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Abstract: Photocatalytic hydrogen evolution is considered one of the promising routes to solve the en-
ergy and environmental crises. However, developing efficient and low-cost photocatalysts remains an
unsolved challenge. In this work, ultrathin 2D g-C3N4 nanosheets are coupled with flat TiO2 nanopar-
ticles as face-to-face 2D/2D heterojunction photocatalysts through a simple electrostatic self-assembly
method. Compared with g-C3N4 and pure TiO2 nanosheets, 2D/2D TiO2/g-C3N4 heterojunctions
exhibit effective charge separation and transport properties that translate into outstanding photo-
catalytic performances. With the optimized heterostructure composition, stable hydrogen evolution
activities are threefold and fourfold higher than those of pure TiO2, and g-C3N4 are consistently ob-
tained. Benefiting from the favorable 2D/2D heterojunction structure, the TiO2/g-C3N4 photocatalyst
yields H2 evolution rates up to 3875 µmol·g−1·h−1 with an AQE of 7.16% at 380 nm.

Keywords: hydrogen evolution; 2D/2D heterojunction; charge separation

1. Introduction

Owing to the abundance of low-cost solar energy, the numerous uses of hydrogen and
its advantages as an energy carrier, the photocatalytic generation of hydrogen is a highly
appealing process [1,2]. However, the cost-effective photogeneration of hydrogen requires
high activity and stable photocatalysts, development of which has been a long-standing
goal. Over the past decades, numerous semiconductors have been tested as photocatalysts
for hydrogen evolution. Among them, titanium dioxide (TiO2) has received special atten-
tion owing to its stability, high abundance, low toxicity, being the earliest to be discovered
and becoming the first to be industrialized [3]. Nevertheless, due to its wide bandgap and
relatively fast charge recombination rate, its applicability has been strongly limited. Nu-
merous strategies have been proposed to improve the photocatalytic performance of TiO2,
facilitating charge separation and promoting efficiency and activity, [4–7] including the
control of its particle facets and morphology [8–11], its modification with cocatalysts [12–15]
and its coupling with other semiconductors to form heterostructures [16–24].

Graphite carbonitride (g-C3N4) with a layered structure similar to graphite, high
chemical stability and low cost has received increasing interest in recent years [25–27]. In
particular, as a polymeric semiconductor, g-C3N4 has been recently reported as a promising
candidate photocatalyst due to its unique structure and electronic characteristics, with a
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2.7 eV bandgap that allows absorbing part of the visible spectrum [28,29]. Additionally,
two-dimensional (2D) g-C3N4 nanosheets, benefiting from a huge specific surface area
and a suitable band structure, have shown especially interesting properties and offer an
excellent platform to produce heterojunctions with other semiconductors [30–33].

Recently, 2D/2D heterojunctions have been demonstrated to provide great advantages
to improve charge separation [34,35]. 2D/2D heterojunctions simultaneously maximize
the interface and surface areas, i.e., the charge transfer between the two materials and the
interaction with the media, which can potentially improve photocatalytic activities.

In the present work, we target improving photocatalytic hydrogen production using
2D/2D heterojunctions. In this direction, we report the first synthesis of 2D/2D TiO2/g-
C3N4 heterostructures. Such composite materials are produced from the electrostatic assem-
bly of 2D anatase TiO2 flat nanoparticles synthesized through a simple colloidal method
with 2D ultrathin g-C3N4. The produced heterostructures are tested as photocatalysts
for hydrogen evolution under simulated solar light irradiation. The excellent hydrogen
evolution performance obtained after optimizing the weight contents of TiO2 and g-C3N4
within 2D/2D heterojunction are rationalized using photoluminescence, photocurrent and
impedance spectroscopy analysis.

2. Experiment

Synthesis of bulk g-C3N4 (bCN) and ultrathin g-C3N4 (uCN): Bulk g-C3N4 powder
was synthesized by thermal polymerization of urea. Briefly, 10 g of urea (99%, Acros
Organics) was placed into a ceramic crucible. The crucible was covered and heated to
550 ◦C at a ramp rate of 2 ◦C min−1 for 4 h under air atmosphere. After cooling to room
temperature, the resulting light-yellow solid was ground with the mortar to obtain the bulk
g-C3N4 powder. To obtain ultrathin g-C3N4 (uCN), bulk g-C3N4 (2.0 g) was placed in a
covered ceramic crucible, and it was heated to 520 ◦C with a ramp rate of 5 ◦C min−1 for
2 h under air atmosphere to obtain a light-yellow powder.

