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Abstract

Backgrounds: Evaluating the growth performance of pigs in real-time is laborious and expensive, thus mathematical
models based on easily accessible variables are developed. Multiple regression (MR) is the most widely used tool to
build prediction models in swine nutrition, while the artificial neural networks (ANN) model is reported to be more
accurate than MR model in prediction performance. Therefore, the potential of ANN models in predicting the growth
performance of pigs was evaluated and compared with MR models in this study.

Results: Body weight (BW), net energy (NE) intake, standardized ileal digestible lysine (SID Lys) intake, and their
quadratic terms were selected as input variables to predict ADG and F/G among 10 candidate variables. In the training
phase, MR models showed high accuracy in both ADG and F/G prediction (R2ADG = 0.929, R2F/G = 0.886) while ANN
models with 4, 6 neurons and radial basis activation function yielded the best performance in ADG and F/G prediction
(R2ADG = 0.964, R2F/G = 0.932). In the testing phase, these ANN models showed better accuracy in ADG prediction (CCC:
0.976 vs. 0.861, R2: 0.951 vs. 0.584), and F/G prediction (CCC: 0.952 vs. 0.900, R2: 0.905 vs. 0.821) compared with the MR
models. Meanwhile, the “over-fitting” occurred in MR models but not in ANN models. On validation data from the
animal trial, ANN models exhibited superiority over MR models in both ADG and F/G prediction (P < 0.01). Moreover,
the growth stages have a significant effect on the prediction accuracy of the models.

Conclusion: Body weight, NE intake and SID Lys intake can be used as input variables to predict the growth
performance of growing-finishing pigs, with trained ANN models are more flexible and accurate than MR
models. Therefore, it is promising to use ANN models in related swine nutrition studies in the future.
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Introduction
To maximize profits in swine production, farmers need
to adjust diet formulations and feeding strategies based
on their understandings of the relationships between the
growth performance of pigs and nutrient supply. How-
ever, evaluating the growth performance of pigs in real-
time is laborious and expensive. As a result, mathemat-
ical models were developed based on easily accessible
variables to predict the response variables not easily de-
termined, which has provided an effective approach to
quantify the animal production processes and then to
improve the efficiency and sustainability of the modern
livestock system [1].
Multiple regression (linear or non-linear) is the most

convenient tool to model the relationship between re-
sponse variables and explanatory variables and is com-
monly used in animal nutrition studies. For example, the
diet characteristics (e.g., available energy values in swine
diets) [2] or production performance of livestock (e.g.,
milk yield in dairy cow) [3] could be predicted using
multiple regression (MR) models with relatively high ac-
curacy. The prerequisite for MR utilization is assuming a
regression relationship (linear or non-linear) between
the response variables and the explanatory variables,
however, in reality, the relationships among variables are
usually complex, resulting in large predictive errors in
some situations when modelling using MR, e.g. model-
ling maintenance energy requirement of pigs [4, 5].
Therefore, more efficient mathematical tools are needed
to be evaluated if they could better model the compli-
cated animal production systems to achieve better pre-
dictive performance.
As the integration of the information science and other

disciplines in recent years, artificial neural networks (ANN)
models were introduced into agriculture research consider-
ing their capacity to deal with complex and flexible non-
linear interrelationships without prior assumptions [6]. The
ANN model has a parallel and distributed information pro-
cessing structure, which consists of interconnected process-
ing elements (artificial neurons or nodes), thus is more
suitable to quantify the unknown or very complex relation-
ships. Moreover, as a supervised learning process, ANN
models usually have stronger learning ability and higher fault
tolerance than MR models [7]. Recently, ANN models were
reported to exhibit better prediction performance than MR
models in other disciplines [8–11]. However, in swine re-
search, the application of ANN models mainly focused on
image identification, behaviour detection and disease detec-
tion. Only a few visionary scientists have applied ANN
models in swine nutrition research, e.g. Ahmadi and Rode-
hutscord conducted a preliminary work using ANN models
to predict metabolizable energy (ME) values in pig feed [12].
Thus, more works can be done to extend the applications of
ANN models in swine nutrition.

To our knowledge, no previous studies have reported
the utilization of ANN models in predicting the growth
performance of pigs. Therefore, it is unclear whether
ANN was still more powerful than MR models in pre-
dicting pigs’ growth performance. Therefore, the objec-
tives of this study were to 1) predict the average daily
gain (ADG) and feed conversion ratio (F/G) of growing-
finishing pigs based on dietary nutrient intake by devel-
oping MR models and ANN models 2) compare the per-
formance of the two models in growth performance
prediction in pigs.

Materials and methods
The general scheme of this study was outlined in Fig. 1.

