
Diagnostic and prognostic 
values of pyroptosis‑related genes 
for the hepatocellular carcinoma
Mindan Xing1 and Jia Li1,2* 

Introduction
Liver cancer is one of the most common malignancies and the second most deadly can-
cer worldwide [1]. Hepatocellular carcinoma (HCC) accounts for 85–90% of all primary 
hepatocarcinoma [1, 2]. It is also the fifth most common cancer type globally and the 
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third largest cause of cancer-related deaths worldwide [3].
Imaging, including computed tomography, magnetic resonance imaging, ultrasonog-

raphy, positron emission tomography, and angiography, is the most widely used tool for 
liver cancer diagnosis, while other methods include biopsy and serological analysis [2]. 
Yet, different imaging examinations may have different sensitivity and usually require 
artificial intelligence processing (e.g., radiomics) for a more accurate diagnosis. Also, 
these methods are dependent on the professional knowledge of examiners [2]. Nuclear 
magnetic resonance imaging (MRI) is an imaging examination that offers high sensitiv-
ity; however, routine monitoring may be very costly [4]. On the other hand, liver biopsy 
and consequently pathological examination of the malignant tissue can be very accurate 
and can predict prognosis. However, this method is invasive and not always well toler-
ated by the patients [4]. Serological detection is a relatively economical and convenient 
monitoring method [2]. Still, the existing serum detection indicators, such as alpha-feto-
protein (AFP), alpha-fetoprotein heterosomes, and abnormal prothrombin, have lower 
sensitivity and specificity [2]. Therefore, it is essential to explore more candidate markers 
for early diagnosis and prognosis of HCC.

Pyroptosis is a form of programmed cell death [5, 6]. Morphologically, pyroptotic cell 
death is characterized by necrosis and apoptosis [5]. Pyroptosis is closely associated with 
multiple diseases, especially malignancies [7–10]. For example, alcohol accumulation 
could mediate the occurrence and development of esophageal cancer through pyropto-
sis pathways [8]. A previous study found that, in gastric cancer cells, downregulation 
of gasdermin D (GSDMD) inhibits pyroptosis and accelerates the expression of Cdk2/
cyclin A2 complexes that accelerate GC cell proliferation [9]. In ovarian cancer, growth 
arrest-specific transcript 5 (GAS5) can hinder the growth of cancer cells through prop-
tosis mediated by caspase-1 [10].

Previous studies have reported that pyroptosis has an important role in the formation 
and development of HCC [11, 12]. Wei et al. [13] found that the expression of NLR fam-
ily pyrin domain containing 3 (NLRP3) in HCC tissues decreases significantly compared 
with normal liver tissues. Thus, pyroptosis in HCC was reduced [13]. However, the rela-
tionship of pyroptosis-related genes (PRGs) with the diagnosis and prognosis of HCC 
remains unclear. In the present study, we explored the diagnostic and prognostic value 
of PRGs in HCC, found some candidate markers for diagnosing HCC, and constructed a 
risk model used to diagnose and monitor liver cancer.

Materials and methods
Data collection

RNA sequencing data and clinical information of HCC were extracted from the TCGA 
(https://​portal.​gdc.​cancer.​gov/​repos​itory) and ICGC databases (https://​dcc.​icgc.​org/​
relea​ses/​curre​nt/​Proje​cts/​LIRI-​JP). 374 HCC samples and 50 non-tumor samples were 
collected from TCGA, and 231 HCC samples and 194 non-tumor samples were from 
ICGC. To ensure reliability, genes with reading counts equaling 0 in more than 25% of 
the samples were removed for further analysis. We enrolled all paired samples in the 
TCGA and ICGC cohorts to explore the diagnostic value of the PRGs (TCGA: 50 paired 
samples, ICGC: 194 paired samples) (Additional file 1: Table S1). During the processing 
of exploration of the prognostic value of PRGs for HCC, patients whose survival time 
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was < 0.1 months or those with incomplete information (survival or tumor stages) were 
excluded from the analysis. Finally, 311 HCC samples from the TCGA cohort and 231 
HCC samples from the ICGC cohort were used to study the prognostic value of PRGs 
(Additional file  2: Table  S2). All data were obtained from the TCGA and ICGC data-
bases, so all methods were performed following the ethical guidelines of the 1975 Decla-
ration of Helsinki.