Synthesis of TiO2 nanosheets: Titanium dioxide nanoparticles were prepared using a
colloidal method. All the syntheses were performed using standard airless techniques [36,37].
Typically, 10 mL of oleylamine (OAm, 80–90%, Acros Organics, Geel, Belgium), 10 mL
of octadecene (ODE, 90%, Sigma-Aldrich, Burlington, MA, USA) and 1 mL of oleic acid
(OAc, 90%, Sigma-Aldrich, Burlington, MA, USA) were loaded in a three-neck flask and
degassed under vacuum at 120 ◦C for 1 h while being strongly stirred using a magnetic bar.
Then, 300 mg of TiF4 (99%, Sigma, Burlington, MA, USA) was added in a mixed solution
of 2 mL OAm, 3 mL OAc and 6 mL ODE and sonicated for 0.5 h to prepare a precursor
solution. Subsequently, under nitrogen atmosphere, 10 mL of the precursor solution were
slowly added to the reaction flask, which was then heated to 290 ◦C at a rate of 5 ◦C min−1

and maintained for 1 h. The solid product was centrifuged and washed with acetone and
hexane three times. The particles were finally dispersed in hexane at a concentration of
10 mg/mL.

Ligand removal from TiO2 nanoparticles: In a typical process, 10 mL of a TiO2 dis-
persion in hexane (2 mg/mL) was combined with 10 mL acetonitrile to form a two-phase
mixture. Then, 1 mL of a HBF4 solution (48%, Sigma-Aldrich, Burlington, MA, USA) was
added. The resulting solution was sonicated until the particles transferred from the upper to
the bottom layer. The surface-modified particles were washed with ethanol and a 1 mol/L
sodium hydroxide (85%, Sigma-Aldrich, Burlington, MA, USA) aqueous solution three
times to remove the residual fluoride ions and ligands. The particles were then washed
with water to adjust the PH close to neutral. Finally, the particles were dispersed in 10 mL
of water with a small amount of DMF.

Synthesis of 2D/2D TiO2/ultrathin g-C3N4 (TiO2/uCN) composite: TiO2/uCN het-
erojunctions were produced by an electrostatic self-assembly method. Briefly, 20 mg of
as prepared ultrathin g-C3N4 was dissolved in 10 mL of ultrapure water and sonicated
for 1 h. The solution was then mixed with an ethanol solution of ligand-removed TiO2
nanoparticles with a weight ratio of 1:2, 1:1 and 2:1. The mixed solution was stirred for
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24 h after 1 h of sonication. The obtained composite was collected by centrifuging, it was
washed with ethanol 2 times, and it was finally dried at 60 ◦C for 12 h. The collected mate-
rials were named T1/uCN2, T1/uCN1 and T2/uCN1 based on the different TiO2/ultrathin
g-C3N4 weight ratios. TiO2/bulk g-C3N4 (T/bCN) samples were prepared using the same
procedure. For photocatalytic measurements, 1 wt% of Pt was loaded on the surface of the
photocatalysts by a photoreduction method.

Photocatalytic Hydrogen Evolution Procedure

The photocatalytic hydrogen evolution experiments were carried out in a Perfect Light
Labsolar-III (AG) photoreactor (Pyrex glass) connected to a closed-loop gas circulation
system. In a typical experiment, 20 mg photocatalyst was dispersed in 100 mL aqueous
solution containing 10 mL methanol and 1 wt% Pt cocatalyst (40 uL 25.625 mmol/L H2PtCl6
aqueous solution). The mixed solution was bubbled with N2 for 30 min to ensure anaerobic
state and illuminated 30 min with UV light before simulated solar light irradiation to ensure
the complete loading of Pt. The incident light was provided by a 300 W Xe lamp with an
AM 1.5 filter, and the reaction conditions were kept at room temperature. The resulting
gas was analyzed by a Labsolar-III (AG) gas chromatograph equipped with a thermal
conductivity detector, with high-purity argon as the carrier gas.