Data sources
Data were derived from peer-reviewed journal articles
published from 2010 to 2019 using the Web of Science
online database. Considering the changes in the genetic
background due to the progress in pig breeding, data
from earlier literature were not considered. The key-
words and phrases used for literature research were “pig
OR pigs OR swine AND growth performance”, and 212
papers with 285 trials and 1170 treatment diets were col-
lected after screening.
According to our research objectives, the final data-

base articles were selected based on the following cri-
teria: (i) belongs to research articles published in
English; (ii) included control treatment with adequate
replicates per treatment (≥ 6) and proper randomization
of treatments, and pigs used in the trial had ad libitum
access to feed and water; (iii) presented complete diet
compositions with ingredients included in Nutrient Re-
quirements of Swine in China [13], and reported the
growth performance data (body weight gain, feed intake,
or feed conversion ratio) of pigs. Moreover, treatment
diets included effects of antibiotics or feed additives, or
not formulated based on corn and soybean meal, or used
intact males, immunocastrated males, or pigs fed Racto-
pamine HCl were excluded from the database. Clear seg-
mentation of pig breeds would produce more accurate
input data and ultimately a more accurate prediction.
Consequently, only Duroc × Landrace × Yorkshire cross-
bred pigs were included to eliminate the effects of gen-
etic background. The experimental period should keep
in the range of 7 d to 35 d in order that the calculated
average BW can represent the growth stages of pigs. In
addition, all the dietary nutrient concentrations of the
diet should be given at least 85% of the recommended of
NRC [14]. Finally. the Explore Outliers procedure in
JMP Pro version 14.0 (SAS Institute, Cary, NC, USA)
was used to eliminate the outliers. After excluding trials
using the above criteria, 126 trials and 406 treatments
were fetched from 72 papers for further analysis. The
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papers used in this study were given in Additional file 1:
Table S1 and the statistic information of the training
data set and testing data set were given in Additional file
1: Table S2.

Datasets preparation
Growth performance data extracted from the selected pa-
pers were recorded in a template that included ADG,
average daily feed intake (ADFI), and F/G of pigs for each
treatment diet. If any parameter above was missing, it was
calculated from the other reported parameters in the
paper if available, otherwise, the whole record (treatment
diet) was discarded. The average BW of pigs fed each
treatment diet was calculated by averaging the initial and
final BW of all pigs in the same treatment group.
Nutrient concentrations of each treatment diet were

calculated based on the nutrient concentrations of each
ingredient and its proportion in the diet, and nutrient
concentrations of individual ingredients from the Nutri-
ent Requirement of Swine in China [13] were used as
the reference values. Net energy (NE) was chosen be-
cause it is considered the most accurate system to quan-
tify the energy content in pig feed currently [15]. All
amino acids were expressed as the standardized ileal di-
gestible (SID) concentrations (AA contents in ingredi-
ents multiplying the corresponding standardized ileal
digestibility of the AA) to overcome the disadvantages
and limitations of apparent ileal digestibility (AID) and
true ileal digestibility (TID) [16]. The nutrient intakes
were calculated by multiplying ADFI by nutrient

concentrations of the corresponding treatment diet. The
specific nutrient intake variables included in the original
dataset were: NE intake (kcal/d), CP intake (g/d), SID ly-
sine intake (g/d), SID methionine intake (g/d), SID
threonine intake (g/d), SID tryptophan intake (g/d), SID
valine intake (g/d), acid detergent fiber intake (ADF, g/
d) and neutral detergent fiber intake (NDF, g/d) on an
as-fed basis.
Then the growth performance and nutrient intake data

from the 406 treatment diets were randomly split into a
training data set containing 70% of the observations and
a testing data set containing the remaining observations.
Descriptive statistics of the variables in training and test-
ing data sets were presented in Table 1.

Variables selection
Theoretically, more input variables indicate increased
discriminative power of the predictive models, but
adding irrelevant variables can also distract the learn-
ing algorithm and defect the predictive performance
[17]. Thus, the Fit Model procedure with standard
least squares personality and emphasis on Effect
Screening function in JMP Pro version 14.0 was firstly
used to eliminate excess variables on ADG and F/G
prediction. The input variables included the BW and
all the nutrient intake parameters, as well as their
interactive effects, and P < 0.05 was used as a selec-
tion criteria. Since no significant interactive effects
were detected, the quadratic and cubic terms of the
selected input variables were further included in the

Fig. 1 The general scheme of this study.
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MR models, and the improved R2 of each model was
regarded as the selection criteria.

Developing MR models using training data set
The Fit Model procedure with Stepwise Regression per-
sonality in JMP Pro version 14.0 was used to establish
MR models to predict ADG or F/G. The NE intake
(kcal/d), SID Lys intake (g/d), BW and their quadratic
terms within each treatment diet (287 observations) in
the training data set were treated as predictors for model
development, and study effects were included as a ran-
dom effect. The mixed direction and P-value Threshold
stopping rules were chosen and the variables are entered
and removed from the model at a probability below
0.01. Models with the maximal R2, minimized Akaike in-
formation criterion (AIC) and Bayesian information cri-
terion (BIC) were identified as the best-fitted MR model
[18], which was then checked through graphical inspec-
tion for normality on the residuals [19].

Developing ANN models using training data set
Artificial neural networks are programs designed to
learn and process information by simulating the human
brain, which consists of three main components: an in-
put layer, a series of hidden layers and an output layer
[20]. The number of hidden layers in ANN is dependent
on the complexity of the relationships between inputs
and target outputs. More hidden layers can increase the
chance of obtaining local minima during the training
phase and contribute to a more unstable gradient.