Pyroptosis related genes selection

Pyroptosis-related genes (PRGs) were extracted from GeneCards (https://​www.​genec​
ards.​org/), and six genes with a relevance score > 7 were selected. Twenty-seven pyropto-
sis-related genes (Reactome pyroptosis) were downloaded from the Molecular Signature 
Database v7.4 (MSigDB). Thirty-three pyroptosis genes were extracted from the litera-
ture [14–17]. After removing the overlapping genes, 51 PRGs were obtained for further 
study (Additional file 3: Table S3).

Identification of the DEGs between the tumor and non‑tumor samples

Fifty paired samples from the TCGA cohort and 194 paired samples from the ICGC 
cohort were used to identify the differentially expressional genes (DEGs) of PRGs. The 
DESeq2 package was used to explore the DEGs with an adjusted P value < 0.05. Next, we 
analyzed the diagnostic efficacy of the DEGs for HCC using MedCalc 19.0.4 software 
through the area under the receiver operating characteristic curve (AUC).

Construction of the pyroptosis‐related risk model

Three hundred and eleven tumor samples from the TCGA cohort and 231 tumor sam-
ples from the ICGC cohort were used to analyze the prognostic value of the PRGs. 
Firstly, we conducted univariate Cox regression analysis by using the survival R package 
to identify PRGs associated with the prognosis of the HCC in the TCGA cohort. The 
PRGs with P < 0.20 were retained. Next, stepwise regression of multivariate Cox analysis 
was performed to establish a risk model closely related to HCC prognosis. Stepwise 
regression is defined by gradually entering independent variables into the model, if the 
model is statistically significant, and incorporating them into the regression model. Vari-
ables that were not statistically significant were also removed. Finally, an automatic fit-
ting regression model is obtained. The risk score was computed as follows: Risk 

score = 
N∑

i=1

Xi × Yi , where X is a coefficient and Y is a gene expression level.

Exploration and validation of the performance of the risk model

We used the survminer R package to determine the optional cut-off value of the risk 
score in the TCGA and ICGC cohorts. The tumor samples were divided into the high-
risk and low-risk groups based on the cut-off value. Kaplan‐Meier curves and Log-rank 
test were performed using the survival and survminer R packages to compare the overall 
survival (OS) of two risk groups. The R package timeROC was used to establish a time‐
dependent receiver operating characteristic curve (ROC) to check the efficiency of the 
risk score in predicting the outcomes of HCC. ggDCA R package was used to conduct 
decision curve analysis (DCA) and to explore the accuracy of the risk model. In addition, 

https://www.genecards.org/
https://www.genecards.org/
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tidyverse R package was used to perform principal component analysis (PCA) and show 
differences between the high-risk and low-risk groups.

Prognostic and diagnostic value of pyroptosis‐related risk model

Univariate and multivariate Cox analyses explored the independent prognostic value of 
the risk score for the HCC. Wilcoxon test was used to test the difference of risk score 
between tumor and non-tumor samples. The ROC analysis was conducted to explore 
the diagnostic value of the risk score for the HCC in the paired samples.

Functional analysis of the DEGs between the high‑risk and low‑risk groups

To understand the different functions of the high-risk and the low-risk groups, we com-
pared all the genes expression levels between the two risk groups, selected the DEGs, 
and conducted gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis [18–20]. The DESeq2 R package was used to compare the expression 
level of all genes between two risk groups and select the DEGs in the TCGA cohort. The 
screening criteria were |log2FC| > 1 and P.adjust < 0.05. PCA was used to perform the 
difference between the two risk groups. The heat map was used to perform the expres-
sion levels of the DEGs. Also, the volcano was used to show the numbers of the DEGs. 
Next, the clusterProfiler package was used to conduct GO and KEGG analysis [18–20]. If 
the P value was < 0.05, the enrichment was considered statistically significant.

Comparison of the immune status between two risk groups

The ESTIMATE R package was used to calculate the immune scores, the stromal scores, 
and the tumor purity. The gsva R package was used to conduct the single sample gene 
set enrichment analysis (ssGSEA), calculate the scores of the immune cell subtypes, and 
evaluate the activity of immune-related pathways. Tumor stem cell features extracted 
from transcriptome and epigenetics of TCGA tumor samples were used to measure stem 
cell-like features of the tumor. The immune cell subtypes related gene set was shown in 
Additional file 4: Table S4, and the gene set associated with the immune-related pathway 
was shown in Additional file 5: Table S5 [21, 22]. Wilcoxon test was used to compare the 
tumor stemness between the two risk groups. Spearman correlation analysis was used to 
analyze the association of tumor stemness with the risk score.

