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Abstract

Background: Systemic factors can strongly affect how tumour cells behave, grow, and communicate with other
cells in breast cancer. Lipid metabolic reprogramming is a systemic process that tumour cells undergo; however,
the formation and dynamics of lipids associated with the tumour immune microenvironment (TIME) remain unclear.
The investigation of the sophisticated bidirectional crosstalk of tumour cells with cancer metabolism, gene
expression, and TIME could have the potential to identify novel biomarkers for diagnosis, prognosis, and
immunotherapy. This study aimed to construct a prognostic signature to detect the bicrosstalk between the lipid
metabolic system and the TIME of breast cancer.

Methods: To detect the expression of LRGs and execute GO/KEGG analysis, the R program was chosen.
Considering the clinical information and pathological features, a prognostic gene signature was constructed by
LASSO Cox regression analysis. TMB, MSI, and immune infiltration analyses were performed, and consensus cluster
analysis of LRGs was also performed.

Results: These 16 lipid metabolism-related genes (LRGs) were mainly involved in the process of lipid metabolism
and fatty acid binding in breast cancer. Prognosis analysis identified the prognostic value of FABP7(Fatty acid
binding protein 7) and NDUFAB1(NADH:ubiquinone oxidoreductase subunit AB1) in breast cancer patients. The
prognostic gene signature constructed with FABP7 and NDUFAB1 was significantly related to immune cell
infiltration and could predict the overall survival rate with above average correctness of breast cancer patients.
FABP7 and NDUFAB1 were proven to have relevance in immune cell infiltration and tumour mutation burden
(TMB). Consensus cluster analysis identified that the upregulated mRNAs were mostly related to the oncogenesis
process, while the downregulated mRNAs were associated with immune-related signalling pathways.

Conclusion: A comprehensive analysis was performed to evaluate the lipid metabolic system and identified a
signature constructed by two prognostic genes for immunotherapies in breast cancer. The results also revealed
evidence of vulnerabilities in the interplay between the lipid metabolic system and the TIME in breast cancer.
Further data with clinical studies and experiments are warranted.
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Introduction
Breast cancer has become the most prevalent malignancy
worldwide according to the latest statistical results [1]. This
highly heterogeneous malignancy, which comprises differ-
ent subtypes, is still a serious threat to the health of
women, whereas the triple-negative breast cancer (TNBC)
subtype has always been known to have the worst progno-
sis [2–4]. Multiple research studies have proven that how
tumour cells grow, behave, and communicate with other
cells are determined not only by the characteristics of can-
cer cells but also by their sophisticated surrounding envir-
onment [5, 6]. The tumour microenvironment (TME) has
been proven to be a dynamic community containing
tumour cells and tumour-related cells [7]. The TIME (the
tumour immune microenvironment), which represents the
immune part of the TME, plays crucial roles, and studies
have illustrated the complicated bidirectional crosstalk be-
tween tumour cells and the TIME in breast cancer [8].
Reprogramming of energy metabolism that can actively

contribute to cancer development has been recognized as
one of the cancer hallmarks [9, 10]. Carcinogenic events
can alter the regulation of metabolic pathways, which in
turn enable the proliferation and survival of cancer cells in
the microenvironment by providing selective advantages
[11, 12]. Lipid metabolism, including fatty acid metabol-
ism and fatty acid transport, which can be influenced by
factors such as age, obesity, menopause, drugs, and diet, is
also highly activated in breast cancer cells [13, 14] and can
both promote and inhibit the oncogenesis and progression
of cancer cells by reassigning nutrients in the microenvir-
onment of breast cancer [15, 16]. FABP7 (Fatty acid bind-
ing protein 7) is a member of the FABP intracellular lipid
chaperone family that regulates lipid metabolism by in-
creasing fatty acid uptake, FAO, and lipolysis [17]. NDU-
FAB1 (NADH:ubiquinone oxidoreductase subunit AB1),
on the other hand, is a mitochondrial acyl carrier protein
that participates in lipid metabolism by interacting with
other mitochondrial proteins [18].
Immunotherapies such as immune checkpoint blockades

and other immunotherapeutic strategies have furnished
new hopes for breast cancer patients [19, 20]; however, the
low response rate limits the application of tumour im-
munotherapy [21]. Hence, improved analysis of how the
lipid metabolic system with the TIME modulates cancer
development and evasion from tumour-suppressive sur-
veillance may reveal clues for novel anticancer immuno-
therapeutic strategies directed at lipid metabolic targets.
Therefore, in this study, 16 lipid metabolism-related

genes (LRGs) were selected to detect the bidirectional

interplay of the lipid metabolic system of tumour cells
with the TIME and construct a prognostic signature to
explore the dynamic lipid metabolic signature difference
in breast cancer. The results could provide new evidence
for identifying novel prognostic biomarkers of immuno-
therapies for breast cancer and contribute to revealing
the heterogeneity of the TIME in breast cancer.

