] in the 

obileNetv3 architecture, was only used at the second half of their 

odel. Because it is confirmed that most of the benefits swish are 

ealized by using them only in the deeper layers by those authors. 

hus, we merely utilize the Hardswish function behind the back- 

one in our network. The formulas used for computing SiLU and 

ardswish is given by Eqs. (4) and (5) : 

iLU ( x ) = x · sigmoid(x ) (4) 

ardswish ( x ) = 

⎧ ⎨ 

⎩ 

0 i f x ≤ −3 , 

x i f x ≥ −3 , 

x · ( x + 3 ) / 6 otherwise 

(5) 

.3. Anchor boxes dimension clustering 

In the object detection task, selecting an appropriate anchor can 

ignificantly improve the detection speed and accuracy. The size 

f anchor boxes in the original YOLO v4-tiny is obtained using K- 

eans clustering algorithm. According to the K-means algorithm 

65] , the problem with its initialization is that final clusters might 

roduce clusters incorrectly partitioned. To solve this drawback, K- 

eans ++ [66] , an improved version based on K-means, is utilized 

or the face mask data set, which selects the initial centroids from 

ata points that are far away from one another to build better 

lusters. The main algorithm for implementing K-means ++ is pre- 

ented in Algorithm 1 . The input of the algorithm not only includes 

ategory information but also the location and size information of 

nnotation frame relative to the original image, namely, the text 

le of ( x i ,y i ,w i ,h i ), i ∈ {1, 2, …, N }.Where ( x i ,y i ) is the center coordi-

ate of the annotation box, ( w i ,h i ) is the actual width and height,

nd N is the total number of annotation boxes. The output is the 

idth and height of k groups of anchor boxes( w i ,h i ), i ∈ {1, 2, …, k }.

For a selected position in the face mask data set, the algorithm 

rst defines an initial centroid C [ w 1 , h 1 ] 
by choosing a box at random 

lines 01 to 04 in the algorithm). Then, the shortest distance d IOU in 

q. (6) between the existing cluster center and the rest of anchor 

oxes is calculated. Calculate the probability P in Eq. (7) that each 

ox is selected as the next cluster center as well. And add up above 
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Algorithm 1 

K-means ++ clustering algorithm. 

01: Initialization { 

02: define label path to obtain ( x i ,y i ,w i ,h i ), i ∈ {1, 2, …, N } 

03: define k, N, d IOU , and grid size } 

04: C [ w 1 , h 1 ] ← getRandomPoint ( N ) 

05: Main loop 

06: while ( k ≤ 6) 

07: for each ( w i ,h i ), i ∈ {1, 2, …, N } 

08: calculate D [ i ] = d IOU ( x [ w i , h i ] , C [ w 1 , h 1 ] ) , P [ i ] // the shortest distance measured by IOU 

09: accumulate Sum ( D [ i ]) 

10: end for 

11: for each ( w j ,h j ), j ∈ {2, …, N } 

12: r ← getRandomValue ( Sum ( D [ j ])) 

13: calculate r − = D [ j ] 

14: if r ≤ 0 

15: C [ w j , h j ] is the next cluster center // update a new cluster center 

16: end for 

17: k = k + 1 

18: end while 

19: print ( C [ w,h ] ) // obtain all the initial centers of clustering 

20: run the standard K-means algorithm utilizing above k initial clustering centers 

Fig. 8. Relationship of AvgIOU and the quantity of anchor boxes. 
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Fig. 9. Distribution of bounding boxes and anchor boxes. 
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istances to get Sum ( d ) (lines 07 to 10 in the algorithm) 

 IOU = 1 − IOU(box, centroid) (6) 

 = 

d 2 IOU 
n ∑ 

i =1 

d 
2 

IO U 
i 

(7) 

hen selecting a new cluster center, first take the random value 

 that falls between 0 and Sum ( d ). If there is r satisfying r ≤ D [ j ],

 = {2, 3…, N }, then C [ w j , h j ] 
is the next cluster center (lines 11 to 16

n the algorithm). Repeat the above steps until k cluster centers are 

creened out. Finally, run the standard K-means algorithm utilizing 

bove k initial clustering centers to obtain the width and height of 

nchor boxes. 