Acquisition of immunotherapeutic cohorts

To assess the predictive value of risk score for the efficacy of immunotherapy, we cited 
the IMvigor210 cohort (Additional file 6: Table S6) [23], which investigated the efficacy 
of anti-PD-L1 antibody (pembrolizumab) in patients with advanced urothelial cancer 
(http://​resea​rch-​pub.​Gene.​com/​imvig​or210​coreb​iolog​ies). The complete transcriptome 
data and clinical information were enrolled in the present study.

Statistical analysis

One-way ANOVA and Kruskal–Wallis tests [24] were used for multiple comparisons. 
Wilcoxon test was used to test the differences between the two groups. Kaplan–Meier 
curve was used to generate survival curves, and the significance of differences was com-
pared using the Log-rank test. Hazard ratios (HRs) and 95% Confidence Interval (CI) 

http://research-pub.Gene.com/imvigor210corebiologies
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were calculated using univariate and multivariate Cox analyses. All statistical P values 
were two-sided. A P < 0.05 was considered to be statistically significant. The R 4.1.1, 
SPSS 23.0, and MedCalc.19.7.2 software was used to perform all data processing.

Results
Identification of pyroptosis‑related DEGs between tumor and non‑tumor samples

The workflow chart is shown in Fig.  1. In the TCGA cohort, 31 out of 51 PRGs were 
significantly different in tumor and non-tumor samples (Fig.  2A, Additional file  7: 
Table S7); their expression levels are shown in Fig. 2B. In the ICGC cohort, 36 out of 51 
PRGs were significantly different in tumors and non-tumor samples (Fig. 2C, D, Addi-
tional file 8: Table S8). There were 27 overlapping DEGs between the TCGA cohort and 
the ICGC cohort (Fig. 2E); 10 DEGs (IL1B, NLRC4, IL6, NLRP3, IL18, TNF, IRF1, AIM2, 
CASP4, CASP1) were downregulated and 17 DEGs (GSDMC, BAK1, PLCG1, BAX, 
GSDMD, CASP8, TP63, CYCS, PYCARD, NOD1, CHMP4C, CHMP6, CHMP2A, TIRAP, 
CHMP4B, CASP3, GPX4) were upregulated in tumor samples.

The diagnostic value of the DEGs for HCC

Next, we analyzed the diagnostic efficacy of the 27 pyroptosis-related DEGs for HCC 
by ROC analysis (Table 1). The AUCs of 7 pyroptosis-related DEGs were > 0.8 (P < 0.05) 

Fig. 1  The workflow chart in this study
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in the TCGA and ICGC cohorts, including BAK1, BAX, CHMP2A, CHMP4C, CHMP6, 
GSDMC, and GSDMD. The ROC of the DEGs with the AUC that ranked in the top 5 are 
shown in Fig. 2F, G.

Construction and validation of the pyroptosis‑related risk model

Using univariate Cox analysis, we found the expressions of BAK1, CYCS, CHMP4A, 
NLRP6, NLRC4, NOD2, GPX4, GSDMD, GSDMC, TP53, and IL18 were related to the 
prognosis of HCC with P < 0.20 in the TCGA cohort (Fig. 3A). Next, we constructed a 
pyroptosis-related risk model associated with HCC prognosis using the stepwise regres-
sion method in the multivariate COX analysis. The risk model was created based on 
the expressions of TP53, GPX4, GSDMC, and BAK1 (Fig. 3B). The risk score was esti-
mated as follows: Risk score = (0.357*expression level of GSDMC) + (0.397*expres-
sion level of GPX4) + (0.301* expression level of BAK1) + (− 0.364*expression level of 
TP53). Among them, GSDMC, GPX4, and BAK1 were associated with increased risk 
(GSDMC: HR = 1.430, 95% CI 1.06–1.93; GPX4: HR = 1.490, 95% CI 1.060–2.080; BAK1: 
HR = 1.350, 95% CI 1.020–1.790), and TP53 was a protective gene (TP53: HR = 0.690, 
95% CI (0.550–0.880). The C‐index for the TCGA and the ICGC cohorts was 0.682 and 
0.657, respectively.