Materials and methods
Date and sample source
The RNA-sequencing (RNA-seq) data and clinical infor-
mation of breast cancer patients were retrieved from
The Cancer Genome Atlas (TCGA) database, which was
released on June 1, 2021. R software (version 4.0.3) was
used to develop all data analysis methods and the R
package. All the obtained expression data of breast can-
cer patients are shown in Table S1 and were normalized
to Fregments Per Kilobase per Million (FPKM) values
for subsequent investigation. The patients with breast
cancer were diagnosed mainly in 2008–2010, and the
clinical information were uploaded to TCGA in 2016.
The workflow of this study is shown in Fig. S1.

Identifying the different expressions of LRGs
Sixteen LRGs in total that participate in the lipid metabolic
system in breast cancer were selected. The limma and re-
shape2 R packages were used to detect the difference in LRG
expression in breast cancer and normal tissues [22, 23]. The
STRING database was used to search the hub genes by the
set with a minimum interaction score of 0.9 [24].

Functional enrichment analysis
To further identify the function of these LRGs in breast
cancer, GO and KEGG databases were selected, and the
data were analysed by functional enrichment analysis. The
GO (Gene Ontology) database is a web-based tool for de-
termining gene function for MF (molecular function), BP
(biological pathways), and CC (cellular components) [25].
Gene set enrichment analysis detected gene pathway en-
richments in KEGG (Kyoto Encyclopedia of Genes and
Genomes), an open resource [26]. To better understand
the carcinogenesis of these LRGs, the ClusterProfiler R
package (version 3.14.0) was used to analyse the GO func-
tions and KEGG pathways of these potential targets [27].

Construction of the lipid metabolism-related gene prognostic
model
Cox regression analysis was utilised to determine the prog-
nostic significance of the LRGs. The Kaplan–Meier
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approach was used to calculate the prognostic value of these
16 LRGs, which were then examined using the log-rank test
and univariate Cox proportional hazard regression, yielding
P values and hazard ratios (HRs) with 95% confidence inter-
vals (CIs). LRGs with substantial prognostic value, as dem-
onstrated by Kaplan–Meier survival curves, were chosen.
The chi-square test was selected to clarify the correlation be-
tween the prognostic LRGs and clinical TNM stage, and the
Wilcoxon test was used to explore the correlation of the age
factor with the prognostic LRGs. Based on the prognostic
value of these LRGs, a prognostic model containing the two
prognostic LRGs was developed by LASSO Cox regression
analysis for breast cancer patients using 10-fold cross-
validation to determine the optimal value of penalty param-
eter λ. According to the risk score, the patients with breast
cancer were separated into two subgroups with low risk and
high risk, and the overall survival (OS) possibility between
these two groups was compared by the Kaplan–Meier
method. Receiver operating characteristic (ROC) analysis
was selected to predict the diagnostic accuracy of each gene.
Considering the pathological characteristics, a predicted
nomogram was developed to predict the 1-year, 3-year, and
5-year overall survival possibility through the forestplot
package in R software [28].

Immune cell infiltration analysis of the prognostic LRGs
The correlation between the prognostic LRGs and im-
mune cell infiltration was evaluated using the ssGESA
R package for comprehensive analysis of tumour-
infiltrating immune cells in breast cancer. In the ana-
lysis of the correlation between the immune check-
points and the prognostic LRGs, the ggplot2 R
package was selected. Spearman’s correlation analysis
was chosen for the examination of tumour mutation

burden (TMB) and microsatellite instability (MSI),
with a P value less than 0.05.