The K-means ++ algorithm optimizes the center selection 

ethod of the initial clustering and greatly reduces the depen- 

ence of clustering results on the k value to obtain the better clus- 

ering effect. As the number of anchor boxes increases, the calcula- 

ion amount of the model will also increase, shown in Fig. 8 . To en-

ure the accuracy of the prediction results and avoid selecting too 

any anchor boxes brings a huge amount of computation, there- 

ore, our work selects 6 anchor boxes consistent with the num- 

er of the original detector to achieve a good balance between the 

omplexity and recall rate of the model. 
9 
The size of Anchor box is set relative to feature map. When the 

uantity of anchor boxes is set to 6, the corresponding AvgIOU is 

3.12%. Compared with the K-means algorithm, the AvgIOU of the 

nchor boxes clustered by K-means ++ algorithm is improved by 

.58%, that is, the degree of overlap between the anchor box and 

he bounding box is improved. Then, the K-means ++ clustering 

xperiment is repeated for 20 times, and the size of anchor box 

orresponding to the highest average IOU value in these 20 exper- 

ments is finally selected. Therefore, the more suitable width and 

eight of the anchor boxes for detecting face masks are obtained 

s (11, 16), (21, 33), (35, 58), (56, 98), (105, 155) and (192, 275). The

cheme diagram of clustering process and result is shown in Fig. 9 . 

t expresses the distribution of the width and height of bounding 

oxes. Meanwhile, the difference between the anchor boxes before 

nd after clustering can be seen from the figure. Where the axis 

f coordinates represents the width and height of the face mask 

argets’ bounding boxes in the images respectively. 

. Results 

.1. Data set 

To verify the effectiveness of our proposed detector, we adopt 

he public face masks detection dataset released by Kumar et al. 

50] in 2021. The reason for choosing this dataset is that the 

eleasers themselves have used it and published the research 

chievement [51] in public. In the meanwhile, their work has the 

ame application scenario as us, aiming to meet the challenge of 
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Fig. 10. Image samples of data set for different class labels. (a) With mask (WM). (b) Without mask (WOM). (c) Mask worn incorrectly (WMI) and Mask area (MA). 
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Table 3 

Hardware and software environment. 

Device Configuration 

Operating System Ubuntu 18.04.5 LTS 

Processor Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz 

GPU Accelerator CUDA 10.1, cuDNN 7.6 

GPU GeForce RTX 2080Ti ( × 7), 11G 

Framework PyTorch 

Compilers Spyder, Anaconda 

Scripting Language Python 3.6 

G

v

m

a

r

t

t

t
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4

p

c

a

u

u

P

R

F

A

m

ow accuracy, slow speed and high false detection rate of face mask 

etection. 

The original approximately 11,0 0 0 images of this dataset were 

reated by crawling images from the internet using Google and 

ing APIs, and resized to a size of 416 × 416 to meet the input 

ize requirement of the YOLO network. Factors such as mask type 

nd color are fully considered to meet the richness of the data set. 

he dataset contains images of people wearing face masks, medi- 

al masks and people not wearing face masks in four classes with 

abels with mask (WM), without mask (WOM), mask worn incor- 

ectly (WMI) and mask area (MA). It should be noted that an image 

s not only one of the four classes but may contain two, three or 

ll classes at the same time. Approximately 50,0 0 0 bounding boxes 

ere applied over 11,0 0 0 images to gather rich and precise infor- 

ation for each class of the dataset. Moreover, to enhance the size 

f the dataset, the strategy of data augmentation, such as rotation, 

hearing, flipping, and shift, was employed, increasing the dataset 

rom 11,0 0 0 images to 52,635 images. The dataset is divided into 

raining, validation and test set in a ratio of 8:1:1 respectively to 

btain the training set with 42,115 images, test set with 5260 im- 

ges, and validation set with 5260 images. The three sets are in- 

ependent of each other and marked as a text document in YOLO 

ormat. The image samples corresponding to different class labels 

re exhibited in Fig. 10 . 

As shown in Fig. 11 , the visualization results are obtained by 

nalyzing the dataset. Fig. 11 (a) demonstrates the categories of face 

ask objects, and the number of bounding boxes for each class. 

nd Fig. 11 (b) reveals that the normalized distribution of bound- 

ng boxes’ center points. The darker the color in the picture is, 

he more concentrated the center point of the target is. Combined 

ith Fig. 9 , it can be seen that the distribution of objects’ center 

n the data set is relatively uniform, and the proportion of small 

r medium-size mask objects is larger. However, there is a phe- 

omenon that the quantity of objects is not balanced in categories, 

nd there is occlusion between objects, which is in line with daily 

ractical application scenarios. 