3. Result and Discussion

TiO2/g-C3N4 heterostructures were obtained by the electrostatic assembly of TiO2
nanoparticles and ultrathin g-C3N4 nanosheets (Figure 1, see Experimental section for
details). Colloidal TiO2 nanoparticles were produced in the presence of OAm and OAc
using TiF4 as the Ti precursor. As shown in Figure 2a, low-resolution TEM images exhibited
the TiO2 particles to have a flat square morphology with a side length of 30–50 nm and a
thickness of about 5–10 nm. g-C3N4 nanosheets were produced by the thermal etching of
bulk g-C3N4. As observed by scanning electron microscopy (SEM, Figure S1a,b) and trans-
mission electron microscopy (TEM, Figure 2b) characterization, bCN and uCN displayed
significantly different morphologies. The uCN showed a thin nanosheet-based structure
pointing at the occurrence of a layer etching during the thermal process. Figure S1c displays
the nitrogen adsorption–desorption isotherms of bCN and uCN, which further proved
uCN (85.7 m2/g) to be characterized by a larger specific surface area than bCN (46.3 m2/g).
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Figure 2. Representative TEM images of (a) TiO2 nanoparticles; (b) g-C3N4 nanosheets and T1/uCN1 
composite with representative (c) low and (d) high magnification. (e,f) HRTEM images of T1/uCN1. 
A magnified detail (top right) of the orange squared region in the HRTEM image and its 
corresponding indexed power spectrum (bottom right) is shown, revealing the TiO2 anatase phase 
(space group = I41/amd) with a = b = 3.7840 Å, and c = 9.5000 Å. TiO2 lattice fringe distances were 
measured to be 0.233 nm, 0.352 nm and 0.348 nm at 41.30° and 139.38°, which could be interpreted 
as the anatase TiO2 phase, visualized along its [1–11] zone axis. 

To positively charge the surface of the TiO2 particles, enable their dispersion in an 
aqueous solution and promote charge transfer with the media; the organic ligands at-
tached to the particle surface were removed using HBF4 (Figure S2). As observed by 
zeta-potential analysis, while the g-C3N4 nanosheets were negatively charged (V = −33.8 
mV), after ligands removal the TiO2 particles were positively charged (V = +18.6 mV), 
which enabled the electrostatic self-assembly of the two components [38]. Indeed, when 
combining solutions of the two types of material, a light-yellow precipitate was formed. 
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Figure 2. Representative TEM images of (a) TiO2 nanoparticles; (b) g-C3N4 nanosheets and T1/uCN1

composite with representative (c) low and (d) high magnification. (e,f) HRTEM images of T1/uCN1.
A magnified detail (top right) of the orange squared region in the HRTEM image and its corre-
sponding indexed power spectrum (bottom right) is shown, revealing the TiO2 anatase phase
(space group = I41/amd) with a = b = 3.7840 Å, and c = 9.5000 Å. TiO2 lattice fringe distances were
measured to be 0.233 nm, 0.352 nm and 0.348 nm at 41.30◦ and 139.38◦, which could be interpreted as
the anatase TiO2 phase, visualized along its [1–11] zone axis.

To positively charge the surface of the TiO2 particles, enable their dispersion in an
aqueous solution and promote charge transfer with the media; the organic ligands attached
to the particle surface were removed using HBF4 (Figure S2). As observed by zeta-potential
analysis, while the g-C3N4 nanosheets were negatively charged (V = −33.8 mV), after
ligands removal the TiO2 particles were positively charged (V = +18.6 mV), which enabled
the electrostatic self-assembly of the two components [38]. Indeed, when combining
solutions of the two types of material, a light-yellow precipitate was formed. The precipitate
was composed of large uCN nanosheets containing numerous nanoparticles attached to
their surface. TEM analyses showed these nanoparticles lie flat on the surface of uCN,
forming 2D/2D heterostructures (Figure 2c,d). High resolution TEM (HRTEM) further
confirmed these nanoparticles are TiO2 with good crystallinity (Figure 2e,f).

SEM-EDS elemental maps (Figure S4) displayed a homogeneous distribution of C,
N, O and Ti, demonstrating a uniform distribution of TiO2 particles on the uCN surface
at the microscale. On the other hand, quantitative EDX analyses showed the TiO2:CN
weight ratio to be close to that of the nominal combination of each phase: TiO2:CN = 0.47
for T1/uCN2; TiO2:CN = 1.1 for T1/uCN1 and TiO2:CN = 1.9 for T2/uCN1, obtained from
mixing 1:2, 1:1 and 2:1 mass ratios of particles, respectively (Figures S5–S7).