The cluster analysis of LRGs
The raw counts of RNA-sequencing data of patients with
breast cancer and accompanying clinical information were
received from the TCGA-BRCA cohort, with the collection
and application methods complying with the recommenda-
tions and rules. The ConsensusClusterPlus R package
(v1.54.0) was used for consistency analysis [29], and the
pheatmap R package (v1.0.12) was used for clustering heat-
maps. Genes with SD > 0.1 were kept in the gene expres-
sion heatmap. If the number of input genes was greater
than 1000, the SD was sorted, and the top 25% of the genes
were extracted. The Limma R package (version: 3.40.2) was
used to study the differential expression of mRNAs. The
adjusted P value was analysed to correct for false-positive
results in TCGA or GTEx. The results with “Adjusted P <
0.05 and Log (Fold Change) >1 or Log (Fold Change)< −1”
were defined as the thresholds for the screening of differen-
tial expression of mRNAs. Fold-change numbers and cor-
rected P values were used to create volcano graphs.
Hierarchical clustering was used to look for mRNAs that
were differentially expressed in tumour and normal tissues.

Results
The expression of LRGs in breast cancer
The expression levels of 16 LRGs in breast cancer and
normal breast tissues were first detected by data from
TCGA-breast cancer. A total of two genes showed no sig-
nificant change in breast cancer (Fig. 1). More specifically,
the expression of FABP5, FABP7, FABP3, FABP6, NDU-
FAB1, FABP2, FABP1, KLF5, LPN1, LPN3, and EP300
was upregulated compared with that in normal tissues,

Fig. 1 The expression of 16 LRGs in breast cancer and breast tissues, tumour, red; Normal, blue. LRGs, lipid metabolic related genes. Asterisks
represent levels of significance, - P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001
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while the expression of FABP4, FABP9, and KLF4 was
downregulated (all P < 0.05).

Functional enrichment analysis of LRGs
A protein–protein interaction (PPI) network was
constructed to explore the correlation of these
LRGs, which was set with a minimum interaction
score of 0.9, as shown in Table 1. The analysis re-
sults revealed that EP300, FABP1, FABP2, FABP4,
FABP7, KLF4, and KLF5 were hub genes (Fig. 2A).
GO and KEGG databases were selected to screen
the function of the LRGs. The results suggested that

these 16 LRGs were mainly involved in the positive
regulation of the triglyceride metabolic process,
acylglycerol metabolic process, neutral lipid meta-
bolic process, triglyceride catabolic process, fatty
acid binding, monocarboxylic acid binding, carbox-
ylic acid binding, and organic acid binding in GO
analysis. Moreover, the analysis results from the
KEGG database revealed that 16 LRGs were primar-
ily concerned with the PPAR signalling pathway,
glycerolipid metabolism, glycerophospholipid metab-
olism, and mTOR signalling pathway (Fig. 2B,
Table 2).

Table 1 The protein–protein interaction (PPI) network constructed by STRING database to explore the interactions of these LRGs