.2. Experiment environment and settings 

.2.1. Experimental environment and hyperparameter 

In our experimental environment, the performance of SMD- 

OLO proposed is evaluated on seven NVIDIA GeForce RTX 2080 Ti 
10 
PUs with 11 GB of RAM. The CUDA version is 10.1 and the cuDNN 

ersion is 7.6. The details of the hardware and software environ- 

ent are shown in Table 3 . 

We utilize the PyTorch deep learning framework and deploy the 

forementioned tunings. During the training phase, a few hyperpa- 

ameters need to be initialized. By virtue of transfer learning [67] , 

he network adopts the strategy of freeze training and unfreeze 

raining, which can speed up the training efficiency and prevent 

he weight from being destroyed. The hyperparameter initialization 

f SMD-YOLO is shown in Table 4 . 

.2.2. Evaluation indicators 

To better evaluate and compare the novel detector properly, we 

rimarily adopt the following five indicators: precision rate (P), re- 

all rate (R), mean value of average precision (mAP), F1-score (F1) 

nd frames per second (FPS). These indicators have been widely 

sed for classification and detection visual tasks. The formulas 

sed for computing these indicators is given by Eqs. (8) —(12) : 

 = 

TP 

TP + FP 
= 

TP 

all dete ctio ns 
(8) 

 = 

TP 

TP + FN 

= 

TP 

all grou nd trut hs 
(9) 

 1 − score = 

2 × P × R 

P + R 

(10) 

 P i = 

∫ 1 

0 

P i ( R i ) d R i (11) 

AP = 

1 

n 

n ∑ 

i =1 

A P i (12) 
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Fig. 11. Visualization analysis diagrams of the face mask detection dataset. (a) Cat- 

egorical distribution. (b) Normalized distribution of center points. 
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Where TP, FP, and FN represent the quantity of true positive 

amples, false positive samples, and false negative samples, respec- 

ively. The precision rate denotes the proportion of the real target 

redicted by the detector, and the recall rate indicates the propor- 

ion of all real targets detected. The F1-score is generally in the 

orm of the harmonic mean of precision rate and recall rate. The 

igher the F1-score is, the better the detection effect of the detec- 

or is, normally. The AP represents the area under the Precision- 

ecall (P-R) curve, and is a metric used for evaluating the over- 

ll performance of each category on the test model. While the 

AP calculates the mean of all APs for each category to deter- 

ine the whole detection ability of a detector. Using the mAP, as 

he primary key indicator, can justify a detector that performed 

est overall to detect face mask objects specifically. FPS denotes 

he frames rate per second, that is, the number of images that can 

e processed per second, and it is used to evaluate the speed of 
Table 4 

Hyperparameter initialization of SMD-YOLO. 

Hyperparameter Value 

Size of Input Image 416 × 416 

Batch Size 32 

Momentum 0.9 

Mosaic True 

Cosine Annealing Learning Rate True 

Label Smoothing 0.005 

11 
bject detection. The larger the value is, the faster the detection 

peed is. 

While evaluating the test performance of the detector through 

AP and FPS, we consider the quantity of parameters (Params) and 

he floating-point operations (FLOPs) of the detector as well. FLOPs 

an be understood as the amount of calculation, used to measure 

he complexity of the model. It is generally a very large number, 

nd this article uses BFLOPs (billion float operations) as the unit. 

arams represents the quantity of parameters of the model, which 

irectly determines the weight size of the model, and affects the 

emory usage during inference. For the convolutional layer, the 

ormula used for computing FLOPs is given by Eqs. (13) : 

 LOP s = 2 × H × W ×
(
C in K 

2 + 1 

)
× C out (13) 

Where W, H respectively represent the width and height of an 

nput feature map, C in ,C out respectively denote the number of input 

nd output channels, and K is the size of the convolution kernel. 

