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A culture-independent phylogenetic survey for an anaerobic trichlorobenzene-transforming microbial com-
munity was carried out. Small-subunit rRNA genes were PCR amplified from community DNA by using
primers specific for Bacteria or Euryarchaeota and were subsequently cloned. Application of a new hybridiza-
tion-based screening approach revealed 51 bacterial clone families, one of which was closely related to
dechlorinating Dehalobacter species. Several clone sequences clustered to rDNA sequences obtained from a
molecular study of an anaerobic aquifer contaminated with hydrocarbons and chlorinated solvents (Dojka et

al., Appl. Env. Microbiol. 64:3869-3877, 1998).

Due to their widespread application in industry and agricul-
ture and their chemical stability, chlorobenzenes (CB) are
ubiquitous pollutants in soil, sediments, and aquifers (17).
Since the toxicity of CBs increases with the number of chlorine
substituents (14), microbial dechlorination of CBs is of major
interest. In contrast to di- and monochlorobenzenes (DCB and
MCB), more highly chlorinated benzenes are more resistant to
aerobic dechlorination. However, for these compounds, reduc-
tive dechlorination by different anaerobic microbial communi-
ties could be demonstrated (1, 8, 15, 16, 19). Bioreactors in-
oculated with complex dechlorinating anaerobic microbiota
seem to be promising technologies for bioremediation of CB-
contaminated aquifers. Several studies showed the efficiency of
such bioreactors in treating chloroaromatic-contaminated
wastewater (6, 26). However, due to the unknown species di-
versity, microbial activity had to be treated as a “black box”
and direct optimization was hampered. To determine the mi-
crobial diversity of an anaerobic consortium (16) in a fluidized
bed reactor (FBR) used for dechlorination of trichlorobenzene
(TCB), we employed comparative sequence analysis of 16S
rRNA genes after direct PCR amplification and cloning from
community DNA, since culture-based methods have been
shown to be strongly biased (2, 7). Here we report the success-
ful application of a new hybridization-based screening ap-
proach for bacterial 16S rDNA clone libraries and describe
numerous novel 16S rDNA sequences representing yet-uncul-
tured microorganisms of the anaerobic TCB-transforming con-
sortium.

A 5-liter FBR was inoculated with the anaerobic TCB-trans-
forming consortium (16) immobilized on polyurethane foam
cubes (1 cm?) and was supplied with a mineral salt medium
(21) containing TCB (10 mg/liter), sodium acetate (100 mg/
liter), and methanol (100 mg/liter). Transformation of TCB to
DCB, MCB, and benzene was analyzed by gas chromatography
three times per week. The FBR was operated for several
months under stable conditions (pH 7.0; redox potential, —300
mV), transforming about 80 to 90% of supplied TCB. For
extraction of community DNA, one foam cube was removed
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from the bioreactor. Cells were broken by lysozyme treatment
(3 mg of lysozyme/ml in 6 ml of 0.15 M NaCl-0.01 M EDTA at
37°C for 3 h) and by the addition of 6 ml of a sodium dodecyl
sulfate solution (0.5 M Tris-HCI-0.1 M NaCl-10% SDS [pH
8]) followed by six cycles of freezing on dry ice and thawing at
65°C for 15 min. Remaining intact cells were lysed by incuba-
tion at 50°C after 160 pl of a proteinase K solution (20 mg/ml)
was added. The lysate was extracted with phenol and chloro-
form, and nucleic acids were subsequently ethanol precipi-
tated. PCR inhibitors and fragmented DNA were removed
from high-molecular-weight DNA by using preparative aga-
rose gel electrophoresis (13) and QiaQuick spin columns (Qia-
gen, Diisseldorf, Germany). To overcome some of the re-
ported pitfalls in the determination of microbial diversity by
PCR-mediated direct analysis of rRNA (for a review, see ref-
erence 23), a total of four 16S rDNA clone libraries were
generated from the same batch of community DNA, which
differed in PCR and cloning conditions. In PCRs A and B, 16S
rDNA was amplified with Bacteria-specific primers TPU1 (AG
AGTTTGATCMTGGCTCAG:; Escherichia coli positions 8 to
27) and RTU8 (AAGGAGGTGATCCANCCRCA,; E. coli po-
sitions 1522 to 1541) by using the following cycling conditions
(parameters for reaction B are given in brackets): 98°C for 3 [2]
min, 93°C for 3 [1] min, addition of Ampli7ag polymerase
(Perkin-Elmer, Weiterstadt, Germany), 28 cycles of 93°C for 1
min, 53°C for 1 min, and 72°C for 3 [5] min, and final extension
at 72°C for 7 min. PCR products were cloned either by TA
cloning (Invitrogen, de Schelp, Netherlands), resulting in clone
library A, or by ligation-independent cloning (3), resulting in
clone library B. In PCRs C and D, 16S rDNA was amplified
with Euryarchaeota-specific reverse primer 1390Ra (CGGTG
TGTGCAAGGAGG; E. coli positions 1385 to 1401 [18]) and
Euryarchaeota-specific forward primer 10-30Fa (TCCGGTTG
ATCCTGCC; E. coli positions 8 to 23 [18]) (reaction C) or
357Fa (ACGGGGCGCAGCAGGCG; E. coli positions 344 to
359 [18]) (reaction D) using a tricine buffer with 5% acetamide
(4) and the following cycling conditions (parameters for reac-
tion D are given in brackets): 94°C for 6 min, addition of
AmpliTaq polymerase, 30 [27] cycles of 92°C for 1.5 min, 50°C
for 1.5 min, and 72°C for 2 [4] min, and final extension at 72°C
for 7 min. PCR products of both reactions were cloned by TA
cloning, resulting in clone libraries C and D. In all PCRs, the
amount of template DNA for maximum synthesis of amplifi-
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cation products was empirically determined. DNA sequencing
of 16S rDNA clone inserts was performed by using the Thermo
Sequenase Fluorescent Labelled Primer Cycle Sequencing kit
(Amersham, Braunschweig, Germany) and an automated LI-
COR 4000 or 4000L DNA sequencer (MWG-Biotech, Ebers-
berg, Germany).

