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Abstract

Computer-aided diagnosis plays a salient role in more accessible and accurate cardiopulmonary 

diseases classification and localization on chest radiography. Millions of people get affected 

and die due to these diseases without an accurate and timely diagnosis. Recently proposed 

contrastive learning heavily relies on data augmentation, especially positive data augmentation. 

However, generating clinically-accurate data augmentations for medical images is extremely 

difficult because the common data augmentation methods in computer vision, such as sharp, 

blur, and crop operations, can severely alter the clinical settings of medical images. In this 

paper, we proposed a novel and simple data augmentation method based on patient metadata 

and supervised knowledge to create clinically accurate positive and negative augmentations for 

chest X-rays. We introduce an end-to-end framework, SCALP, which extends the self-supervised 

contrastive approach to a supervised setting. Specifically, SCALP pulls together chest X-rays 

from the same patient (positive keys) and pushes apart chest X-rays from different patients 

(negative keys). In addition, it uses ResNet-50 along with the triplet-attention mechanism to 

identify cardiopulmonary diseases, and Grad-CAM++ to highlight the abnormal regions. Our 

extensive experiments demonstrate that SCALP outperforms existing baselines with significant 

margins in both classification and localization tasks. Specifically, the average classification AUCs 

improve from 82.8% (SOTA using DenseNet-121) to 83.9% (SCALP using ResNet-50), while the 

localization results improve on average by 3.7% over different IoU thresholds.
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I. Introduction

Chest X-rays (CXR) are one of the most common imaging tools used to examine 

cardiopulmonary diseases. Currently, CXRs diagnosis primarily relies on professional 

knowledge and meticulous observations of expert radiologists. Automated systems for 

medical image classification face several challenges. First, it heavily depends on manually-

annotated training data which requires highly specialized radiologists to do manual 

annotation. Radiologists are already overloaded with their diagnosis duties and their hourly 

charge is costly. Second, common data augmentation methods in computer vision [1], 

[2] such as crop, mask, blur, and color jitter can significantly alter medical images and 

generate inaccurate clinical images. Third, unlike images in the general domain, there is 

subtle variability across medical images. In addition, a significant amount of the variance is 

localized in small regions. Thus, there is an unmet need for deep learning models to capture 

the subtle differences across diseases by attending to discriminative features present in these 

localized regions.

Recently, contrastive learning frameworks which heavily rely on data augmentation 

techniques [1]–[3] have become promising due to their ability to capture fine-grained 

discriminative features in the latent space. This paper proposes a novel and simple data 

augmentation method based on patient metadata and supervised knowledge such as disease 

labels to create clinically accurate positive samples for chest X-rays. The supervised 

classification loss helps SCALP create decision boundaries across different diseases while 

the patient-based contrastive loss helps SCALP learn discriminative features across different 

patients. Compared to other baselines [4], [5], SCALP uses simpler ResNet-50 architecture 

and performs significantly better. SCALP uses GradCAM++ [6] to generate activation maps 

that indicate the spatial location of the cardiopulmonary diseases. The highlights of our 

contribution are:

• Our augmentation technique for contrastive learning utilizes both patient 

metadata and supervised disease labels to generate clinically accurate positive 

and negative keys. Positive keys are generated by taking two chest radiographs 

of the same patient P while negative keys are generated using radiographs from 

patients other than P and having the same disease as P.

• A novel unified framework to simultaneously improve cardiopulmonary 

diseases classification and localization. We go beyond the conventional two-

staged training (pre-training and fine-tuning) involved in contrastive learning. 

We demonstrate that single-staged end-to-end supervised contrastive learning can 

improve existing baselines significantly.

• We propose an innovative rectangular Bounding Box generation algorithm using 

pixel-thresholding and dynamic programming.
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II. Related Work

A. Medical Image Diagnosis

In the past decade, machine learning and deep learning have played a vital role in 

analyzing medical data, primarily medical imaging data. Recognition of anomalies and 

their localization has been a prevalent task for image analysis. Recent surveys [7], [8] have 

illustrated the success of CNNs for classification and localization of several diseases in 

numerous medical imaging datasets varying from chest X-rays, MRIs, and CT scans. With 

the availability of large public chest X-rays datasets such as [9], [10], many researchers 

have explored the task of thoracic disease classification [4], [11]–[13]. CheXNet [4] uses 

121-layer CNN trained on ChestXray14 [9] for pneumonia detection. [12] and [14] tried to 

improve the localization results using manually annotated localization data.