Neurons, or called nodes, are the basic unit to compose
hidden layers, which receive input from the input layer,
scale each input by a weight, add a bias and then apply
an activation function to the result [21]. The structure of
a classical feedforward ANN model can be demonstrated
using the following mathematics formulations:

H1 ¼
X

Im � wm þ am and

O1 ¼ Factivation Hn þ bnð Þ

where H1 was the value in the 1st node in the hidden
layer, Im was the value of the mth input variable, wm was
the weighting factor between the mth input variable and
the 1st node in the hidden layer, am was the bias; O1 was
the value of the 1st output variable, Hn was the value of
the nth node, bn was the bias, and Factivation was the acti-
vation function.
The Neural Network procedure in JMP Pro version

14.0 was used to develop a series of ANN models and
the details were presented later. In the current study, the
three-layer ANN, using Scaled Conjugate Gradient algo-
rithm, including one input layer, one hidden layer and
one output layer, was used for model development. Vari-
ables used in ANN models were the same as those in
MR models to ensure the comparability between models.
Moreover, it is necessary to normalize the data used in
establishing the ANN models to get prediction errors
with step sizes and update systematic weights due to the
different unit scales the input variables have [22]. The

Table 1 Descriptive statistics of variables on pig growth performance and dietary nutrient concentrations used in developing the
prediction models1

Variables Training data set Testing data set

Unit n Range Mean SD Median n Range Mean SD Median

BW kg 287 5.5-118.6 45.6 36.7 37.0 119 5.6-116.1 41.8 33.2 35.8

ADG g/d 287 142-1200 634 268 697 119 165-1060 647 252 680

ADFI g/d 287 259-3667 1600 1058 1550 119 269-3575 1543 974 1450

F/G - 287 1.16-4.35 2.26 0.82 2.08 119 1.21-3.85 2.17 0.72 1.97

NE intake kcal/d 287 602-9906 4168 2790 3958 119 719-9415 4015 2573 3687

CP intake g/d 287 40-646 242 143 224 119 58-684 244 138 232

SID Lys intake g/d 287 3.30-57.74 14.20 7.66 14.61 119 4.13-32.19 14.27 6.64 13.75

SID Met intake g/d 287 0.68-23.07 5.46 3.05 5.16 119 1.12-18.55 5.51 3.00 4.83

SID Thr intake g/d 287 1.13-24.05 8.49 4.64 9.29 119 1.99-23.26 8.52 4.50 7.66

SID Try intake g/d 287 0.27-10.75 2.47 1.39 2.53 119 0.56-7.54 2.49 1.28 2.24

SID Val intake g/d 287 1.58-27.84 10.49 5.98 10.85 119 2.52-27.96 10.55 5.71 9.73

ADF intake g/d 287 4-240 55 42 55 119 4-247 56 43 49

NDF intake g/d 287 15-604 185 135 176 119 15-431 177 120 164

ADF acid detergent fiber, ADFI average daily feed intake, ADG average daily gain, BW body weight, CP crude protein, F/G feed conversion ratio, NDF neutral
detergent fiber, NE net energy, SD standard deviation, SID standardized ileal digestible.
1 Data were collected from 72 peer-reviewed articles published from 2009-2019 with 406 treatment means. All the dietary nutrient concentrations were re-
calculated based on reported diet formulations in the peer-reviewed articles and the nutrient compositions of ingredients published in Nutrient Requirements of
Swine in China [13].
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training data set was normalized using the min-max ap-
proach as follows:

x0i ¼
xi− min xð Þ

max xð Þ−min xð Þ
where xi was the observed value of the ith input data
and x0i was the ith normalized data.
The output layer included two variables: ADG and F/

G. Because the input variables were normalized, the pre-
dicted output values were re-scaled using the minimal
and maximal values of the training data for model evalu-
ation. The re-normalization was conducted as follows:

yi ¼ y0i � max yð Þ− min yð Þð Þ þ min yð Þ
where yi was the predicted value of the ith output and y0i was
the ith normalized output predicted using the ANN model.
The training conditions including a learning rate of

0.1, training epochs of 1000, and the Squared penalty
method were adopted in the current study. Karlik et al.
[23] compared five different activation functions and
found hyperbolic tangent function performs better rec-
ognition accuracy than the other four functions. Mean-
while, Radial basis function neural networks is one of
the most popular neural network architectures [24].

Thus, the hyperbolic tangent function ( tanhðxÞ ¼ e2x−1
e2xþ1)

and radial basis function (RBðxÞ ¼ e−x
2
) were chosen as

candidate activation functions between the hidden layer
and the output layer. Identifying the optimal number of
neurons in the hidden layer is also a major step for es-
tablishing ANN models [25], so the mono-hidden layer
structure containing 1 to 10 nodes were evaluated.
Models with different nodes and activation functions were

selected by the R2 and root mean square error (RMSE) and
the model with the maximal R2 and minimized RMSE was
considered as the best-fitted ANN model.

