Table 4.
Detailed diagnosis performance of models in all datasets.
| Model | Accuracy (95% CI) | Sensitivity | Specificity | PPV | NPV | |
|---|---|---|---|---|---|---|
| Training set | Radiomics | 0.86 (0.80-0.91) |
0.87 | 0.86 | 0.86 | 0.87 |
| Conventional | 0.89 (0.84-0.94) |
0.83 | 0.95 | 0.95 | 0.85 | |
| Nomogram | 0.90 (0.85-0.94) |
0.93 | 0.88 | 0.89 | 0.93 | |
| Test set | Radiomics | 0.82 (0.71-0.90) |
0.76 | 0.87 | 0.84 | 0.80 |
| Conventional | 0.83 (0.73-0.91) |
0.74 | 0.92 | 0.89 | 0.80 | |
| Nomogram | 0.88 (0.78-0.94) |
0.85 | 0.89 | 0.88 | 0.87 | |
| External validation set | Radiomics | 0.83 (0.70-0.92) |
0.83 | 0.83 | 0.79 | 0.86 |
| Conventional | 0.79 (0.65-0.89) |
0.70 | 0.86 | 0.80 | 0.78 | |
| Nomogram | 0.77 (0.63-0.87) |
0.87 | 0.69 | 0.69 | 0.87 |
PPV, positive predict value; NPV, negative predict value.
The cutoff of radiomics model is -0.1155177, the cutoff of conventional model is 0.6482431, the cutoff of nomogram model is -0.6291612.