B. Contrastive Learning for Chest X-rays

In the medical domain, prior work has found the performance improvement on applying 

contrastive learning to the chest X-rays [15], [16]. [15] presented an adaptation of MoCo [2] 

for chest X-ray dataset by pre-training it on [17]. The closest recent work to our knowledge 

[18] proposed to use patient metadata did not utilize supervised label information associated 

with chest X-rays. Recently, [?] has proposed supervised contrastive learning which extends 

the self-supervised batch contrastive approach to a fully-supervised setting, allowing us 

to effectively leverage label information. Inspired by [?] supervised contrastive loss, we 

propose to generate data augmentation by exploiting patient data and class labels together.

III. The Proposed Approach

Given chest X-rays with the cardiopulmonary disease labels, we aim to design a unified 

model that simultaneously classifies and localizes cardiopulmonary disease. We formulate 

both tasks in the same prediction framework and train them using a joint contrastive and 

supervised binary cross-entropy loss. More specifically, each image in our training data is 

labeled with an 8-dim vector y = [y1,...,yk,...,yK],yk ∈ 0,1,K = 8 for each image, and yk 

indicates the presence or absence of 8 cardiopulmonary diseases. Our model produces a 

probability distribution of over 8 diseases for each image in the test set along with a heatmap 

with the localization information. The heatmap is passed to the BB-generation algorithm to 

generate rectangular bounding boxes indicating the presence of pathology.

A. Image Model

As shown in Figure 1, we use the residual neural network (ResNet-50) architecture 

considering its manageable training with limited GPU resources and popularity in numerous 

image classification and object detection challenges. Inspired by Triplet attention [19], we 

incorporated the lightweight attention module in our ResNet-50 architecture to use cross-

dimension interaction between the spatial dimensions and channel dimension for better 

localization. Image input with shape h × w × c produces a feature tensor with shape h′ × 

w′ × c′, where h,w, and c are the height, width, and the number of channels of the input 

image, respectively while h′ = h/32,w′ = w/32, and c′ = 2048. Our framework is composed 

of two parallel modules: the supervised classification module and the contrastive learning 
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module. Both modules share the same ResNet-50 encoder, i.e., the same set of parameters 

for encoding the chest X-ray image inputs.

1) Supervised Classification Module:: This module is responsible for learning 

the high-dimensional decision boundaries across different cardiopulmonary diseases. The 

encoded input chest X-ray images pass through a global average pooling layer to generate 

a 2048-dimensional feature vector. The feature vector is fed to a non-linear MLP layer to 

generate the probability distribution over 8 cardiopulmonary diseases.

We calculate LCross−Entropy by summing loss from each class.

2) Contrastive Learning Module:: In addition to the interclass variance of 

abnormalities in chest X-rays (i.e., feature differences between different diseases which 

are captured by classification loss), chest X-rays also have a high intra-class variance 

(i.e., differences in the X-rays of different patients having the same disease). To capture 

these intra-class variances, we introduce a supervised contrastive learning module to learn 

discriminative intra-class features. Our Supervised Patient Metadata based Augmentation 

module (Section III-C) generates two augmented views < xp′ , xp″ > for each image in the 

batch. After being encoded by a shared encoder f(.), both views are fed to the global average 

pooling layer to generate feature embedding f xp′  and f xp″ . These feature embeddings are 

then transformed through the non-linear projection head similar to [1] to generate g f xp′
and g f xp″ . LContrastive loss is calculated by maximizing the agreement between g f xp′
and g f xp″  [3].

B. Triplet Attention

To augment the quality of the localization by exploiting attention from the cross-dimension 

interaction in feature tensors, we integrate the Triplet Attention [19] into our architecture. 