Comparison between the MR models and the ANN
models using testing data set
The testing data set was used to generate predicted
ADG and F/G values based on the best-fitted MR
models developed using the training data set. Mean-
while, the same testing data set was normalized, input
into the best-fitted ANN models, and then re-scaled
using the re-normalization equation to generate another
group of predicted ADG and F/G values.
The RMSE, R2 and concordance correlation coeffi-

cients (CCC) were calculated using the two groups of
prediction data to evaluate the performance of the se-
lected MR models and ANN models:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

yi−y
0
i

� �2s

R2 ¼ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE

p

S2Y

CCC ¼ 2rSY SY 0

y−y0
� �2 þ S2Y þ S2Y 0

where yi, y0i, S
2
Y and S2Y 0 were the predicted output values

using MR model and ANN model and their correspond-
ing variables, respectively. The lower RMSE value and
higher R2 and CCC values were considered as an indica-
tor of better accuracy.
The observed vs. predicted plots were generated using

observed values and predicted values from MR models
or ANN models, and the following linear equation was
obtained in each plot:

y ¼ aþ bx

where x refers to the observed growth performance vari-
able (ADG or F/G), y refers to the predicted variable.
The plot with a slope closer to 1 represents better pre-
diction performance of the corresponding model.

Experimental design of the animal trial used to validate
the prediction models
An animal trial was conducted to collect data for further
comparison between the MR models and the ANN
models. The animal handling procedures received ap-
proval from the Animal Care and Use Ethics Committee
of the China Agriculture University (Beijing, China).
One hundred and ninety-two Duroc × Landrace ×

Yorkshire crossbred pigs with an average initial body
weight of 35.29 ± 3.11 kg were randomly assigned to
4 treatment diets in a completely randomized design,
with 4 replicate pens per treatment and 12 replicate
pigs (6 barrows and 6 gilts) per pen. The experiment
design was a 2 × 2 factorial with respective factors
being two levels of SID Lys (100% Lys requirement
vs. 130% Lys requirement) and two levels of NE
(100% NE requirement vs. 105% NE requirement)
content in diets (Additional file 1: Table S3). All the
diets were fed in mash form and were formulated to
meet the nutrient requirement of pigs [13]. The ani-
mal trial lasted for 84 d, and the individual pig BW
and feed consumption (on pen basis) were measured
on d 0, 14, 28, 42, 56, 70, 84 to calculate the ADG
and F/G. Nutrient intakes of each pen were calculated
using nutrient profiles presented in the Nutrient Re-
quirements of Swine in China [13] and the ADFI of
each pen. The values of pig BW, NE intake (kcal/d),
SID Lys intake (g/d) and their quadratic terms of
each pen are considered as one observation. In total,
96 observations were extracted from 4 replicates of 4
treatments and 6 phases. The details of each
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observation obtained from the animal trial were pre-
sented as Additional file 1: Table S4.

Comparison between the MR models and the ANN
models using validation data set gained from the animal
trial
The validation data set gained from the animal trial was
used to generate predicted ADG and F/G values based
on the best-fitted MR models and the best-fitted ANN
models established in the training phase. Again, all the
input data were normalized firstly, and the output data
were re-scaled lastly when the ANN models were ap-
plied as described in the previous part. The observed vs.
predicted plots were generated as described previously.
Based on the results of previous steps, MR models ex-

hibited larger errors at greater BW range of pigs. To fur-
ther check the hypothesis whether growth stages would
influence the prediction performance of the two models,

the mean absolute error (MAE, MAE ¼ 1
n

Pn
i¼1

jyi−y0ij) be-
tween the observed variables and the predicted variables
from the MR models or ANN models were calculated.
The MAE values of the two kinds of models were
grouped based on pig BW with a 10 kg interval as fol-
lows: 40-50 kg, 50-60 kg, 60-70 kg, 70-80 kg, 80-90 kg,
90-100 kg and 100-110 kg. Two-way ANOVA was con-
ducted with predictive method and growth stage as the
major effects. P < 0.05 was considered as significantly
different and 0.05 ≤ P ≤ 0.10 was considered as a signifi-
cant tendency.

Results
Variables selection
The results of the two-step variable selection were
shown in Table 2. Among the ten candidate variables,
pig BW, NE intake and SID Lys intake showed the
minimized P-value, which were all below 0.01. The
MR models generated using those three variables in
linear, quadratic, and cubic terms had shown R2 of
0.89, 0.93, and 0.93 in ADG prediction, and 0.87,
0.89, and 0.88 in F/G prediction, respectively. There-
fore, BW, NE intake, SID Lys intake and their quad-
ratic forms were chosen as the input variables for the
following model development.