node1 node2 node1_external_id node2_external_id combined_score

EP300 KLF4 ENSP00000263253 ENSP00000363804 0.999

EP300 KLF5 ENSP00000263253 ENSP00000366915 0.991

LPIN3 LPIN1 ENSP00000362354 ENSP00000397908 0.937

FABP2 FABP1 ENSP00000274024 ENSP00000295834 0.926

FABP4 EP300 ENSP00000256104 ENSP00000263253 0.918

EP300 FABP7 ENSP00000263253 ENSP00000357429 0.907

EP300 FABP1 ENSP00000263253 ENSP00000295834 0.906

FABP4 FABP1 ENSP00000256104 ENSP00000295834 0.897

FABP2 FABP6 ENSP00000274024 ENSP00000377549 0.876

LPIN2 LPIN3 ENSP00000261596 ENSP00000362354 0.858

FABP1 FABP3 ENSP00000295834 ENSP00000362817 0.841

FABP4 FABP6 ENSP00000256104 ENSP00000377549 0.831

LPIN2 LPIN1 ENSP00000261596 ENSP00000397908 0.815

FABP3 FABP6 ENSP00000362817 ENSP00000377549 0.808

FABP1 FABP5 ENSP00000295834 ENSP00000297258 0.719

FABP4 LPIN3 ENSP00000256104 ENSP00000362354 0.695

FABP4 FABP2 ENSP00000256104 ENSP00000274024 0.695

FABP4 FABP5 ENSP00000256104 ENSP00000297258 0.673

FABP4 FABP3 ENSP00000256104 ENSP00000362817 0.667

FABP4 FABP7 ENSP00000256104 ENSP00000357429 0.659

FABP4 FABP12 ENSP00000256104 ENSP00000353650 0.657

FABP4 FABP9 ENSP00000256104 ENSP00000368362 0.655

FABP12 FABP6 ENSP00000353650 ENSP00000377549 0.654

FABP9 FABP6 ENSP00000368362 ENSP00000377549 0.628

FABP1 FABP7 ENSP00000295834 ENSP00000357429 0.607

FABP7 FABP6 ENSP00000357429 ENSP00000377549 0.588

FABP5 FABP6 ENSP00000297258 ENSP00000377549 0.584

FABP1 FABP9 ENSP00000295834 ENSP00000368362 0.532

FABP3 LPIN1 ENSP00000362817 ENSP00000397908 0.517

FABP4 LPIN1 ENSP00000256104 ENSP00000397908 0.505

FABP1 LPIN3 ENSP00000295834 ENSP00000362354 0.502

FABP1 LPIN1 ENSP00000295834 ENSP00000397908 0.448

FABP1 FABP12 ENSP00000295834 ENSP00000353650 0.43
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Construction of the prognostic gene model
To clarify the prognostic value of these LRGs, a prognostic
gene model was built using univariate Cox regression ana-
lysis. The findings revealed that two LRG genes were iden-
tified as having prognostic significance, and the Kaplan–
Meier survival curves are displayed in Fig. 3. The findings

of the prognostic analysis revealed that individuals with
breast cancer who had FABP7 downregulation had a low
chance of survival (Fig. 3A, P = 0.001) and upregulation of
NDUFAB1 (Fig. 3B, P = 0.011). Based on the prognostic
value of FABP7 and NDUFAB1 in breast cancer, a prog-
nostic gene signature containing these two LRGs (FABP7

Fig. 2 The functional enrichment analysis of LRGs in breast cancer. A The PPI network of LRGs using STRING database. B The enriched item in
gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The size of circles represented the number of genes
enriched. PPI, protein-protein interaction; BP, biological process; MF, molecular function

Table 2 Pathway enrichment analysis items of 16 LRGs from KEGG

ONTOLOGY ID Description GeneRatio BgRatio P value P.adjust qvalue

BP GO:0006641 triglyceride metabolic process 10/11 105/18670 2.23e-22 9.62e-20 5.50e-20

BP GO:0006639 acylglycerol metabolic process 10/11 129/18670 1.90e-21 2.96e-19 1.69e-19

BP GO:0006638 neutral lipid metabolic process 10/11 130/18670 2.06e-21 2.96e-19 1.69e-19

BP GO:0019433 triglyceride catabolic process 8/11 35/18670 1.06e-20 1.14e-18 6.52e-19

BP GO:0046461 neutral lipid catabolic process 8/11 43/18670 6.51e-20 4.68e-18 2.67e-18

MF GO:0005504 fatty acid binding 5/11 34/17697 8.82e-12 3.53e-10 1.30e-10

MF GO:0033293 monocarboxylic acid binding 5/11 64/17697 2.40e-10 4.79e-09 1.77e-09

MF GO:0005324 long-chain fatty acid transporter activity 3/11 11/17697 2.94e-08 3.92e-07 1.44e-07

MF GO:0031406 carboxylic acid binding 5/11 193/17697 6.42e-08 5.18e-07 1.91e-07

MF GO:0036041 long-chain fatty acid binding 3/11 14/17697 6.48e-08 5.18e-07 1.91e-07