Euryarchaeotal rDNA clone libraries C and D were domi-
nated by clone sequences nearly identical to the 16S rDNA of
Methanosaeta concilii (97.7 to 99.7%). Hybridization of 153
clones of library C (SJC clones) and of 56 clones of library D
(SJD clones) with the novel digoxigenin (DIG)-labeled oligo-
nucleotide probe MCONC (GAGTACGCTGGCAACTGT;
E. coli positions 1120 to 1135) specific for M. concilii and
closely related clone sequences revealed 136 (88.8%) and 32
(57.1%) positive clones, respectively. Due to the higher diver-
sity of bacterial clone libraries A and B, the design of clone-
specific oligonucleotides seemed not to be appropriate to en-
able a rapid comparison of both libraries. Consequently, a new
screening approach to avoid sequencing of identical or closely
related clone sequences was developed; it was based on hy-
bridization with DIG-labeled 16S rDNA fragments (a detailed
protocol is available on request). Briefly, DIG-labeled rDNA
fragments of single clones were generated by nested PCR with
primers TPU1 and RTU2 (TGCCTCCCGTAGGAGTYTGG;
E. coli positions 334 to 353) from full-length 16S rDNA clone
inserts, which had been previously PCR amplified from plas-
mid DNA with insert flanking primers M13(—40)F (GTTTTC
CCAGTCACGAC) and M13(—24)R (AACAGCTATGACC
ATG). Resulting DIG-labeled rDNA fragments (about 350 bp
in length) were used for filter hybridization of purified plasmid
DNA by using a hybridization buffer containing 50% deionized
formamide and the DIG Luminescent Detection kit (Boehr-
inger, Mannheim, Germany). A total of 145 full-length rDNA
inserts of clone library A (SJA clones) and of 163 rDNA inserts
of clone library B (SJB clones) was hybridized with 29 different
DIG-labeled 16S rDNA fragments of SJA clones. All SJA
clones not identified by hybridization were sequenced. This
combined approach allowed the detection of 52 distinct clone
families in clone library A (Fig. 1). Hybridization results re-
vealed that four clone families showed significantly different
distributions in both clone libraries and seven unique SJA
clones could not be detected in library B. However, clone
families SJA-36, SJA-102, and SJA-186 represented more than
one-fourth of all SJA and SJB clones (28.8% of SJA clones,
26.4% of SIB clones), and 16 clone families of library A were
present in both libraries with similar low frequencies (between
0.6 and 4.9%), corresponding to one to eight positive clones.
We therefore concluded that the different cloning approaches
(TA versus ligation-independent cloning) and slight variations
of PCR conditions had no major impact on the composition of
clone libraries A and B and that consequently SJA clone fam-
ilies roughly represented bacterial diversity of the TCB-trans-
forming consortium. By using both fractional treeing based on
overlapping datasets of about 400 nucleotides and the
CHECK CHIMERA tool (12), one full-length SJA sequence
(SJA-7) was found to be chimeric. For phylogenetic analysis,
the remaining 51 representative full-length SJA sequences
were initially compared to the available databases by using the
BlastN tool of the HUSAR software package (DKFZ, Heidel-
berg, Germany) to determine their approximate phylogenetic
affiliations. SJA sequences and phylogenetically related sequences
were incorporated into a dendrogram (tree 1400 feb97) of the
ARB database (22) by using the ARB parsimony insertion tool.
Prior to phylogenetic analyses, highly variable regions or those
of uncertain alignment were excluded by omitting, among oth-
ers, the first 104 positions (E. coli numbering) by using a
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FIG. 1. Dot blot hybridization with the DIG-labeled rDNA fragment of
clone SJA-103 of purified plasmid DNA from SJA clones. Inserts of clones
SJA-69, STA-100, and SJA-102 were sequenced and showed similarity values
between 96.5 and 98.1%, indicating that all STA-103-positive clones belonged to
the same clone family.