Best-fitted MR models
The best-fitted MR models for predicting ADG and F/G
were presented in Table 3. For ADG prediction, the MR
model using BW, SID Lys intake, SID Lys intake2, NE
intake, and NE intake2 exhibited the smallest AIC (AIC
= 3278), BIC (BIC = 3381), RMSE (RMSE = 72) and the
maximized R2 (R2 = 0.929). Pig BW, SID Lys intake2,
and NE intake2 had negative effects on ADG while SID

Lys intake and NE intake had a positive effect on ADG.
For F/G prediction, the MR model using BW and BW2,
SID Lys intake, and NE intake had the smallest AIC
(AIC = 92), BIC (BIC = 116), RMSE (RMSE = 0.28) and
the maximized R2 (R2 = 0.886). The BW, BW2, and NE
intake had positive effects on F/G while SID Lys intake
had an adverse effect on F/G.
To better clarify the inconsistence between linear

form and quadratic form of SID Lys and NE intake
on their contributions to ADG, the responses of ADG
on varied SID Lys or NE intake levels were illustrated
in Fig. 2. It should be pointed out that Fig. 2 consid-
ered the single contribution of SID Lys or NE intake
on ADG but ignored the influence of other factors. It
was indicated that ADG increased with greater SID
Lys intake level only when the SID Lys intake was
below 38 g/d. Moreover, the improvement of ADG
was observed as the NE intake increased within the
range of 0-10,000 kcal/d.

Best-fitted ANN models
The structures of the two best-fitted ANN models for
predicting ADG and F/G were presented in Fig. 3. The
predictive performances on ADG and F/G of ANN
models with different neurons in 1 hidden layer using
different activation functions were exhibited in Tables 4
and 5. The best-fitted ANN models for ADG and F/G
prediction were those using radial basis function with 4
and 6 nodes, with R2 of 0.925 and 0.905, and RMSE of
51 and 21, respectively.

Table 2 Selection of input variables1, 2

Step 1 Step 23

Variables P-value Selection Forms3 Selection

BW <0.01 √ Linear √

NE intake <0.01 √ Quadratic √

CP intake 0.30 Cubic

SID Lys intake <0.01 √

SID Met intake 0.29

SID Thr intake 0.10

SID Trp intake 0.37

SID Val intake 0.11

ADF intake 0.29

NDF intake 0.21

ADF acid detergent fiber, ADFI average daily feed intake, ADG average daily
gain, BW body weight, CP crude protein, F/G feed conversion ratio, NDF
neutral detergent fiber, NE net energy, SID standardized ileal digestible
1 Step 1 was used to select the most sensitive variables to predict ADG and F/
G, and Step 2 aimed to find the appropriate forms of input variables.
2 No significant interactive effects of the selected variables in Step 1 were
detected, with P-value > 0.05.
3 The R2 for predicting ADG in different forms were: linear: 0.89; quadratic:
0.93; cubic: 0.93. The R2 for predicting G/F in different forms were: linear: 0.87;
quadratic: 0.88; cubic: 0.88.
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Comparison between the MR models and the ANN
models using testing data set
The comparison between the best-fitted MR models and
ANN models using the testing data set was shown in
Table 6 and Fig. 4. For both ADG and F/G prediction,
the ANN models showed lower RMSE and greater CCC
and R2 values, and had slopes closer to 1 in the observed
vs. predicted plots than the MR models, implying greater
accuracy of ANN models than MR models.
In addition, there was a discrepancy in the perform-

ance of MR models between the training data set and
the testing data set, reflected by a noticeable decrease of
R2 in ADG prediction (R2

training = 0.929, R2
testing =

0.584) and a slight decrease of R2 in F/G prediction
(R2

training = 0.886, R2
testing = 0.821), indicating the occur-

rence of over-fitting.

Comparison between the MR models and ANN models
using validation data set gained from the animal trial
The comparison between the best-fitted MR models and
ANN models using the validation data set gained from
the animal trial was shown in Fig. 5. For both ADG and
F/G prediction, the ANN models showed slopes closer
to 1 in the observed vs. predicted plots than the MR
models, implying the superiority of ANN models in pre-
diction than MR models.
In addition, the effects of growth stage and prediction

method on the errors of the prediction models were
shown in Table 7. The interaction effect between growth
stage and prediction method was observed (P < 0.05).

For ADG prediction, the MAE of MR models were
greater than ANN models in all growth stages (P < 0.01)
except for 50-60 kg (P = 0.93), and the MAE of MR
models in 60-70 kg, 80-90 kg, 90-100 kg and 100-110 kg
were greater than those in 40-50 kg, 50-60 kg and 70-80
kg (P < 0.05). No difference was observed in different
growth stages for the MAE of the ANN models. For F/G
prediction, the MAE of MR models were greater than
ANN models in all growth stages (P < 0.05) except for
70-80 kg (P = 0.93), and the MAE of MR models in 80-
90 kg, 90-100 kg and 100-110 kg were greater than that
in 50-60 kg (P < 0.05), while the MAE of the ANN
model in 100-110 kg was greater than those in 40-50 kg
and 50-60 kg (P < 0.05).
Figure 6 illustrated the effect of growth stages on pre-

dictive performance of MR and ANN models in ADG
and F/G prediction. The MAE of MR models exhibited
increased tendency as BW increased, while the MAE of
ANN models remained relatively stable. Meanwhile,
ANN showed lower MAE than MR models in most
growth stages (P < 0.05).