KEGG hsa03320 PPAR signaling pathway 6/9 78/8076 5.48e-11 1.70e-09 1.50e-09

KEGG hsa04975 Fat digestion and absorption 2/9 43/8076 9.74e-04 0.015 0.013

KEGG hsa00561 Glycerolipid metabolism 2/9 61/8076 0.002 0.020 0.018

KEGG hsa00564 Glycerophospholipid metabolism 2/9 98/8076 0.005 0.038 0.034

KEGG hsa04150 mTOR signaling pathway 2/9 155/8076 0.012 0.075 0.066
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and NDUFAB1) was constructed by LASSO Cox regres-
sion analysis (Fig. 4A, B), and the final results were calcu-
lated with the formula risk score = (− 0.1013) * FABP7 +
(0.3367) * NDUFAB1. Based on the risk score, the two
groups were separated into high-risk and low-risk groups.
The distribution of risk scores, survival status, and expres-
sion of these two genes were all present. As the risk score
increased, the risk of death of breast cancer patients in-
creased, while the survival time decreased (Fig. 4C). The
Kaplan–Meier survival curves showed that breast cancer
patients with high-risk scores (median time = 9.5 years)
had a worse overall survival (OS) rate than those with
low-risk scores (median time = 10.8 years) (P = 0.0053),
and the 1-year, 3-year, and 5-year ROC curves had AUCs
of 0.596, 0.591, and 0.608, respectively (Fig. 4D, E).

The construction of the predictive nomogram
Allowing for the correlation between pathological features
and these two prognostic LRGs (FABP7 and NDUFAB1), a
predictive nomogram was subsequently built to predict the
survival probability. By analysing the results, univariate ana-
lyses identified the expression of FABP7 and NDUFAB1, and
the stage of pT, pN, and pM were the factors that could
affect the prognosis of breast cancer patients. More interest-
ingly, the univariate and multivariate analyses illustrated that
age was the factor affecting prognosis, and the results are
shown in Fig. 5A-B. After analysing the expression of FABP7
and NDUFAB1 with clinical characteristics, the results dem-
onstrated that the expression of FABP7, as well as NDU-
FAB1, was significantly correlated with T stage and age, and
the results are shown in Tables 3 and 4. Furthermore, the 3-
and 5- year overall survival (OS) rates in the complete cohort
could be predicted reasonably well by assessing the predictive
nomogram data, as shown in Fig. 5C, D.

The correlation between prognostic LRGs and immune
cell infiltration in breast cancer
In this study, correlation analysis for the expression of
prognostic LRGs (FABP7 and NDUFAB1) and immune
cell infiltration in breast cancer was also performed
using the ssGSEA R package. The findings revealed a
strong relationship between the expression of prognostic
LRGs (FABP7 and NDUFAB1) and the quantity of im-
munologically infiltrating cells, such as CD8+ T cells,
macrophages, neutrophils, cytotoxic cells, eosinophils,
NK cells, and Treg cells (Fig. 6 B). A B, all P < 0.05).
This evidence suggested a significant correlation be-
tween the prognostic LRGs and tumour immune infiltra-
tion. Moreover, the study detected the correlation
between the immune checkpoints (TIGIT, PDCD1,
CD274, LAG3, CTLA4) and the prognostic LRGs by the
ggplot2 R package, and the results revealed a significant
correlation between the immune checkpoints and the
two prognostic LRGs (Fig. 7 A B, all P < 0.05).

TMB and MSI analysis of LRGs
Tumour mutation burden (TMB), as well as microsatel-
lite instability (MSI) analysis, could be utilized to antici-
pate the immunotherapeutic efficacy of breast cancer
treatment. To clarify whether these two prognostic LRGs
could serve as biomarkers for immunotherapy, the cor-
relation between the two prognostic LRGs and TMB as
well as MSI in breast cancer was analysed. The results
indicated a favourable relationship between TMB and
FABP7 (Fig. 8A, P = 2.26e− 06) and NDUFAB1 (Fig. 8B,
P = 0.005). The findings demonstrated that prognostic
LRGs were strongly linked to tumour immune cell infil-
tration and could serve as biomarkers of immunother-
apies for breast cancer.

Fig. 3 The prognostic value of LRGs in breast cancer. The overall survival curve of A FABP7 B NDUFAB1 in breast cancer patients in the
high-/low-expression group
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Tumour immune infiltration analysis of the prognostic
gene model
To further screen the correlation of the gene prognostic
model containing the prognostic LRGs (FABP7 and
NDUFAB1) with the tumour immune microenvironment
(TIME) in breast cancer, the ssGSEA method was se-
lected to perform the immune infiltration analysis of this
prognostic signature. The analysis results illustrated a
negative correlation between the prognostic model con-
taining FABP7 and NDUFAB1 (Fig. 9). The above results
revealed a significant correlation of the gene signature
with the TIME in breast cancer.