In the TCGA cohort, the risk score’s cut-off value (0.344) was determined by survminer 
R package. Consequently, 311 tumor samples were divided into the high-risk and low-
risk groups based on the cut-off value. In the ICGC cohort, we calculated the risk score 
according to the same risk model constituted by four genes. And the cut-off value (0.571) 
of the risk score was determined by survminer R package. 231 tumor samples were 
divided into the high-risk and low-risk groups based on the cut-off value. The propor-
tion of dead patients was higher, and the survival time was shorter in the high-risk group 

Fig. 2  Identification of pyroptosis-related DEGs between tumor and non-tumor samples. A, C Principal 
component analysis plot (PCA) based on the DEGs (A: TCGA cohort; D: ICGC cohort). B, D Heatmap displaying 
different expressions of the DEGs. Red indicates higher expression, and blue represents a lower expression (B: 
TCGA cohort; D: ICGC cohort). E A Venn diagram shows the number of overlapped DEGs in two cohorts. F, G 
The receiver operator characteristic curve (ROC) of CHMP2A, CHMP6, GSDMD, GSDMC, BAX in paired samples 
of the TCGA and ICGC cohorts (H: TCGA cohort; I: ICGC cohort)
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of the TCGA and ICGC cohorts (Fig. 3C, D). In addition, as the risk score increased, 
the expression of GSDMC, GPX4, and BAK1 gradually increased, and the expression of 
TP53 gradually decreased (Fig. 3C, D).

The result of the Log-rank test revealed the OS was lower in the high-risk group com-
pared to the low-risk group (P < 0.05, Fig. 3E, F). In the TCGA cohort, the AUC of the 
risk score was 0.74 for 1-year, 0.72 for 2-year, and 0.67 for 3-year survival (Fig. 3G). In 
the ICGC cohort, the AUC was 0.61 for 1-year, 0.68 for 2-year, and 0.73 for 3-year sur-
vival (Fig. 3H). In addition, the AUC of the risk score was larger than other clinical fea-
tures in the two cohorts (Fig. 3I, J). Also, the result of the DCA suggested that the risk 
score was more accurate in evaluating the prognosis of HCC than other clinical features 
in the two cohorts (Fig. 3K, L). In addition, the results of the PCA in the two cohorts 
suggested that the high-risk group and the low-risk group were distributed in different 
regions (Fig. 3M, N).

Prognostic value and diagnostic value of pyroptosis‐related risk model

In the TCGA and the ICGC cohorts, the results of the univariate Cox analysis revealed 
that the risk scores were significantly correlated with OS (TCGA cohort: HR = 2.718, 

Table 1  The AUC of the DEGs between the TCGA cohort and ICGC cohort

Symbol TCGA​ ICGC​

AUC​ P AUC​ P

AIM2 0.665 0.005 0.619  < 0.001

BAK1 0.864  < 0.001 0.831  < 0.001

BAX 0.882  < 0.001 0.835  < 0.001

CASP1 0.508 0.885 0.537 0.213

CASP3 0.801  < 0.001 0.779  < 0.001

CASP4 0.563 0.279 0.529 0.325

CASP8 0.828  < 0.001 0.696  < 0.001

CHMP2A 0.945  < 0.001 0.892  < 0.001

CHMP4B 0.852  < 0.001 0.79  < 0.001

CHMP4C 0.815  < 0.001 0.817  < 0.001

CHMP6 0.908  < 0.001 0.841  < 0.001

CYCS 0.86  < 0.001 0.72  < 0.001

GPX4 0.820  < 0.001 0.718  < 0.001

GSDMC 0.899  < 0.001 0.868  < 0.001

GSDMD 0.901  < 0.001 0.883  < 0.001

IL18 0.613 0.051 0.601 0.001

IL1B 0.802  < 0.001 0.78  < 0.001

IL6 0.651 0.009 0.678  < 0.001

IRF1 0.534 0.563 0.52 0.506

NLRC4 0.602 0.08 0.603  < 0.001

NLRP3 0.625 0.031 0.601 0.001

NOD1 0.805  < 0.001 0.666  < 0.001

PLCG1 0.85  < 0.001 0.787  < 0.001

PYCARD 0.617 0.043 0.581 0.006

TIRAP 0.806  < 0.001 0.770  < 0.001

TNF 0.640 0.016 0.668  < 0.001

TP63 0.684 0.002 0.646  < 0.001
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95% CI = 1.810–4.083, P < 0.001; ICGC cohort: HR = 2.297, 95% CI = 1.501–3.515, 
P < 0.001) (Fig. 4A, B). After adjusting for confounding factors, multivariate Cox analysis 
showed that the risk score was an independent risk factor for the OS (TCGA cohort: 
HR = 2.450, 95% CI = 1.530–3.920, P < 0.001; ICGC cohort: HR = 2.190, 95% CI = 1.390–
3.460, P =  < 0.01) (Fig. 4C, D).