Cross-Dimension Interaction involves computing attention weights for each dimension in 

tensor against every other dimension to capture the spatial and channel attention. In simple 

terms, spatial attention tells where the channel to focus on, while the channel attention tells 

what channel to focus on. With a minimal overload of few learnable parameters, the triplet 

attention mechanism successfully captures the interaction between the spatial and channel 

dimension of the input tensor. Following [19], the input tensor with dimension H×W ×C 
in SCALP uses a branching mechanism to capture dependencies between (C,H),(C,W), and 

(H,W).

C. Supervised Patient-Metadata Based Augmentation

Recently proposed Supervised Contrastive Learning [?] provides an innovative way to 

leverage label information for generating positive and negative keys effectively. In our case, 

we have acutely used patient metadata and label information simultaneously to generate 

positive and negative keys for the SCALP contrastive learning module. The motivation 

behind introducing contrastive learning in SCALP is to capture intra-class discriminative 

features between patients diagnosed with the same disease. Figure 2 provides an overview of 

our novel technique.

Jaiswal et al. Page 4

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2022 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1) Positive Sampling: Data augmentation in medical imaging is sensitive to 

augmentation techniques such as random crop, Gaussian blur, and color jitter proposed 

in prior self-supervised learning [1]–[3]. For medical images, such operations may either 

change the disease label or are not meaningful for grayscale X-ray images. Since our 

goal is to incorporate discriminative features between two different patients to SCALP, we 

randomly select two chest X-ray studies having the same disease label of a patient P using 

patient metadata. The first study is called query, and the second is called a positive key. We 

use the contrastive loss to maximize agreement between them in latent space.

2) Negative Sampling: As shown in Figure 2, we select k negative keys for each patient 

P in our input batch. Negative keys are selected randomly from the pool of chest X-ray 

studies from patients except P, having the same diagnosis as query. This helps SCALP to 

distinguish the subtle differences between patients who are diagnosed with the same disease. 

Contrastive loss tries to push these negative keys away from query during training.

D. Loss Function

SCALP is trained using the linear combination of supervised classification and contrastive 

loss. For the supervised classification, we use binary cross-entropy loss. For contrastive 

learning, we use the extended version of NT-Xent loss [1].

1) Supervised classification Loss: Our disease classification is a multi-class 

classification problem where we have 8 disease types. Multiple diseases can often be 

identified in one chest X-ray image and diseases are not mutually exclusive. We, therefore, 

define 8 binary classifiers for each class/disease type. Since all images in our dataset have 8 

labels, the loss function for class k can be expressed as minimizing the binary cross-entry as:

Lk = − yk ⋅ logp(k ∣ I) − 1 − yk ⋅ log(1 − p(k ∣ I)) (1)

where yk is the ground-truth label of the k-th class, and I is the input image. To enable 

end-to-end training across all the classes, we sum up the class-wise loss to calculate total 

supervised loss as:

LCross − Entropy = ∑
n = 1

batcℎ − size
∑

k = 1

8
Lk

n
(2)

2) Contrastive Loss: Our contrastive loss extends the normalized temperature scaled 

cross-entropy loss (NT-Xent). Using our patient-based sampling, we randomly select a batch 

of N chest X-ray images belonging to N patients. We derive the contrastive loss on the pairs 

of augmented examples from the batch. Let IPD′  be an image in batch belonging to patient 

P with disease D, sim(x,y) denotes similarity between x and y, and f(.) denotes ResNet-50 

encoder, g(.) denotes the projection head. The loss function l IPD′  for a positive pair of 

example < IPD′ , IPd″ > is defined as:
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l IPD′ = − log e sim g f IPD′ , g f IPD″ /τ

∑k ⊮[p ≠ P, d = D] e sim g f IPD′ , g f Ipd″ /τ (3)

where ⊮[p ≠ P, d = D] ∈ 0, 1  is an indicator function evaluating to 1 iff p ≠ P and d = D, 

τ is the temperature parameter. The final contrastive loss is calculated as the sum over all 

instances in batch:

LContrastive = ∑
k = 1

batcℎ − size
l IPD

k
(4)