Discussion
In the simulating and predictive models, determining
the input variables is one of the main tasks. Inclusion of
irrelevant variables not only doesn't help prediction but
can reduce forecasting accuracy through added noise or
systematic bias. The most sensitive variables to predict
ADG or F/G selected in the current study were BW, NE
intake and SID Lys intake. Body weight represents the

Table 3 Best-fitted MR models developed in the current study to predict growth performance of growing-finishing pigs1

Performance Models2 R2 AIC BIC RMSE

ADG = 57 - 1.63 × BW + 25.42 × SID Lys - 0.360 × SID Lys2 + 0.120 × NE - 4.630 × 10-6 × NE2 0.929 3278 3381 72

F/G = 1.31 + 1.955 × 10-2 × BW + 9.064 × 10-5 × BW2 - 4.764 × 10-2 × SID Lys + 2.10 × 10-4 NE 0.886 92 116 0.28

ADG average daily gain, AIC akaike information criteria, BIC bayesian information criteria, BW body weight, F/G feed conversion ratio, NE net energy, RMSE root
mean square error, SID Lys standardized ileal digestible lysine.
1 The SID Lys and NE in the equations were the SID Lys intake and NE intake.
2 The variables in the equations were selected by a P-value < 0.01. Both the best-fitted MR models were generated using the training data set (n = 287).

Fig. 2 The response of ADG on different SID Lys intake (a) and NE intake (b). The curves were generated by the best fitted MR models in training.
Only SID Lys intake and SID Lys intake2 were considered as input variables in Fig. 2a while other variables were neglected. Only NE intake and NE
intake2 were considered as input variables in Fig. 2b.
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current physiological state of pigs, which is an important
factor that could determine the feed intake and nutrient
digestibility of pigs [22]. As pigs grow, more feed is con-
sumed to meet their requirements, leading to greater en-
ergy intake, which is mainly used for maintenance and
then body weight gain, thus the NE intake makes a great
contribution to the growth performance of growing-
finishing pigs [15]. The inclusion of SID Lys intake in
prediction models was in accordance with the previous
reports, which concluded that SID Lys intake had a

significant effect on the growth performance of pigs [26,
27]. The specific patterns of ADG influenced by SID Lys
intake and NE intake were further illustrated in the
current study. According to NRC (2012) [14], 100 g pro-
tein deposition in pigs requires nearly 10 g SID Lys. In
the MR models built in this study, 38 g/d SID Lys intake
would contribute to the highest ADG of 450 g/d, indi-
cating greater efficiency than that reported in NRC
(2012), which may be because the latter is an average
value of the whole growth period. The declining trend of

Fig. 3 The structure of the best-fitted artificial neural networks in predicting ADG (a) and F/G (b). H1 was the value in the 1st node in the hidden layer;
I1 was the 1st input; am was the bias; O1 was the value of the 1st output variable; H1 was the value of the 1st node; bn was the bias; Factivation was the
activation function.

Table 4 The performance of ANN models with different
numbers of nodes and activation functions to predict the ADG
of growing-finishing pigs1

Number
of nodes

Training data set

Hyperbolic tangent function Radial basis function

R2 RMSE R2 RMSE

1 0.921 75 0.918 77

2 0.932 70 0.936 68

3 0.942 64 0.941 65

4 0.941 65 0.964* 51*

5 0.952 59 0.958 55

6 0.948 61 0.955 57

7 0.948 61 0.952 58

8 0.942 65 0.945 63

9 0.944 63 0.951 59

10 0.953 58 0.953 58

RMSE root mean square error.
* Means the best performance of ANN models with different numbers of
nodes and activation functions to predict ADG.
1 All the ANN models were generated using the training data set (n = 287).

Table 5 The performance of ANN models with different numbers
of nodes and activation functions to predict the F/G of growing-
finishing pigs1

Number
of nodes

Training data set

Hyperbolic tangent function Radial basis function

R2 RMSE R2 RMSE

1 0.797 0.37 0.816 0.35

2 0.883 0.28 0.886 0.28

3 0.905 0.25 0.898 0.26

4 0.900 0.26 0.917 0.24

5 0.918 0.23 0.928 0.22

6 0.905 0.25 0.932* 0.21*

7 0.917 0.24 0.910 0.25

8 0.915 0.24 0.911 0.24

9 0.900 0.26 0.907 0.25

10 0.907 0.25 0.912 0.24

RMSE root mean square error
*Means the best performance of ANN models with different numbers of nodes
and activation functions to predict F/G.
1 All the ANN models were generated using the training data set (n = 287).
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ADG with greater SID Lys intake more than 38 g/d
could be interpreted in two aspects. On one hand, excess
lysine intake would have an antagonistic action with
other AAs (i.e., arginine, citrulline), which could cause
the deficiency of other AAs, impair the protein accre-
tion, and result in the retarded body growth [28]. On the
other hand, the increased SID Lys intake is more likely
to occur in a higher BW stage, during which period the
growth performance of pigs is less affected by lysine in-
take [27]. As pigs grow, the increased energy require-
ments and more developed digestive tracts would result
in greater feed intake and NE intake, among which the
energy consumed beyond the maintenance requirement
would deposit as protein or lipid [29]. This can interpret
the positive relationship between NE intake and ADG in
the current study. However, the deposition patterns for