In the paired samples of the TCGA and the ICGC cohorts, the risk scores were 
significantly higher in the tumor samples than in the non-tumor samples (P < 0.05, 

Fig. 3  Construction and validation of the pyroptosis-related risk model. A Eleven PRGs screened by 
univariate Cox analysis were associated with HCC prognosis in the TCGA cohort (P < 0.20). B The multivariate 
Cox analysis of the 4 PRGs used to construct the risk score. C, D The proportion of deaths and the expression 
of the 4 PRGs changed in high-risk and low-risk groups as risk scores increased. Red, upregulated PRGs; 
blue, downregulated PRGs. (C: TCGA cohort; D: ICGC cohort). E, F The Kaplan–Meier curves of the OS in the 
high-risk and low-risk groups and P value obtained by log-rank test. Blue represents the high-risk group, 
and yellow, the low-risk group. (E: TCGA cohort; F: ICGC cohort). G, H The time-dependent ROC was used 
to display the predictive efficiency of the risk score for HCC prognosis at different times. (G: TCGA cohort, H: 
ICGC cohort). I, J The ROC curve was used to display the predictive efficiency of risk score and other clinical 
information for patient 3-year survival. (I: TCGA cohort, J: ICGC cohort). K, L The DCA was used to analyze 
the accuracy of the risk score for HCC prognosis. (K: TCGA cohort, L: ICGC cohort) M, N PCA for the 4 PRGs 
revealed the high-risk group and the low-risk group could be distributed in different regions. Blue, low-risk 
group; Red, high-risk group. (M: TCGA cohort, N: ICGC cohort)
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Fig. 4E, F). In the TCGA cohort, the AUC of the risk score for diagnosing HCC was 
0.840 (P < 0.001, Fig. 4G). In the ICGC cohort, the AUC of the risk score for diagnos-
ing HCC was 0.795 (P < 0.001, Fig. 4H).

Correlation of the pyroptosis‐related risk score with clinicopathologic features

The risk scores increased with inflammation grade, although these differences were 
not statistically significant in the TCGA cohort (P > 0.05, Fig. 5A). However, in both 
cohorts, the differences in the risk scores among tumor stages were statistically sig-
nificant, and risk scores gradually increased with tumor stages (P < 0.05, Fig. 5B, C).

Next, we compared the OS between the high-risk and low-risk groups in HCC 
with different clinical features using the Log-rank test. In patients with different 
clinicopathologic features of the TCGA cohorts, the OS was significantly lower in 
the high-risk group than in the low-risk group (P < 0.05, Fig. 5D–G). In the patients 
with stage I/II of ICGC cohort, the difference in the OS between the two risk groups 
was not statistically significant (P > 0.05), which may be related to the small death 
toll (Fig. 5H). Yet, in patients with stage III/IV from ICGC cohort, the OS was lower 
in the high-risk group than in the low-risk group (P < 0.05, Fig. 5I).

Fig. 4  Prognostic and Diagnostic value of pyroptosis-related risk model. A, B Univariate Cox analysis for the 
risk score and other clinical features. (A TCGA cohort, B ICGC cohort). C, D Multivariate Cox analysis for the risk 
score and other clinical features. (C TCGA cohort; D ICGC cohort). E, F Comparison of the risk scores in paired 
samples of the two cohorts. Red, non-tumor samples; green, tumor samples. (E TCGA cohort; F ICGC cohort). 
G, H The ROC of a risk score for the diagnosis of HCC in two cohorts (G TCGA cohort; H ICGC cohort)
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Functional enrichment analysis of the DEGs between the high‑risk and low‑risk groups

In the TCGA cohort, we compared the expression level of all genes between the two 
risk groups and identified 619 DEGs using DESeq2 R packages according to specific 
criteria (|log2FC| > 1 and P.adjust < 0.05). PCA based on the DEGs showed that the 
two risk groups were distributed in different regions and revealed significant differ-
ences between the two risk groups (Fig. 6A). The heatmap suggested that the expres-
sion levels of the DEGs were obviously different (Fig. 6B). Among 619 DEGs, 368 were 
downregulated, and 251 were upregulated in the high-risk group (Fig. 6C).