Eventually, we treat SCALP learning as the optimization of both contrastive and supervised 

cross-entropy loss together. Total loss for SCALP is defined as:

LTotal = λ × LCross − Entropy + (1 − λ) × LContrastive (5)

E. Bounding Box Generation Algorithm

We propose an innovative and time-efficient approach O n2  to generate regular-shaped 

rectangular bounding boxes on chest X-rays indicating the approximate spatial location of 

the predicted cardiopulmonary disease. As shown in Figure 1, we feed the k-th layer of our 

image encoder (ResNet-50) to Gradient-weighted Class Activation Mapping (GradCAM++) 

[6] to extract the attention maps/heatmaps. Due to the simplicity of intensity distributions in 

these heatmaps, we first scale heatmaps to the range [0, 255] and apply an ad-hoc threshold 

to convert these heatmaps into a binary matrix. Pixel values are converted to 1 if its intensity 

is greater than the threshold and 0 otherwise. Many previous works [9], [23] use only 

intensity threshold to generate bounding boxes which lead to many false positives. We use 

dynamic programming to generate a set of k candidate rectangles for bounding boxes and 

eliminate false positives by selecting the candidate which has the highest average intensity 

per pixel.

IV. Experiments

A. Dataset and Preprocessing

NIH Chest X-ray dataset [9] consists of 112,120 chest X-rays collected from 30,805 

patients, and each image is labeled with 8 cardiopulmonary disease labels. The NIH dataset 

also includes high-quality bounding box annotations for 880 images by radiologists. We 

separate these 880 images from our entire dataset, and they are used only to evaluate disease 

localization. Our method does not require any training data related to bounding boxes which 

is a significant difference compared to other existing baseline methods [12], [13] which 

use some percentage of these images for training. We follow the same protocol as [12], 

to shuffle our dataset (excluding images with BB annotations) into three subsets: 70% for 

training, 10% for validation, and 20% for testing. In order to prevent data leakage across 

patients, we make sure that there is no patient overlap between our subsets.

Jaiswal et al. Page 6

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2022 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Implementation Details

We used the ResNet-50 model with triplet attention and initialized it with pre-trained 

weights provided by [19]. Our MLP layer is a two-layered fully-connected network 

with RELU non-linearity, while the projection head is defined similarly to [1]. Both our 

projection head and MLP layer are randomly initialized. We have used 0.01 learning rate 

and weight decay of 10−6 and 10−4 for contrastive and classification loss, respectively. 

SCALP uses an SGD optimizer and learning rate scheduler with step size and gamma value 

of 10 and 0.1, respectively.

Algorithm 1:

Bounding Box Generation Algorithm

1 Input: k-th layer attention map/heatmap from ResNet-50

2 Output: coordinates (x1, y1, x2, y2) of the bounding box

3 Scale heatmap intensities to [0, 255] and create a mask matrix with the same dimension as the heatmap.

4 if pixel > 180 then

5 ⌊ mask[pixel] = 1

6 else

7 ⌊ mask[pixel] = 0

8 Using dynamic programming [24], generate k maximum area rectangles as candidate BB.

9 Expand candidate rectangles uniformly across the edge till newly added ratio (0s count, 1s count) > 1

10 Select the rectangle with the maximum average pixel intensity mapped in the heatmap and return its coordinates.

C. Disease Identification

SCALP classification is a multi-label classification problem. It assigns one or more labels 

among 8 cardiopulmonary diseases. We conduct a 3-fold cross-validation (Table I). We 

compare SCALP with reference models, which have published state-of-the-art performance 

of disease classification on the NIH dataset. We have used Area under the Receiver 

Operating Characteristics (AUC) to estimate the performance of our model in Table I. 

Our results also present the 3-fold cross-validation to show the robustness of our model. 

Compared to other baselines, SCALP achieves a mean AUROC score of 0.839 using 

ResNet-50 across the 8 different classes, which is 0.011 higher than the SOTA (uses 

DenseNet-121) on disease classification.