Figure 3a displays the X-ray diffraction (XRD) patterns of bCN, uCN, TiO2 and T/uCN
samples. The XRD peaks at 25.2◦ (101), 38.0◦ (004), 47.7◦ (200) and 54.8◦ (211) are associated
with the anatase TiO2 phase (JCPDS No. 21-1272) [39]. Additonally, the characteristic
diffraction peaks at 13.1◦ and 27.4◦ correspond to the (002) and (100) planes of g-C3N4
(JCPDS No. 87-1526) [40]. The characteristic diffraction peaks of both TiO2 and g-C3N4 can
be observed in all the composites samples, confirming the coexistence of anatase TiO2 and
g-C3N4.
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The X-ray photoelectron spectroscopy spectra of TiO2, uCN and T/uCN are displayed
in Figure 3b–f. As observed from the survey XPS spectrum, besides Ti, C, O and N, a
residual amount of F from the TiF4 precursor used to prepare the TiO2 particles was also
present in the final material (Figure 3b). The high-resolution C 1s XPS spectrum of uCN
showed two main contributions at 288.2 eV and 284.8 eV, which were assigned to C-(N3)
and C–C/C=C, respectively (Figure 3c). Compared with pure uCN, the peak for C-(N3) of
the T1/uCN1 sample was slightly shifted to 288.2 eV. The high-resolution N 1s XPS spectra
were deconvoluted using three contributions at binding energies of 398.1 eV, 499.4 eV
and 400.5 eV for uCN and 398.1 eV, 499.6 eV and 400.7 eV for T/uCN (Figure 3d). These
three contributions were assigned to N-(C2), N-(C3) and N-Hx groups of the heptazine
framework. The small shifts detected for C and some of the N components might be related
to a certain degree of charge between the TiO2 and the CN phases. Figure 3e displays
the high-resolution Ti 2p XPS spectra of TiO2 and T/uCN. Both samples show two strong
peaks at approximately 458.7 and 464.5 eV, which are assigned to the Ti 2p3/2 and Ti 2p1/2
levels of Ti within a TiO2 environment. The high-resolution O 1s XPS spectra of TiO2 and
T/uCN were fitted with two peaks at 530.4 eV and 531.8 eV, which were associated with
oxygen within the TiO2 lattice and oxygen-containing surface adsorption groups such as
surface hydroxyl, respectively (Figure 3f).

The UV-vis spectra showed the UV absorption edge of TiO2 particles and uCN
nanosheets at about 390 nm and 445 nm, respectively (Figure 4a). T/uCN composites
showed a similar onset absorption edge as uCN but an increased absorption below 400 nm
related to the presence of the TiO2 component. All TiO2 and T/uCN samples presented
a small absorption in the range 500–800 nm related to a small amount of F ion doping.
According to the Kubelk–Munk function, the band gaps of TiO2, uCN and T1/Ucn1 samples
were calculated at about 3.02 eV, 2.62 eV and 2.65 eV, respectively (Figure 4b).

According to Mott–Schottky analyses (Figure 4c,d and Figure S3), the flat band poten-
tials of TiO2 and uCN were −0.36 V and −0.86 V vs. the normal hydrogen electrode (NHE).
The valence band (VB) XPS spectra of TiO2 and uCN showed the valence band maximum
(VBM) to be located at 2.89 eV and 2.46 eV from the Fermi level, respectively. Since the flat
band potentials are approximately equal to the Fermi level [41,42], the VBM was located at
2.53 eV and 1.60 eV with respect to the NHE for TiO2 and uCN, respectively. Then, taking
into account the calculated band gaps (Eg = Evb − Ecb) [43], the conduction band minimum
(CBM) was located at 0.49 and −1.02 for TiO2 and uCN, respectively. Figure 4f displays
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the energy-level diagram calculated for TiO2 and uCN samples. According to this scheme,
when combining uCN with TiO2, a type II heterojunction is formed, involving electron
transfer from the uCN to the TiO2 particles. Besides, it is predicted that within such het-
erostructure, photogenerated electrons move toward the TiO2 phase and photogenerated
holes toward the uCN, respectively.
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To analyze the photocatalytic activity towards hydrogen generation, all the samples
were loaded with 1 wt% platinum as cocatalyst. Figure 5 displays the photocatalytic
hydrogen generation from bCN, uCN, TiO2 and TiO2/uCN composites for 4 h under
simulated solar light and using methanol as a sacrificial agent. Figures S8 and S9 and
Table S2 show the chromatogram plots and the linear fitting of the standard hydrogen
curve for gas chromatography, which show our measurement error is less than 0.2%.