Consensus clustering analysis of LRGs in breast cancer
To explore the different functions of these 16 LRGs, a
consensus clustering analysis algorithm was performed.
The delta area curve of consensus clustering (Fig. 10A)

indicated the relative change in the area under the cu-
mulative distribution function (CDF) curve for each cat-
egory number k compared with the k–1 consistency
analysis (Fig. 10B), and the number of clusters was re-
duced to two in the end (Fig. 10C, D).

Functional enrichment analysis of the consensus clusters
Volcano plots were constructed using fold-change values
and adjusted P values. The red point in the plot repre-
sents the overexpressed mRNAs, and the blue point in-
dicates the downregulated mRNAs with statistical
significance. The results revealed that 846 mRNAs were
upregulated and 255 mRNAs were downregulated
(Fig. 11A). Analysis of mRNAs that were differentially
expressed between tumour and normal tissues was con-
ducted using hierarchical clustering (Fig. 11B).

Fig. 4 Construction of a prognostic LRGs model. A LASSO coefficient profiles of the two LRGs. B Plots of the ten-fold cross-validation error rates.
C Distribution of risk score, survival status, and the expression of 2 prognostic LRGs in breast cancer. D-E Overall survival curves for breast cancer
patients in the high-/low-risk group and the ROC curve of measuring the predictive value
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The data were evaluated using functional enrich-
ment analysis via GO/KEGG techniques to further es-
tablish the underlying function of putative targets of
these two clusters in breast cancer, and the findings
with P < 0.05 or FDR < 0.05 were judged to be
enriched in a meaningful pathway. The analysis re-
sults suggested that the up consensus cluster mRNAs
were related to the PI3K −Akt signalling pathway,
MAPK signalling pathway, insulin secretion, positive
regulation of protein kinase B signalling, regulation of
hormone secretion, regulation of insulin secretion,
and reproductive system development (Fig. 11C).
Meanwhile, the down cluster was closely related to
the p53 signalling pathway, cell cycle, chemokine sig-
nalling pathway, lymphocyte chemotaxis, and IL − 17
signalling pathway (Fig. 11D). More interestingly, both
consensus clusters were involved in the oestrogen sig-
nalling pathway.

The above results showed the different functions and
signature pathways of the consensus clusters of LRGs in
breast cancer, which may suggest that the process of the
lipid metabolic system comprises lipid formation and dy-
namics and is related to different biological functions in
breast cancer.

Discussion
Breast cancers, including different subtypes, have always
threatened the health of women worldwide, and this is
especially true for triple-negative breast cancer (TNBC)
[30]. Numerous studies of the TME have redefined tu-
mours from simple gatherings of tumour cells to a com-
plicated community composed of multiple surrounding
cells [31]. The tumour immune microenvironment
(TIME), which represents the TME’s immunological
components, plays decisive roles in breast cancer and
prospective immunotherapeutic targets [32]. Studies

Fig. 5 Construction of a predictive nomogram. A-B Hazard ratio and P value of the constituents involved in univariate and multivariate Cox
regression considering clinical the parameters and two prognostic LRGs in breast cancer. C-D Nomogram to predict the 1-year, 3-year, and 5-year
overall survival rate
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have shown that breast cancer cells can contain naturally
processed and distinct exceptional mutations that can be
identified by patients’ immune systems [33]. The major
objective of immunotherapy is to promote the switch
from a protumour to an antitumour impact to maximize
the efficacy of antitumour immunity, and accordingly,
immunotherapies such as immune checkpoint blockades
and others have offered new clinical strategies for breast
cancer patients.
Cancer cells have been known to be able to take ad-

vantage of the altered metabolic community to maintain
their survival and proliferation [34–36]. The altered lipid

metabolic process of cancer cells can further reprogram
and impact other cells in the tumour microenvironment
(TME), which contributes to the regulation of oncogen-
esis, aggravation, metastasis, and recurrence of breast
cancer [37, 38].
In this study, the expression and prognostic value of

these 16 lipid metabolism-related genes (LRGs) in
breast cancer were first evaluated, and the results
showed that the expression of 11 LRGs was increased
compared with that in normal tissues, while the ex-
pression of 3 LRGs was decreased. Kaplan–Meier sur-
vival analysis results identified the prognostic value of

Table 3 The correlation between the clinical characteristics and the expression of FABP7