protein and lipid are different, with excess energy being
used to deposit protein firstly at a cost of 10.6 kcal/g
ME, and then to deposit lipid at a cost of 10.6 kcal/g
ME, but the maximal rate of protein deposition (Pdmax)
was not affected by BW [29–31]. Therefore, more NE in-
take was deposited as fat in the later growth stages of
pigs, in accordance with the decreased slope in the de-
veloped model of NE intake vs. ADG in this study as NE
intake gradually increased. Even though the regression
models cannot always interpret the contribution of nu-
trients to the growth performance of pigs precisely, the
above results indicated that the MR models generated in
this study were successful, and could be helpful in opti-
mizing the feeding strategies and decisions in pig
production.
The results of the current study further confirmed the

previous reports that the accuracy of ANN models was
influenced by their architecture. Cross et al. [32] re-
ported that the prediction performance of ANN models
relied on the number of hidden layers, the activation
function, and the number of neurons in the hidden
layers. Insufficient numbers of neurons could limit the
capacity of ANN to learn associations between inputs
and outputs, while excess numbers of neurons may lead
to undesirable effects of "learning rules by memorizing"
instead of learning by generalizing the acquired informa-
tion, which is usually known as "over-fitting" [33, 34].
Boger and Guterman [35] stated that the number of
neurons in the hidden layer of ANN models should be
between 70% and 90% of the number of inputs. Blum
[36] reported a general "rule of thumb" for selecting the
number of neurons, which was recommended to be be-
tween the number of input and output variables. The

Table 6 Comparison of MR and ANN models using the testing
data set

Indicators ADG F/G

RMSE

MR 162 0.30

ANN 55 0.22

CCC

MR 0.861 0.900

ANN 0.976 0.952

R2

MR 0.584 0.821

ANN 0.951 0.905

ADG average daily gain, CCC concordance correlation coefficients, F/G feed
conversion ratio, RMSE root mean square error.

Fig. 4 Relationship between the observed vs. the predicted ADG (a) or F/G (b) from the best-fitted models using testing data set. The best-fitted
models were the MR and ANN models generated in training. 119 observations in the testing data set were used in this figure. Each plot represents a
sample with observed value and predicted value from prediction models. The green line was the fit line of ANN predicted values while the yellow line
was the fit line of MR predicted values. The slope of the fit line which is closer to 1 indicated a lower prediction error of the model.
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optimal number of nodes in ADG and F/G prediction
models developed in this study were 4 and 6, which is
reasonable according to the above literature because the
number of input and output variables in this study were
6 and 1, respectively. Furthermore, the activation func-
tion is also an imperative hyper-parameter in ANN,
which can influence the accuracy of ANN by dealing
with the weighting process between the hidden layer and
output layer. The radial basis function was chosen in this
study because it’s a powerful technique for interpolation
in multidimensional space, especially suitable for model-
ling time series (or dynamic) relationships [37].
It’s surprising that the MR model for ADG prediction

developed in the current study was found over-fitted,
which did not occur for the ANN models. In many

cases, MR models suffer from the prior assumption rela-
tionships between variables, thus always leading to
"under-fitting" of the results [38]. Instead, the MR model
generated to predict ADG in this study showed high ac-
curacy in the training phase but failed to predict ADG
with high precision in testing phase. Veum et al. [39] re-
ported that the MR models could exhibit a high accur-
acy in a relatively large sample size of n = 496. With n =
287, the large sample size may attribute to the relatively
high R2 of the MR models achieved in this study. Differ-
ing from the MR models, there is a higher risk for the
phenomenon of "over-fitting" occurring in ANN models
because the run mode of ANN is to obtain a local opti-
mal solution rather than a global optimal solution [40].
The supervised learning algorithm and penalty method

Fig. 5 Relationship between the observed vs. the predicted ADG (a) or F/G (b) from the best-fitted models using validation data set. The best-fitted
models were the MR and ANN models generated in training. 96 observations in the animal trial were used in this figure. Each plot represents a sample
with observed value and predicted value from prediction models. The green line was the fit line of ANN predicted values while the yellow line was
the fit line of MR predicted values. The slope of the fit line which is closer to 1 indicated a lower prediction error of the model.

Table 7 The effect of predictive methods and growth stages on the MAE of ADG and F/G1,2