Functional annotations of GO enrichment indicated these DEGs were significantly 
associated with the regulation of calcium ions, such as “cellular calcium ion homeo-
stasis”, “calcium ion homeostasis”, and “positive regulation of cytosolic calcium ion 
concentration” (Fig.  6D). KEGG pathway analysis [18–20] demonstrated that these 
DEGs were correlated with the formation of cancers and calcium, such as “Central 
carbon metabolism in cancer”, “Gastric cancer”, and “Calcium signaling pathway” 
(Fig. 6E).

Fig. 5  Correlation of the pyroptosis‐related risk score with clinicopathologic features. A The difference 
among different inflammation grades in the TCGA cohort. B The difference of the risk score among different 
tumor stages in the TCGA cohort. C The difference of the risk score among different tumor stages in the ICGC 
cohort. D–G Kaplan–Meier curves for the OS of patients with different clinicopathologic in the TCGA cohort. 
H, I Kaplan–Meier curves for the OS of patients with different clinicopathologic in the ICGC cohort
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Immune status and tumor microenvironment analysis

To further explore the correlation between risk score and immune status, we used the 
Estimate package to calculate the purity of the tumor and the immune scores of the 
tumor microenvironment. The results revealed no statistically significant differences 
(P > 0.05) in tumor purity and immune score between the high-risk and low-risk groups 
of TCGA and ICGC cohorts (Fig. 7A, B).

The enrichment scores of different immune cell subtypes and immune-related path-
ways were quantified by ssGSEA. We found that B cells, CD8 + T cells, neutrophils, 
and Th2 cells were reduced (P < 0.05, Fig. 7C), and the “MHC class I” and “Type II IFN 
Response” were downregulated in the high-risk group of the TCGA cohorts (Fig. 7D). 
Similar results were obtained in the ICGC cohort (Fig. 7E, F).

Tumor stemness can be measured by RNA stemness score (mRNAsi) based on mRNA 
expression and DNA stemness score based on DNA methylation pattern (mDNAsi) 

Fig. 6  Identification and functional enrichment analysis of the DEGs between the two risk groups in the 
TCGA cohort. A PCA plot based on the DEGs. B The heatmap shows the expression level of the DEGs 
between the two risk groups. Red indicates higher expression, and blue, lower expression. C The volcano 
map shows the number of upregulated and downregulated genes in the high-risk group. Blue represents 
downregulated genes, and red denotes upregulated genes. D The bubble graph for GO enrichment analysis 
shows the function of the DEGs. BP: biological process; CC, cell component; MF, molecular function. The 
bigger bubble indicates the more genes enriched, and the increasing depth of red indicates the differences 
were more obvious. E The barplot graph for KEGG pathways. The left bar indicates the pathways enriched by 
the downregulated DEGs, and the right bar indicates the pathways enriched by the upregulated DEGs. The 
longer bar indicates that the differences were more prominent
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Fig. 7  Comparison of immune status between the high-risk and low-risk groups. A, B Comparison of the 
stromal scores, immune scores, ESTIMATE scores, and tumor purity. (A TCGA cohort; B ICGC cohort). C The 
differences of the immune cell subtypes between the two risk groups in the TCGA cohort. D The differences 
of the immune-related pathways between the two risk groups in the TCGA cohort. E The differences 
of the immune cells subtypes between the two risk groups in the ICGC cohort. F The differences of the 
immune-related pathways between the two risk groups in the ICGC cohort. G, H Comparison of mRNAsi 
and mDNAsi of the high-risk and the low-risk groups in the TCGA cohort. (G mRNAsi; H mDNAsi). I, J The 
relationship of mRNAsi and m DNAsi with the risk score in the TCGA cohort. (I mRNAsi; J mDNAsi) (*P < 0.05, 
**P < 0.01, *** P < 0.001, ns P > 0.05)
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[24]. mRNAsi and mDNAsi were significantly higher in the high-risk group than in 
the low-risk group of the TCGA cohort (P < 0.05, Fig. 7G, H). In addition, the mRNAsi 
and mDNAsi were positively correlated with the risk score (mRNAsi: r = 0.24, P < 0.05; 
mDNAsi: r = 0.23, P < 0.05, Fig. 7I, J).