.2.3. Experimental settings 

Single-factor and combined-factor ablation experiments are set 

p to verify the effectiveness of the proposed improvements. To 

urther demonstrate the superiority of SMD-YOLO, it has been 

ompared with other SOTA object detectors in the practical appli- 

ation of face mask detection. These SOTA detectors for compari- 

on contain not only YOLOv4, EfficientDet-D1, YOLOX_s, YOLOv3- 

iny and YOLOv4-tiny, but also a few detectors combined with 

ightweight module, such as EfficientNetv2-Yolov3, MobileNetv3- 

OLOV4, GhostNet-YOLOV4 and MobileNetv2-SSD.All the experi- 

ents are pre-trained on the PASCAL VOC2007 and 2012 data set 

n advance. After obtaining the pre-training weights, transfer learn- 

ng is used for training and comparison tests on the data set. 

osaic data augmentation, label smoothing and cosine annealing 

earning rate are utilized in all experiments. In other words, these 

omparison detectors and SMD-YOLO have the same hardware con- 

guration and software environment. 

.3. Ablation experiment results 

We divide the aforementioned improvements into five-part fac- 

ors. Where KC represents the modified anchor boxes with K- 

eans ++ clustering. LEM denotes the improved backbone network 

dopting lightweight module, enhanced module and cross fusion 

odule. SPEA refers to the enhanced feature extraction network 

ith SPPDAM and EDAM. SIHW indicates the modified activation 

unctions with SiLU and Hardswish. DW represents the improved 

etection head with depthwise separable convolution. The AP WMI , 

P WM 

, AP WOM 

and AP MA denote the AP values of WMI, WM, WOM 

nd MA, respectively. 

The results of different experimental schemes on model perfor- 

ance are shown in Table 5 at an IOU value of 0.5. The No. 1 is the

riginal YOLOv4-tiny detector reproduced, and it is the baseline. 

nd the No. 2 ∼6 are the experiments adding a certain improve- 

ent factor to the original, that is, the single-factor experiment. 

he purpose of setting up the single-factor experiment is to prove 
Hyperparameter Value 

Freeze Training Mode True 

Freeze Epoch 50 

Freeze Learning Rate 0.001 

Training Epoch 500 

Unfreeze Learning Rate 0.0001 

Optimizer Adam 
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Table 5 

Results of different experimental schemes on model performance. 

N KC LEM SPEA SIHW DW AP WMI /% AP WM /% AP WOM /% AP MA /% mAP /% FPS/(f ·s - 1 ) 
1 × × × × × 3 1.91 81.56 60.81 75.52 62.45 127.91 

2 
√ × × × × 37.55 81.36 63.13 76.24 64.57 130.22 

3 × √ × × × 40.61 80.09 61.84 77.66 65.05 113.08 

4 × × √ × × 34.96 82.95 65.88 75.93 64.93 104.94 

5 × × × √ × 34.58 82.32 63.36 75.74 64.00 121.39 

6 × × × × √ 

33.84 81.35 66.75 75.61 64.39 132.59 

7 
√ √ √ × × 39.31 83.06 64.95 76.03 65.84 94.35 

8 
√ √ √ × √ 

41.72 82.54 67.11 75.36 66.57 97.27 

9 
√ √ √ √ × 42.30 82.25 64.84 77.25 66.66 88.78 

10 
√ √ √ √ √ 

41.91 82.11 68.12 75.88 67.01 92.81 
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he contribution degree for mAP value under a single factor condi- 

ion. As seen from No. 2 ∼6 experiments in the table, each improve- 

ent has an increase for mAP value of the algorithm. Where there 

s the greatest impact on the mAP value from 62.45% to 65.05% 

hrough using the enhanced, lightweight and cross fusion modules 

n the backbone of the network, increased by 2.6%. Then, adopting 

 combination of SPPDAM and EDAM reaches 64.93%, 2.48% higher 

han the baseline. Meanwhile, choosing suitable anchor boxes and 

epthwise separable convolution module can improve the predic- 

ion accuracy by about 2% while basically ensuring the detection 

peed. In addition, the modified activation functions have a slight 

ncrease in overall accuracy. However, it is unavoidable for decreas- 

ng the detection speed because of the addition of new modules 

ncreasing the model complexity. 