Characteristic Low expression of FABP7 High expression of FABP7 P value Method

n 541 542

T stage, n (%) 0.014 Chisq.test

T1 125 (11.6%) 152 (14.1%)

T2 325 (30.1%) 304 (28.1%)

T3 64 (5.9%) 75 (6.9%)

T4 25 (2.3%) 10 (0.9%)

N stage, n (%) 0.694 Chisq.test

N0 247 (23.2%) 267 (25.1%)

N1 177 (16.6%) 181 (17%)

N2 62 (5.8%) 54 (5.1%)

N3 40 (3.8%) 36 (3.4%)

M stage, n (%) 0.258 Chisq.test

M0 448 (48.6%) 454 (49.2%)

M1 13 (1.4%) 7 (0.8%)

Age, meidan (IQR) 61 (50, 70) 55 (47, 64) < 0.001 Wilcoxon

Table 4 The correlation between the clinical characteristics and the expression of NDUFAB1

Characteristic Low expression of NDUFAB1 High expression of NDUFAB1 P value Method

n 541 542

T stage, n (%) 0.014 Chisq.test

T1 159 (14.7%) 118 (10.9%)

T2 296 (27.4%) 333 (30.8%)

T3 71 (6.6%) 68 (6.3%)

T4 13 (1.2%) 22 (2%)

N stage, n (%) 0.908 Chisq.test

N0 262 (24.6%) 252 (23.7%)

N1 175 (16.4%) 183 (17.2%)

N2 58 (5.5%) 58 (5.5%)

N3 40 (3.8%) 36 (3.4%)

M stage, n (%) 0.041 Chisq.test

M0 457 (49.6%) 445 (48.3%)

M1 5 (0.5%) 15 (1.6%)

Age, meidan (IQR) 56 (47, 65) 59 (50, 69) 0.002 Wilcoxon
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FABP7 and NDUFAB1 in breast cancer patients. GO/
KEGG functional enrichment analysis was subse-
quently performed, and the results illustrated that
these 16 LRGs were involved in the triglyceride meta-
bolic process, fatty acid binding, PPAR signalling path-
way, and mTOR signalling pathway. FABP7, which
regulates lipid metabolism, has been found to be up-
regulated in triple negative breast cancer (TNBC) and
to affect TNBC cell death as a metabolic mediator in

nutrient-depleted conditions [39]. It’s also a regulator
of lipid metabolism reprogramming in HER2+ breast
cancer cells, allowing metastatic cells to adapt and
survive in the brain microenvironment [17]. In the
meantime, NDUFAB1 has been identified as an im-
portant endogenous regulator of mitochondrial bio-
energetics and a contributor to lipoic acid production
[18]. The above results identified that the selected
LRGs were related to the process of lipid metabolic

Fig. 6 The immune-cell infiltration analysis of the two prognostic LRGs. A-B The association between the abundance of immune cells and the
expression of FABP7, NDUFAB1 in breast cancer. Asterisks represent levels of significance *P < 0.05, **P < 0.01, ***P < 0.001, ns, no significance
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reprogramming, oncogenesis, and inflammation in
breast cancer [40–42], of which the expression of
FABP7 and NDUFAB1 could affect the prognosis of
patients with breast cancer. Furthermore, as lipid me-
tabolism regulators, FABP7 and NDUFAB1 might have
the potential to elucidate the mechanism of breast
cancer cell invasion and metastasis.
Based on the prognostic value of FABP7 and NDUFAB1,

LASSO Cox regression analysis was used to build a prog-
nostic gene model that revealed that breast cancer patients
with high risk scores had a lower overall survival rate than
those with low risk scores. The correlation of the clinical
characteristics with these two prognostic LRGs (FABP7,
NDUFAB1) in breast cancer patients was performed using
the chi-square test, and the results revealed that both the
expression of FABP7 and NDUFAB1 were significantly

related to the T stage of breast cancer patients. Moreover,
when compared to an ideal model in the full cohort, the
predictive nomogram showed that the 3-year and 5-year
overall survival rates could be predicted pretty well. This
was the first study to develop a lipid metabolism-related
prognostic gene signature in breast cancer patients with
clinical data, thus providing us with new alternatives for
prognostic prediction in breast cancer.
Tumour mutation burden (TMB) [43], as well as

microsatellite instability (MSI) [44] analysis, can be used
to predict the response to immunotherapies and have
proven to be helpful biomarkers in breast cancer for
identifying individuals who will benefit from immuno-
therapies. Using tumour immune cell infiltration-
related analysis, the results illustrated that FABP7 and
NDUFAB1 were significantly correlated with tumour