Assessment of the predictive value of the risk score for immunotherapy efficacy

Finally, we used the IMvirgor210 cohort to explore whether the risk score could assess 
the effect of immunotherapy. And the risk score was calculated according to the risk 
model constitute by four PRGs. The survminer R package determined the cut-off value 
(− 1.539). The low-risk group showed a significant clinical benefit and obviously longer 
survival (P < 0.05, Fig. 8A). The difference of the risk score among the patients with com-
plete response (CR), partial response (PR), stable disease (SD), and progressive disease 
(PD) was not statistically significant (P > 0.05, Fig. 8B). However, the risk score was lower 
in patients with CR and PR than in those with SD and PD (P > 0.05, Fig. 8B). The risk 
score was the highest in the patients with PD (Fig. 8B). Also, the percent of the patients 
with PD was higher in the high-risk group than in the low-risk group (P < 0.05; Fig. 8C).

Discussion
Recent studies have reported that cell pyroptosis has a vital role in liver disease progres-
sion [12, 13, 25]. The liver is tightly linked to the intestine through the venous system of 
the portal circulation. When the gut-liver axis is altered, bacteria enter the portal circu-
lation and induce pyroptosis in hepatocytes through the bacterial lipopolysaccharides 
(LPS) [25]. In addition, studies have shown that liver fibrosis, cirrhosis, and HCC are 
strongly associated with pyroptosis [3, 26–28]. Although previous studies reported the 
pyroptosis in HCC is reduced [12, 13], the diagnostic and prognostic values of PRGs in 
HCC remain unclear. Thus, in this study, we explored whether PRGs could be used as 
candidate markers for diagnosing and monitoring liver cancer.

Next, we explored the diagnostic value of the 27 pyroptosis-related DEGs in paired 
samples of the TCGA and ICGC cohorts. The results suggested that BAK1, BAX, 
CHMP2A, CHMP4C, CHMP6, GSDMC, and GSDMD have high diagnostic values in 

Fig. 8  Assessment of the predictive value of risk score for immunotherapeutic responses. A Kaplan–Meier 
curves for the OS of patients in the IMvirgor210 cohort. B The difference of the risk score among different 
anti-PD-L1 clinical response groups. C The proportion of patients responding to PD-L1 blockade therapy 
in the high-risk and low-risk groups. (CR: complete response, PR: partial response, SD: stable disease, PD: a 
progressive disease)
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predicting HCC (AUC > 0.8, P < 0.05 in both cohorts). Among them, BAK1 and BAX 
are the critical molecules in the regulation of apoptosis [29]. Under certain condi-
tions, apoptosis can be converted to pyroptosis [30], so BAK1 and BAX can influence 
pyroptosis by modulating apoptosis [31]. GSDMC, GSDMD, CHMP2A, CHMP4C, 
and CHMP6 have an essential role in both pyroptosis and apoptosis [29]. GSDMC and 
GSDMD, as members of GSDM family proteins, regulate the switch between pyrop-
tosis and apoptosis [30]. CHMP2A, CHMP4C, and CHMP6 are part of the endosomal 
sorting complex required for transport (ESCRT) [32]. During pyroptosis, cell mem-
brane damage and repair are mediated by the ESCRT [32]. In this study, the above 
PRGs were significantly different between tumor and non-tumor samples, which 
suggested that pyroptosis is associated with HCC. Thus these PRGs could be used as 
candidate markers for the diagnosis of HCC. We could use these RNAs and proteins 
expressed by these genes to diagnose the HCC in the tumor tissues in a clinical set-
ting. Importantly, these RNAs and proteins expressed by these genes in the plasma 
may become non-invasive candidate markers for diagnosing HCC.

To further explore the relationship of PRGs with HCC prognosis, we analyzed 51 
PRGs using univariate and multivariate Cox analyses. A pyroptosis-related risk model 
was constructed based on GSDMC, BAK1, TP53, and GPX4. Among them, BAK1, 
GSDMC belonged to the pyroptosis-related DEGs. TP53 can regulate pyroptosis by 
inducing glycolysis and apoptosis regulator in brain injury [33]. Still, further valida-
tion is needed on whether TP53 could affect pyroptosis through apoptosis in HCC. 
Moreover, GPX4, an antioxidant defense enzyme active in repairing oxidative damage 
to lipids, is an important negative regulator of macrophage pyroptosis [34]. Previous 
studies reported that GPX4 is involved in the development of HCC by affecting fer-
roptosis [35, 36]. However, whether pyroptosis affects HCC through GPX4 requires 
further validation.