Hui [68] and Liu [69] have proved in their experiments that the 

ulti-factor combination strategy of selecting the appropriate an- 

hor boxes, modifying the backbone network and increasing the 

ttention mechanism can improve the value of mAP accordingly. 

herefore, we also implement a combination of these three im- 

rovements simultaneously, as No. 7 experiment. It achieves the 

AP value of 65.84%, 3.39% higher than the baseline. The No. 8–

 comparison experiments are to test an impact on mAP adding 

he deep separable convolution and activation function respectively 

ased on the No. 7 combined strategy. The results prove that the 

AP is risen by 0.73% and 0.82% on the basis of No. 7 experiment, 

espectively reaching 6 6.57% and 6 6.6 6%. Finally, the No. 10 exper- 

ment is our proposed model, which achieves the mAP value of 

7.01%. This shows that the mAP is risen by at least 0.35% over 

he No. 7–9 experiments and 4.56% higher than the No. 1 ex- 

eriment. Meanwhile, the detection speed reaches the FPS value 

f 92.81. 

The P-R curves of the four categories are demonstrated in 

ig. 12 in the No. 1 and No. 10 experiments. Meanwhile, the area 

nder the PR curve and enclosed by the coordinate axis of each 

ategory is the AP value of the corresponding category. Where 

or each category the blue curve is the P-R curve of the origi- 

al YOLOv4-tiny, while the red curve is the P-R curve of proposed 

MD-YOLO detector in our work. The higher the curve is to the 

pper right, the larger the area enclosed by the curve and the co- 

rdinate axis is, the higher the corresponding AP value is and the 

etter the performance is. As shown in the figure, our proposed 

etector achieves good detection performance. 

In the whole, contrasted with the original detector, the AP 

alues of our proposed model increases by 10.00% (WMI), 0.55% 
able 6 

omparison of the performance indicators values for each category. 

Models WMI WM 

P/% R/% F1 P/% R/% 

YOLOv4-tiny (Baseline) 59.88 31.29 0.41 83.62 72.58 

Proposed Work 64.34 50.65 0.57 83.78 77.36 

12 
WM), 7.31% (WOM) and 0.36% (MA) for each category, respec- 

ively. In terms of AP values for each category, the improvement of 

MI and WOM category is more conspicuous. Table 6 indicates the 

omparison of the performance indicators values for each category 

etween the baseline and our proposed work. It is seen from the 

omprehensive indicators shown by the F1 value, the WMI, WM, 

OM and MA categories reach 0.57, 0.80, 0.68 and 0.77, respec- 

ively, greatly improving by 16%, 2%, 6% and 1%. 

In order to better understand the effect of the improved net- 

ork, the heat maps visualization of the baseline and our proposed 

MD-YOLO are demonstrated in Fig. 13 , which is the visualization 

f the prediction results. The following images are all from the test 

et of the face mask dataset, and the size of the face mask tar- 

et decreases from left to right. Where the darker the color, the 

ore attention the model pays to it. It can be seen that our pro- 

osed enhanced dual attention mechanism strengthens the learn- 

ng of these local features. And it can also prove that the method 

f improving the performance of the model by integrating and im- 

roving attention mechanism is feasible and efficient. 

.4. SOTA comparison results 

The recent related work about the face mask detection has basi- 

ally been on variants of YOLO3, YOLOV4, SSD and Faster-RCNN, in- 

orporating a few single-stage lightweight models as the backbone 

f network. Therefore, we chose a few typical variant combinations 

or comparison. The comparisons of detection results are shown in 

ables 7 and 8 in the same experimental conditions. These detec- 

ors can describe the features of face mask objects accurately and 

he detection accuracy is high. 

The backbone of network and input size of the image, and the 

etection results for AP indicator of different detectors on the test 

et is shown in the Table 7 . It can be seen from the table, there

re a good performance on our proposed SMD-YOLO for the WMI 

nd WOM categories, almost higher than the other lightweight de- 

ectors with an input image size of 416 × 416. 

However, for the actual applications and occasions such as hos- 

itals, campuses, communities and so on, it is very important for 

he face mask detection schemes to have a good real-time perfor- 

ance and a relative high accuracy. To further compare the detec- 

ion effects of our proposed SMD-YOLO with other detectors, we 

lso evaluate the various indicators shown in Table 8 . 

As seen from the table, the mAP value of our proposed detector 

s above the medium level. However, our detector is more compet- 
WOM MA 

F1 P/% R/% F1 P/% R/% F1 

0.78 67.31 57.67 0.62 80.28 71.32 0.76 

0.80 70.36 65.20 0.68 79.66 74.03 0.77 
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Fig. 12. Comparison of P-R curves of different categories. 

Fig. 13. Comparison of two detectors for visualization of the heat maps. (a)Original images of test set. (b)Baseline. (c)Our proposed SMD-YOLO. 