consensus mask generated by the ARB program (22). The
phylogenetic tree shown in Fig. 2 was constructed from 1,228
positions by applying the Jukes and Cantor correction (11) and
the neighbor-joining method (20) with 1,000 bootstrap resam-
plings.

In this study, a new screening approach for bacterial 16S
rDNA clone libraries derived from the TCB-transforming con-
sortium was developed. Hybridization with the DIG-labeled
16S rDNA fragments turned out to be a powerful method for
the detection of identical or closely related clone sequences
(clone families) within bacterial rDNA clone libraries. Com-
pared to other screening procedures, this novel approach had
the following advantages. (i) In contrast to the application of
group-specific oligonucleotide probes (13) or restriction frag-
ment length polymorphism analysis of 16S rDNA inserts (24),
amplified inserts detected only identical or closely related
clones. (ii) Amplicons were specific for the respective inserts
without the need of prior sequencing of targeted and nontar-
geted rDNA inserts, in contrast to the design of insert-specific
oligonucleotide probes. (iii) Hybridization and washing condi-
tions were almost the same for all 29 16S rDNA fragments,
thus avoiding the laborious optimization effort required for
oligonucleotide probes.

Comparative sequence analysis revealed that none of the
SJA sequences was identical to 16S rRNA sequences of cul-
tured microorganisms. However, several SJA sequences were
closely related to cultivated representatives of well-known bac-
terial genera (homologies ranging from 96.7 to 99.7%) (Fig. 2).
Of these, TDNA sequences of clone family SJA-19 showed
similarities between 98.8 and 99.4% to the 16S rDNA of De-
halobacter restrictus. This indicates that these sequences may
represent yet-uncultivated members of the genus Dehalobacter.
Both known members of this genus are strictly anaerobic bac-
teria that grow by reductive dechlorination of chlorinated
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FIG. 2. Phylogenetic tree showing the relationships of SJA sequences and bacterial 16S rDNA sequences. M. concilii (X16932) and Thermoplasma acidophilum
(M20822) were used as an outgroup. The number of additional clone sequences belonging to the individual SJA clone families is given in brackets. Environmental rDNA
clone sequences obtained from a contaminated aquifer in an independent study (5) are indicated by the prefixes WCHB1, WCHA1, or WsCH. Branching points
supported by bootstrap values >74% are indicated by filled circles. Open circles indicate branching points, which are supported by bootstrap values between 50 to 74%.

Branching points without circles were not resolved (bootstrap values, <50%). The scale bar represents
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ethene (9, 25). This suggests a similar respiratory process for
the yet-uncultivated bacteria described here. Since rDNA
clone libraries are not suited to show the quantitative distri-
bution of microorganisms in an ecosystem, direct methods,
such as whole-cell hybridization with specific 16S rRNA-tar-
geted oligonucleotides or quantitative hybridization of ex-
tracted rRNA, will help to elucidate the functional role of the
SJA-19 organisms by correlating cell numbers with the TCB-
dechlorination activity in the bioreactor.

In a recent study, Dojka et al. (5) investigated the microbial
diversity of an anaerobic aquifer contaminated with hydrocar-
bons and chlorinated solvents. Interestingly, as in our study, an
archaeal rDNA clone library obtained from community DNA
was dominated by clone sequences nearly identical to M. con-
cilii (81% of all clones). Furthermore, several SJA sequences
affiliated with the green nonsulfur phylum, the Proteobacteria,
the candidate phylum OP10 (10), and the spirochetes were
closely related to bacterial rDNA sequences retrieved from the
contaminated aquifer (Fig. 2). This correspondence might re-
flect an important role of these yet-uncultivated microorgan-
isms in the anaerobic transformation or degradation of chlo-
rinated organic compounds in a polluted environment, possibly
making these bacteria useful indicator organisms. The rDNA
sequences obtained in this study represent a solid framework
for quantitative, 16S rRNA-based investigations of our TCB-
transforming community, which will be necessary to verify this
hypothesis.

Nucleotide sequence accession numbers. Sixty full-length
SJA sequences and eight SJC and SJD sequences were depos-
ited in the EMBL, GenBank, and DDBJ nucleotide sequence
databases under accession no. AJ009448 to AJ009515.
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