For TiO2, a high hydrogen evolution rate (HER) up to 1449 µmol·g−1·h−1 was obtained.
Additionally, a notable HER was also obtained from uCN (801 µmol·g−1·h−1), well above
that of bCN (599 µmol·g−1·h−1), which is consistent with the larger surface area provided
by the thin-layered structure of uCN. All the TiO2/uCN composites displayed a significant
HER improvement with respect to pure TiO2 or uCN. The highest HERs were obtained
with the TiO2/uCN composites having a 1:1 weight ratio of the two components, reaching
a HER of 3875 µmol·g−1·h−1, which is 2.7 and 4.8 times higher than that of TiO2 and
uCN, respectively. The observed synergistic effect obtained when mixing both materials
is related to the transfer and thus separation of photogenerated carriers at the 2D/2D
heterojunctions, which prevents their recombination. Table S3 provides a comparison of
the activity obtained here with those of previous published works, demonstrating the
outstanding activity provided by the 2D/2D TiO2/uCN heterojunction.

As a reference, we also measured the HER of TiO2/bCN composites with the optimized
weight ratio 1:1 (T1/bCN1). As observed in Figure 5c and Figure S7, the HER of T1/bCN1
also showed an obvious improvement with respect to that of pure TiO2 and bCN, but
the highest HER values were well below those of 2D/2D T/uCN heterojunctions having
extended surface and interface areas.
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(d) Wavelength-dependent AQY of T1/uCN1.

The apparent quantum yield (AQY) of the process was evaluated under 380 nm
(4.51 mW·cm−2) and 420 nm (12.14 mW·cm−2) irradiation (Table S4, see details in the
SI). For T1/uCN1, the AQY at 380 nm and 420 nm was estimated at 7.61% and 2.64%,
respectively, which is consistent with UV-vis spectroscopy results (Figure 5d).

Figure 6a displays the positive photocurrents measured from uCN, TiO2 and TiO2/uCN
samples under simulated solar irradiation. All the composite T/uCN, electrodes displayed
significantly higher photocurrents than pure TiO2 and uCN, especially the T1/uCN1 elec-
trode that showed the highest photocurrents, fourfold higher than those of uCN and TiO2.
This result further confirms an improvement of the charge separation/transport with the
formation of the 2D/2D heterojunction.
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Electrochemical impedance spectroscopy (EIS) was further employed to identify the
charge transport dynamics. Figure 6b displays the Nyquist plot of the impedance spectra
of TiO2, uCN and T1/uCN1. Consistent with previous results, the T1/uCN1 electrode
presented a much smaller arc radius than the other two samples, confirming a much lower
charge transfer resistance with the formation of the 2D/2D TiO2/uCN heterojunction [44].
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A strong photoluminescence (PL) peak was obtained under 370 nm light excitation
from the uCN sample at about 455 nm, which is ascribed to the radiative band-to-band
recombination of photogenerated charge carriers. When incorporating increasing amounts
of TiO2, the PL intensity of T/uCN was progressively quenched (Figure S10). Additional
time-resolved PL (TRPL) spectra under 365 nm light excitation (Figure 6c) allowed calculat-
ing significantly longer PL lifetimes (4.72 ns) for T1/uCN1 samples than for TiO2 (3.15 ns)
and uCN (3.51 ns), which points at an effective separation of photogenerated charge carriers
within the TiO2/uCN heterostructures [45].