13 
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Table 7 

Detection results for AP indicator of different detectors on the test set. 

Models Backbone Input Size AP WMI /% AP WM /% AP WOM /% AP MA /% 

YOLOv4 CSPDarknet53 416 × 416 49.60 86.95 71.26 81.82 

YOLOX_s CSPDarknet 640 × 640 40.47 87.04 70.35 78.20 

EfficientDet-D1 EfficientNet-b1 640 × 640 47.23 88.62 64.87 76.69 

MobileNetv3-YOLOv4 MobileNet-v3 416 × 416 38.74 84.04 64.88 79.46 

GhostNet-YOLOv4 GhostNet 416 × 416 40.25 85.18 65.88 77.68 

EfficientNetv2-YOLOv3 EfficientNet-b2 416 × 416 30.90 85.37 68.71 80.46 

MobileNetv2-SSD MobileNet-v2 300 × 300 33.19 84.85 69.25 76.56 

YOLOv4-tiny CSPDarknet53-tiny 416 × 416 31.91 81.56 60.81 75.52 

YOLOv3-tiny Darknet53-tiny 416 × 416 11.24 72.48 48.69 73.86 

Proposed Work Improved CSPDarknet53-tiny 416 × 416 41.91 82.11 68.12 75.88 

Table 8 

Results for various indicators of different detectors on the test set. 

Models mAP /% FPS/(f ·s - 1 ) Params/M BFLOPs/s Inference Time /ms Weight Size/Mb 

YOLOv4 72.41 28.75 63.9485 47.82 34.78 244.3 

YOLOX_s 69.02 47.01 8.9385 42.62 21.27 34.3 

EfficientDet-D1 69.35 36.16 6.5561 8.95 27.65 25.4 

MobileNetv3-YOLOv4 66.78 35.54 11.3144 11.26 28.14 53.7 

GhostNet-YOLOv4 67.25 29.48 11.0139 10.41 33.92 42.4 

EfficientNetv2-YOLOv3 66.36 31.49 8.4601 7.33 31.76 60.0 

MobileNetv2-SSD 65.96 113.33 3.9413 2.25 8.82 15.8 

YOLOv4-tiny 62.45 127.91 5.8787 10.92 7.82 22.5 

YOLOv3-tiny 51.57 116.29 8.7423 9.45 8.60 33.1 

Proposed Work 67.01 92.81 3.7573 9.12 10.77 14.4 
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tive in terms of the overall performance. Compared with the origi- 

al YOLOv4-tiny, the quantity of parameters in our proposed SMD- 

OLO is merely about 3.7573E + 06, which is approximately 2/3 of 

he original quantity, and the least among these detectors. Simulta- 

eously, the FLOPs value reduces from 10.92B to 9.12B, a decrease 

f about 16.48%. And the size of the weight reaches 14.4 Mb de- 

reases by 36%. The overall performance of our proposed detector 

s improved, which shows the effectiveness of the novel backbone, 

eck and head structure proposed in this work. 

To visualize the model’s performance between these evaluation 

ndicators more intuitively, we adopt a normalized histogram to 

epresent, shown in Fig. 14 . Where the symbol (-) in the figure 

epresents its opposite number, and the numerical values are ob- 

ained via the Min-Max standard normalization process. The closer 

he value of the indicator is to 1, the better the performance re- 

ects. 

It can be seen from Table 7 , 8 and Fig. 14 that the overall

etection performance of SMD-YOLO marked red star is the best 

or real-time detection, considered accuracy and speed. Among 

he above lightweight detectors, YOLOX_s, EfficientDet-D1 and 

hostNet-YOLOv4 perform better than our proposed detector in ac- 

uracy, but far inferior in terms of speed, at least a gap of 45FPS 

ven more. MobileNetv2-SSD and YOLOv3-tiny detect faster than 

ur proposed model, however, their accuracy is not as high as ours. 

lthough the mAP value of EfficientNetv2-YOLOv3 is almost same 

s our detector, the detection speed which have the FPS of 31.49 is 

lower. Moreover, YOLOv4 achieves the mAP value of 72.41%, 5.4% 

igher than our model. The reason is that YOLOv4 has three de- 

ection heads, one of which is dedicated to detecting small targets. 

evertheless, the YOLOv4-tiny, same as YOLOv3-tiny, just has two 

etection head removing one detection path for faster detection. 

n general, our SMD-YOLO has shown a greater lead in the com- 

rehensive evaluation of various indicators. 