Fig. 7 TMB, MSI analysis of the prognostic LRGs (FABP7 and NDUFAB1) in breast cancer. A-B The correlation between two prognostic LRGs and
TMB in breast cancer. C-D The correlation between two prognostic LRGs and MSI in breast cancer. TMB, tumour mutation burden; MSI,
microsatellite instability
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Fig. 8 The correlation of the immune-checkpoints(TIGIT, PDCD1, LAG3, CD274, CTLA4) with A, FABP7; B, NDUFAB1, all P < 0.05

Fig. 9 Immune-cell infiltration analysis of the prognostic signature containing two prognostic LRGs (FABP7 and NDUFAB1)
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immune cell infiltration. More interestingly, by immune
cell infiltration analysis of the prognostic signature con-
structed by FABP7 and NADUFAB1, a more significant
correlation with tumour immune cells in breast cancer
was demonstrated. The above results illustrated that
FABP7 and NDUFAB1 could serve as predictive bio-
markers in immunotherapies for breast cancer, which
also suggested a significant correlation of FABP7 and
NDUFAB1 with the tumour immune microenvironment
(TIME).

Another important finding of this study revealed the
difference in the function of these 16 LRGs by
consistency analysis. To further confirm the underlying
function of potential targets of these two consensus clus-
ters in breast cancer, the data were analysed by func-
tional enrichment using the GO and KEGG databases.
The analysis results suggested that the up cluster was
significantly related to the functions of oncogenesis and
metabolic reprogramming processes of breast cancer,
such as the PI3K −Akt signalling pathway, MAPK

Fig. 10 Consensus Clustering Analysis of lipid metabolic-related gene clusters A-B Cumulative distribution function (CDF) of consensus clustering
by consistency analysis; C-D Consensus matrices of the sarcoma patients for k = 2
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signalling pathway, insulin secretion, and regulation of
hormone secretion [45–47]. Meanwhile, the down con-
sensus cluster was closely related to immune-related
functions and signalling pathways, such as the IL − 17
signalling pathway and chemokine signalling pathway
[48, 49]. More interestingly, both consensus clusters
were involved in the oestrogen signalling pathway, which
is an important signalling pathway for breast cancer [50,
51]. Studies have proven that disturbances in the lipid
metabolic system can modulate the menopausal status
of women [52], which could also lead to the unbalanced
distribution of nutrients between tumour cells and im-
mune cells in the tumour microenvironment (TME)
[53]. The above results showed the different functions

and signature pathways of the consensus clusters of
LRGs in breast cancer. The results suggested that the
lipid metabolic system might induce the reassignment of
nutrients in the tumour microenvironment by the
oestrogen signalling pathway, which could also modulate
the menopausal status of patients with breast cancer.

Study strengths and limitations
This current study has certain strengths. This study dir-
ectly detect the correlation between the lipid
metabolism-related genes (LRGs) and the tumour im-
mune cell infiltration in breast cancer, and the func-
tional landscape of these LRGs was also illustrated using
consensus analysis. These findings would have crucial

Fig. 11 A Volcano plots of clustering analysis of mRNAs, B Hierarchical clustering analysis of mRNAs, C-D The enriched item in gene ontology
(GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of consensus clusters. The size of circles represented the number of
genes enriched
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implications for breast cancer patients’ clinical treat-
ment, endocrine therapy, chemotherapy, and immuno-
therapy. There are also some limitations to this research.
All studies were carried out with the TCGA-BRCA co-
hort, and more data with in vivo, in vitro research and
clinical studies could be used to corroborate the results.

Conclusions
In conclusion, a thorough investigation of lipid
metabolism-related genes was conducted for patients
with breast cancer, and a prognostic signature encom-
passing two biomarkers (FABP7 and NDUFAB1) was
discovered for the application of immunotherapy. The
results also provided new perspectives for deciphering
the bidirectional interplay between the lipid metabolic
system and the tumour immune microenvironment
(TIME) in breast cancer. More data and investigations
are required to corroborate these findings.
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