Skip to main content
. 2022 Apr 30;22(9):3424. doi: 10.3390/s22093424
Algorithm 1: Multilayer Perceptrón algorithm implemented for the EMG
1 p Input_vector
2 T Output_vector
3 /*** output vector T where the labeling value is stored by one-hot-encoding of each the classes***/
4 T 0,0,0,1,0,0,2,0,0,3,0,0,4,0,0,0
5 scaler StandardScaler .fitP
6 p scaler.transformP
7 /**Divide p into a test (Ptest) and a training set Ptrain**/
8 one_hot_labels=to_categorialT,num_classes4
9 P_train,P_test,T_train,T_testtrain_test_splitP,one_hot_labels, test_size0.20,random_state42
10 /**Random Initialization**/
11 W2×random0.5×scale
12 epochs3000
13 hiddenNodes4
14 modelSequential 
15 model.add(DensehiddenNodes,activationrelu,input_dim4
16 a1max0,n//ReLu activation function
17 model.addDense4,activationsoftmax
18 a2en4/ 15en4//Softmax activation function
19 model.summary 
20 losscategorical_crossentropy
21 /**Loss function (categorial cross entropy**/
22 Ly, y^1Nj=1Mi=1Nyijlogy^ij
22 optimizer tf.keras.optimzers.Adam 
24 W Wαmv+ϵ
25 model.compilelossloss,optimizeroptimizer,metricsaccuracy
26 historymodel.fitP_train,T_train ,epochsepochs,vebose1 ,validation_split0.1 
27 test, test model.evaluateP,t,verbose1
28 weightsmodel.layers,3
29 scalingscaler,3
30 layersmodel.layers