The detection results of the proposed SMD-YOLO detector in a 

ew applications with real-world face masks wearing status are il- 

ustrated in Fig. 15 . These figures show the detection performance 

f the proposed detector under the varied environments in the 

mages. On the whole, the proposed model always finishes the 

etection properly. Especially during the COVID-19 pandemic, it 
14 
an be used as a useful and beneficial tool at hospitals, schools, 

ommunities, etc. for detecting people wearing or not wearing 

 face mask and detecting the mask on any region of the face. 

urthermore, it can effectively reduce the workload of the staff

ho need to maintain the order, and promptly remind those peo- 

le not wearing face masks or wearing masks incorrectly to take 

recautions. 

Firstly, Fig. 15 (a)—(c) illustrate the results about the medium 

ndividual faces with some distinctive and characteristic face 

asks, and all the face masks were successfully identified. Next, 

ig. 15 (d)–(g) are applied in the hospital scenario, including queu- 

ng to verify the health code and itinerary code at the entrance 

f the hospitals (a specific kind of epidemic prevention measures 

n China), and queuing or registering of the small scale in a hos- 

ital department. Where (d)–(f) gave an almost correct estimate 

bout the face mask targets and the region of area covered by a 

ask. Then, the detection results show that face masks detection 

or small size targets seems to perform well and there are merely 

ew missed instances in the indoor and outdoor public areas of 

ense crowdedness in Fig. 15 (g)–(i) . Where the crowded scenarios 

re more complicated scenes that are clear near and blurred in the 

istance. The reasons for the missed detection are mainly due to 

he overlapping between masks, the occlusion of masks and body 

arts (such as head, back, and hands). Besides, the low resolution 

f the input detection image may cause the mask in small targets 

o be similar to the background. Afterwards, the detection effect 

n the nighttime environment is exhibited in Fig. 15 (j) and (k) . 

he detection results indicate that the proposed detector, which 

ossesses good adaptability to environmental changes, can almost 

ccurately detect the masks wearing status of people. It can deal 

ith the influence of external light source and environment on the 

etection model. Finally, Fig. 15 (l) and (m) are the applications of 

etection inside the hospital corridor through the camera of moni- 

or. Its detection effect is directly affected by the pixels of the cam- 

ra. 

Moreover, to fully demonstrate the superiority of our proposed 

MD-YOLO, we compared with a few recent related works in the 

ask of face masks detection. Table 9 shows the performance com- 

arison of our proposed detector with the previous works. As can 
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Fig. 14. Normalization analysis of multiple indicators. 

Table 9 

Performance comparison of the different detectors. 

Dataset Work Detectors AP WMI /% AP WM /% AP WOM /% AP MA /% mAP /% 

Face Mask Dataset [50] Nagrath et al. [48] SSDMNV2 34.19 85.85 70.25 77.56 66.96 

Kumar et al. [51] YOLOv4-tiny-SPP 27.64 86.31 58.86 84.42 64.31 

Proposed Work SMD-YOLO 41.91 82.11 68.12 75.88 67.01 

MOXA [53] Roy et al. [53] MobileNetv2-SSD / / / / 46.52 

Inceptionv2-F-RCNN / / / / 60.05 

YOLOv3-tiny / 71.48 41.06 / 56.27 

Proposed Work SMD-YOLO / 80.94 41.86 / 61.40 
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benchmark. 
e seen from the table, in the dataset [50] employed in this paper, 

ome AP indicators of our proposed detector are obviously better 

han Nagrath et al. [48] and Kumar et al. [51] . And in the MOXA

ataset, the values of evaluation indicators are also higher than Roy 

t al. [53] . In the whole, our detector performs better than other 

chemes for the corresponding data set in terms of mAP value. It 

ndicates that our proposed detector is a significant improvement 

n the face mask detection based on visual images. 

. Discussion 

In this work, the effectiveness of our proposed SMD-YOLO 

odel is proved from both single-factor and multi-factor in an ab- 

ation study. From the overall experimental results of ablation ex- 

eriment, these improved models based on multi-factor combined 

trategy would generate a decrease in FPS values. However, they 

ave little impact on real-time performance in actual use and still 

eet a real-time requirement, which can take into account the de- 

ection accuracy and speed as well. 

