Skip to main content
. 2022 Apr 29;12:888778. doi: 10.3389/fonc.2022.888778

Table 4.

Detailed diagnosis performance of models in all datasets.

Model Accuracy (95% CI) Sensitivity Specificity PPV NPV
Training set Radiomics 0.86
(0.80-0.91)
0.87 0.86 0.86 0.87
Conventional 0.89
(0.84-0.94)
0.83 0.95 0.95 0.85
Nomogram 0.90
(0.85-0.94)
0.93 0.88 0.89 0.93
Test set Radiomics 0.82
(0.71-0.90)
0.76 0.87 0.84 0.80
Conventional 0.83
(0.73-0.91)
0.74 0.92 0.89 0.80
Nomogram 0.88
(0.78-0.94)
0.85 0.89 0.88 0.87
External validation set Radiomics 0.83
(0.70-0.92)
0.83 0.83 0.79 0.86
Conventional 0.79
(0.65-0.89)
0.70 0.86 0.80 0.78
Nomogram 0.77
(0.63-0.87)
0.87 0.69 0.69 0.87

PPV, positive predict value; NPV, negative predict value.

The cutoff of radiomics model is -0.1155177, the cutoff of conventional model is 0.6482431, the cutoff of nomogram model is -0.6291612.