The risk score obtained according to the pyroptosis-related risk model was strongly 
associated with the OS of the patient with HCC. The higher the risk score, the worse 
the patient’s prognosis. The time-dependent ROC and DCA analysis results revealed 
the risk score with relatively good accuracy for predicting OS. Univariate and multi-
variate Cox analysis suggested that the risk score was an independent risk factor for 
HCC prognosis. Besides, the risk score had a high diagnostic value for HCC. There-
fore, we could calculate the risk score using the RNA expression levels of the four 
genes in the tissues to diagnose HCC and evaluate the prognosis of HCC.

Next, the functional analysis of the DEGs between different risk groups revealed 
that the DEGs were mainly involved in the formation and development of cancer, the 
regulation of calcium ions, and the change of membrane. The regulation of calcium 
ions and membrane change are essential processes in pyroptosis [30].

We also observed the immune status and tumor microenvironment of the high-
risk and low-risk groups. The results showed that the differences in immune scores 
and tumor purity between the two risk groups were not statistically significant. How-
ever, in the high risk group, some immune cells were reduced, such as neutrophils, B 
cells, CD8 + T cells, and Th2_cells, and some immune-related pathways were down-
regulated, such as “Type II IFN Response” and “MHC class I”. These findings revealed 
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lower immune levels in the high-risk group, which may be one of the reasons for the 
poor prognosis in the high-risk patients [37].

Tumor stemness, including mRNAsi and mDNAsi, was used to evaluate similarity 
between tumor cells and stem cells [38]. mRNAsi was used to assess the similarity of 
gene expression between tumor cells and stem cells. mDNAsi was used to examine the 
epigenetic similarity between tumor cells and stem cells. These indices ranged from 0 to 
1; when the index was closer to 0, it indicated a lower similarity between tumor cells and 
stem cells, and when it was closer to 1, the similarity was higher. In this study, mRNAsi 
and mDNAsi increased with bigger risk scores, which indicated that the poor progno-
sis in the high-risk group may be related to the high similarity between tumor cells and 
stem cells or may be associated with the high dedifferentiation of the tumor cells.

Finally, due to the relationship of the risk score with immune status in this study, 
we sought to explore its predictive value for the efficacy of immunotherapy using the 
IMvigor210 cohort [19]. The results revealed that a higher risk score was associated with 
the worse efficacy of the anti-PD-L1 antibody immunotherapy. The principle of anti-PD-
L1 antibody immunotherapy is to block the combination of PD-L1 and PD-1, changing 
the inherent connection of immune cells and tumor cells, which eventually changes the 
tumor microenvironment, and stimulates the huge potential of immune cells to attack 
the tumor [39]. In the high-risk group, the immune cells were reduced and insufficient to 
kill tumor cells, resulting in a higher risk score and the worse efficacy of immunotherapy. 
This also suggested that the risk score could partly predict the immunotherapy efficacy 
of anti-PD-L1 antibody.

To the best of our knowledge, this is the first study that reported the diagnostic and 
prognostic values of PRGs in HCC patients. The pyroptosis-related risk model was not 
only an independent risk factor for HCC patients but could also be used for HCC diag-
nosis. We could also predict the efficacy of anti-PD-L1 antibody immunotherapy by the 
risk score. However, the present study has several limitations. First, this risk model must 
be confirmed using prospective experimental data. Second, we failed to validate the pre-
dictive value of the risk model on the immunotherapy efficacy within an HCC-related 
immunotherapy cohort due to the fewer data on HCC related immunotherapy cohort.

Conclusions
Our data suggest that some PRGs have high diagnostic value for HCC. The pyroptosis-
related risk model developed in this study can be used to diagnose HCC, predict the 
prognosis of HCC, evaluate immune cell infiltration status in the tumor microenviron-
ment and assess the efficacy of immunotherapy to guide immunotherapy. In our future 
studies, we will further detect the above PRGs in plasma to analyze the diagnostic value 
of PRGs in plasma for HCC and establish a prospective cohort study to verify this risk 
model’s diagnostic efficacy and prognostic evaluation value for HCC.
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