It needs to be noted that compared with the baseline model of 

he original detector in Table 6 , the AP values of the WM and MA
15 
ategories are merely increased by 0.55% and 0.36% respectively, 

hich cannot improve too much. However, the recall rate value of 

he WM category is increased by 4.78%, while its value of the MA 

ategory is added by 2.71% sacrificing a little bit of the precision 

ate. It means that the missed detection rate for area with a mask 

n the people’s face is reduced. From a management and control 

oint of view, it is very important for managers or governmental 

fficers to increase the recall rate value in era of COVID-19 pan- 

emic, especially in areas with stricter supervision. For the detec- 

ion of people wearing a mask or not and wearing masks incor- 

ectly, all the evaluation metrics values almost have been signifi- 

antly improved. 

Moreover, it can be found from Table 7 that the AP values 

or each category of the tiny model are nearly lower than other 

ightweight combination models. The reason for the great differ- 

nce in the AP values of tiny detectors is that the lightweight net- 

ork reduces the feature layer and detection layer to varying de- 

rees. Owing to the relatively simple structure, it is difficult to de- 

ect small objects in a complex background and crowds of people. 

verall, the performance of our proposed detector outperforms the 
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Fig. 15. The detection results of SMD-YOLO detector with real-world face masks wearing status under the various environments. (a)(b)(c) On medium individual faces with 

a distinctive mask. (d)(e) At the entrance of the hospitals. (f)(g) When small queuing or registering in a small scale at the hospitals. (h)(i) In the densely crowded public 

areas indoors and outdoors. (j)(k) In the nighttime environment. (l)(m) Inside the hospital corridor from the camera of monitor. 
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In the SOTA comparison, with the increase in the complexity of 

he network structure after our improvement, the detection speed 

s reduced to a certain extent compared with the original detec- 

or. However, the FPS value of our detector is still better than most 

ightweight detector on the test set. In other words, the extremely 

ast detection of YOLOv4-tiny makes it feasible to sacrifice partial 

peed to improve the accuracy. In term of the training and test- 

ng time, our proposed detector decreases dramatically the time- 

onsuming at least a half, compared to the other detectors in the 

ame experimental environment. Moreover, our proposed detector 

acilitates deployment on devices with low computing power due 

o the less weight parameters and calculation amount. 

. Conclusion 

In this paper, an efficient and lightweight detection method 

ased on YOLOv4-tiny, and a face mask detection and monitoring 

ystem are proposed for mask wearing status, aiming at solving the 

hortcomings in the small or medium-size masks detection. To im- 

rove the detection accuracy on the premise of ensuring the real- 

ime face masks recognition, two feasible improvement strategies 

re proposed: 1) K-means ++ clustering algorithm is to generate 

nchor boxes suitable for the face mask dataset, making the net- 

ork easier to train and the parameters to converge more readily. 

) Network structure optimization is to balance the accuracy of de- 

ection and speed. Firstly, the improved residual module and cross 
16 
usion modules are to extract the features of small or medium- 

ize targets effectively. Next, the enhanced dual attention mech- 

nism heightens the mask features expression and focusing abil- 

ty of detection model to mask areas. Then, the improved spatial 

yramid pooling module strengthen the receptive field of deep se- 

antic features. Besides, the combination of activation functions 

s benefit for effective and smooth transmission of parameters to 

ompensate the detection accuracy. Finally, the depthwise separa- 

le convolution reduces the quantity of parameters to improve the 

etection speed. The experiment results show that the final mAP 

alue of our proposed model increased from 62.45% to 67.01%, the 

arams value dropped from 5.8787E + 06 to 3.7573E + 06, and the 

LOPs value dropped from 10.92B to 9.12B compared with the orig- 

nal. With the FPS value of 92.81, the model can significantly im- 

rove the detection capacity of small target masks in public places 

here crowds gather under the premise of ensuring real-time per- 

ormance. 

In future work, the impact of unbalanced data sets will be con- 

idered in the preprocessing part. In addition, we will keep work- 

ng on theoretical and practical application research. In theory, we 

ill study on the lightweight detection of small targets equipped 

ith more efficient feature matching mechanisms. In practical ap- 

lication, we will attempt to use the proposed model in various 

elds related to the COVID-19 pandemic, such as telemedicine for 

kin diseases or sore throat, and further do research on the robust- 

ess of the model. 
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