Based on the above results, the photocatalytic mechanism displayed in Figure 7 is
proposed for hydrogen generation in T/uCN heterojunction photocatalysts. While both
TiO2 and uCN can generate electrons and holes under simulated solar light irradiation, the
photogenerated electron–hole pairs in pure TiO2 and uCN rapidly recombine, resulting in
moderate HERs. Through the formation of a 2D/2D T/uCN heterostructure, the photogen-
erated electrons remain or are transferred to the TiO2 CB because the TiO2 CBM is located
0.53 eV below that of CN. Similarly, photogenerated holes remain or are driven to the uCN
VB, which is located 0.93 eV above that of TiO2. Electrons at the TiO2 CB migrate to the
platinum, which has a larger work function, thus a lower Fermi level, from where they are
transferred to adsorbed H+ to produce H2. On the other hand, holes react with sacrificial
methanol at the CN surface. Consequently, the photocatalytic hydrogen evolution process
using sacrificial methanol can be described as follows:

uCN/TiO2
hv→ uCN/TiO2

(
e− + h+) (1)

uCN/TiO2
(
e− + h+)→ uCN

(
h+)+ TiO2

(
e−

)
(2)

TiO2
(
e−

)
+ Pt→ TiO2 + Pt

(
e−

)
(3)

2H+ + e− → H2 (4)

2h+ + CH3OH→ CH2O + 2H+ (5)
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Figure 7. Schematic diagram of photocatalytic hydrogen production over T/uCN photocatalyst.

Finally, the stability of the T1/uCN1 photocatalyst in hydrogen evolution conditions
under simulated solar light irradiation was measured through five four-hour cycles. As
shown in Figure S11a, after this 20 h of reaction, the photocatalytic performance was hardly
reduced, proving the excellent stability and reusability of the T1/uCN1 photocatalyst.
Additionally, as displayed in Figure S11b,c, SEM and XRD analysis of the catalyst after 20 h
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photocatalytic hydrogen generation reaction demonstrated the morphology and crystallo-
graphic structure of the material to be stable under photocatalytic reaction conditions.

4. Conclusions

In summary, we detailed the synthesis of 2D/2D T/uCN heterojunctions from ultra-
thin g-C3N4 (uCN) and colloidal TiO2 nanosheets through an electrostatic self-assembly
approach. The highest hydrogen generation rate was achieved from T/uCN compos-
ites with a 1:1 mass ratio of the two components. The photocatalytic performance for
H2 production was increased in the following order: bCN < uCN < TiO2 < T1/uCN2 <
T2/uCN1 < T1/uCN1. The enhanced performance was attributed to the unique 2D/2D type
II heterojunction architecture that simultaneously maximized the surface area to interact
with the media and the interface between the two materials. The face-to-face interfacial
contact between ultrathin layers of g-C3N4 and the faceted TiO2 provided fast separation of
photogenerated charges inside the composites, reducing recombination and thus increasing
the apparent quantum yield.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12091557/s1, Figure S1: SEM image of (a) bulk g-C3N4
and (b) ultrathin g-C3N4, (c) N2 adsorption-desorption isotherms of bCN and uCN; Figure S2:
FTIR spectra of OAC, OLMA and TiO2 before and after ligands remove; Figure S3: Zeta potential
distribution spectrum of TiO2 after ligands removal (a) and uCN (b); Figure S4: SEM image and EDS
compositional maps of a T1/uCN1 composite; Figure S5: SEM image of T1/uCN2 and corresponding
EDS spectrum; Figure S6: SEM image of T1/uCN2 and corresponding EDS spectrum; Figure S7: SEM
image of T1/uCN2 and corresponding EDS spectrum; Figure S8: Chromatogram plots for 0.5 mL
of standard hydrogen injected every half hour; Table S1: Gas Chromatography Peak Processing
Data based on figure S8; Figure S9: Standard hydrogen curve for gas chromatography; Table S2:
Exponential decay-fitted parameters of fluorescence lifetime of uCN, TiO2 and T1/uCN1; Figure
S10: Photocatalytic hydrogen generation amount on bCN, TiO2 and T1/bCN1 during 4 h under
simulated solar light irradiation; Table S3: Photocatalytic hydrogen production about TiO2/g-C3N4
based catalysts; Table S4: The AQE values with different incident light wavelengths for T1/uCN1;
Figure S11: (a) Stability cycles of the T1/uCN1 for H2 evolution under simulated solar light irradiation;
(b) TEM image of T1/uCN1 after 20 h photocatalytic H2 evolution reaction and (c) XRD pattern of
T1/uCN1 before and after 20 h photocatalytic H2O2 evolution reaction.
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