Item n ADG F/G

MR ANN P-value MR ANN P-value

40-50 kg 16 87a,W ± 13 42b ± 7 < 0.01 0.21a,VW ± 0.03 0.12b,Y ± 0.01 < 0.01

50-60 kg 16 79W ± 11 78 ± 12 0.93 0.21a,V ± 0.12 0.12b,Y ± 0.05 < 0.01

60-70 kg 14 217a,X ± 29 84b ± 19 < 0.01 0.36a,VWX ± 0.24 0.17b ± 0.16 0.02

70-80 kg 12 191a,WX ± 27 81b ± 13 < 0.01 0.24VW ± 0.22 0.25 ± 0.17 0.9

80-90 kg 9 252a,XY ± 164 102b ± 65 0.02 0.47a,WXY ± 0.06 0.2b ± 0.03 < 0.01

90-100 kg 13 306a,XY ± 106 72b ± 40 < 0.01 0.77a,YZ ± 0.30 0.18b ± 0.11 < 0.01

100-110 kg 16 364a,YZ ± 117 81b ± 57 < 0.01 0.91a,Z ± 0.41 0.33b,Z ± 0.25 < 0.01

P-value < 0.01 0.15 # < 0.01 0.01 #

MAE mean absolute error, ADG average daily gain, F/G feed conversion ratio.
1 Values are presented as means ± SEM. a-b in the same line means the MAE with different superscripts differ in predictive methods (P < 0.05). V-Z in the same
column means the MAE with different superscripts differ in growth stages (P < 0.05). Pound sign means an interactive effect of methods and growth stages (P
< 0.05).
2 The MAE were calculated by using predicted values and observed values in the validation data set (animal trial).
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were applied in ANN models, which can stop the learn-
ing process when the algorithm produced a larger error
in the testing data set. But this method cannot be ap-
plied in MR models, and this may explain why the
“over-fitting” occurred only in MR models.
The major finding of this study was that the ANN

models were more flexible and accurate than the MR
models in predicting the ADG or F/G of growing-
finishing pigs. These results were consistent with the
previous studies that reported the precision of ANN
models were better than MR methods in ruminant nutri-
tion or edaphology [8, 10, 21]. The better performance
of ANN over MR models is mainly because the conven-
tional MR model requires an assumption regression rela-
tionship (linear or non-linear) between input variables
and output variables, which greatly limits the flexibility
of the prediction [41]. The existing associations between
input and output variables may not follow the pre-
assumption of MR models, while ANN models do not
make assumptions related to data distribution, such as
homoscedasticity and normality of the residual errors
[42]. Moreover, the accuracy of ANN models would be
improved after careful selection of the structure and
hyperparameters (i.e., hidden layers, nodes and activa-
tion functions) [21]. This could also explain the outper-
formance of the ANN models than the MR models.
Large-scaled comparisons between those two models
have illustrated that the ANN models would outperform
the MR models when using relatively large datasets (n >
20,000), while the opposite pattern occurred for small
datasets [43, 44]. However, Margenot et al. [21] reported
that the ANN models exhibited a better accuracy than
the MR models on soil permanganate oxidizable carbon

prediction in a data size of n = 144. As a result, the sam-
ple size in the current study (n = 287) was believed to be
enough to predict the ADG and F/G of growing-
finishing pigs using careful trained ANN models. It
should be highlighted that the ANN models would also
show a poor performance in some conditions when
compared with the MR models, such as using a sample
set with skewed distribution or introducing extra vari-
ables [34, 45]. Currently, the applications of ANN
models in swine are limited to image identification, be-
haviour detection and disease detection. Based on the re-
sults of this study, the ANN models also exhibited great
potential as an accurate predictive tool in swine nutri-
tion. Nevertheless, suitable sample size and careful selec-
tion of the structure and hyperparameters of ANN
models are required to achieve good prediction
performance.
We previously found that the prediction error of MR

models increased with BW increased, so we speculated
that growth stages may affect the accuracy of predictive
models, which was eventually proved by the results of
the animal trial. Many detailed studies had revealed the
effect of growth stages (or BW) on the nutrient
utilization [46], organ development [47], gut microbiota
[48] and biochemical indices such as enzyme activities
[49] of pigs, indicating the complex physiological status
in different growth stages. The MR models assumed a
stable relationship (whether linear or non-linear) be-
tween the variables in whole growth period, which is a
rigid assumption that may be against the dynamic real
conditions. As a result, the MR models could not fully
capture the highly complex relations between growth
traits and other indicators [50]. Instead, ANN is more

Fig. 6 The MAE of MR and ANN models in predicting ADG (a) and F/G (b) in different growth stages. The MAE was calculated by using the
predicted values and observed values in the validation data set (animal trial). * represents a significant difference between MR models and ANN
models. # represents the growth stages have a significant effect on the MAE of prediction models.

Wang et al. Journal of Animal Science and Biotechnology           (2022) 13:57 Page 11 of 13



capable to mimic the dynamic patterns between variables
and is more appropriate in this situation [51]. This can in-
terpret why the ANN models were less affected by growth
stages on prediction performance compared with the MR
models in the current study, especially for the greater
MAE of the MR models in later growth stages. Therefore,
the use of MR models as a predictive tool is suggested in a
small BW range, e.g., below the span of 30 kg according to
the results of this study.

Conclusion
Taken together, the accuracy of ANN models in predict-
ing the growth performance of growing-finishing pigs
was investigated in this study, and the results confirmed
the hypothesis that BW, NE intake and SID Lys intake
could be used as input variables to predict growth per-
formance of pigs with high accuracy. Moreover, on test-
ing and validation data set, ANN models revealed more
flexible and accurate on ADG and F/G prediction after
careful training compared with MR models. In addition,
compared to MR models, ANN models were less af-
fected by growth stages. Therefore, it is promising to use
ANN models in related swine nutrition studies in the
future.
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