To understand the importance of contrastive module for disease classification, we trained 

SCALP with and without the contrastive loss and evaluated performance on the test set 

of NIH data. Table III presents the significant drop of > 9 % AUC when we exclude 

the contrastive module from the SCALP pipeline. This demonstrates the importance of 

our innovative association of contrastive modules with the classification pipeline. Our 

experiments in Table IV prove our hypothesis that both contrastive and cross-entropy loss is 

important. In a calculated ratio, they help SCALP learn both disease-level and patient-level 

discriminative visual features.
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D. Disease Localization

The NIH dataset has 880 images labeled by radiologists with the bounding box information. 

We have used this dataset to evaluate the performance of SCALP for disease localization. 

Many prior works [12], [13] have used a fraction of ground truth (GT) bounding boxes 

for training and evaluated their system on the remaining. To ensure a robust evaluation, 

we do not use any GT for training, and Table II presents our evaluation results on all 880 

images. For localization, we evaluated our detected regular rectangular regions against the 

annotated ground truth (GT) bounding boxes, using intersection over union ratio (IoU). The 

localization is defined as correct only if IoU > T(IoU). We evaluate SCALP for different 

thresholds ranging from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} as shown in Table II. A higher IoU 

threshold is preferred for disease localization because clinical usage requires high accuracy. 

Note that SCALP mean performance for 8 diseases is significantly better than the baseline 

under all IoU thresholds. When the IoU is set to 0.1, SCALP outperforms the baseline in 

terms of Cardiomegaly, Infiltration, Mass, and Pneumonia.

Note that our innovative bounding box generation algorithm successfully eliminates 

dispersed attention, and identifies regions where maximum attention is concentrated. For 

example, in ”Effusion”, the generated heatmap has dispersed attention on both sides of 

the lungs. However, attention intensity is concentrated in the left side of the lung. Our 

algorithm is able to generate a bounding box on the left side of the lung and have a high 

overlap with the ground-truth. Similarly, for ”Infiltration” and ”Nodule”, many undesirable 

patches of attention have been eliminated which is helpful in improving the IoU evaluation 

of SCALP. The attention maps generated by SCALP are sharp and focused compared to 

our reference baseline [9]. Overall, our results show that the predicted disease localizations 

have significant alignment with the ground truth and can serve as interpretable cues for the 

disease classification.

V. Conclusion

In this work, we propose a simple and effective end-to-end framework SCALP using 

supervised contrastive learning to identify cardiopulmonary diseases in chest X-ray. We go 

beyond two-stage training (pre-training and fine-tuning), and demonstrate that an end-to-end 

supervised contrastive training using two images from the same patient as a positive pair, 

can significantly outperform SOTA on disease classification. SCALP can jointly model 

disease identification and localization using the linear combination of contrastive and 

classification loss. We also propose a time-efficient Bounding Box generation algorithm 

that generates bounding boxes from the attention map of SCALP. Our extensive qualitative 

and quantitative results demonstrate the effectiveness of SCALP and its state-of-the-art 

performance.
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Fig. 1. 
Model Overview. The input images are sampled in batches with a constraint that no two 

images in a batch are from the same patient. Learning is performed using a shared encoder 

(Resent-50) with triplet attention and joint loss from the supervised classification and 

contrastive learning module.
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Fig. 2. 
Overview of our Supervised Patient-Metadata Based Contrastive Augmentation. Positive and 

Negative Keys are constructed using Patient Metadata (association of patient id with chest 

X-rays) and Supervised disease labels of chest X-rays.

Jaiswal et al. Page 12

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2022 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Examples of visualization of localization on the test images. We plot the results of diseases 

near the thoracic. The attention maps are generated from the fourth layer of SCALP’s 

encoder and overlapped with its corresponding original radiology image. The ground-truth 

and the predicted bounding boxes are shown in yellow and red color respectively.
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Fig. 4. 
Effect of Batch Size on SCALP performance for Disease Classification. Prior works [1], 

[2] have verified that contrastive learning benefits from a larger batch size. SCALP shows a 

similar trend with increasing batch size.
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TABLE III

AUC comparison of SCALP with and without contrastive learning module.

SCALP w/o Contrastive SCALP

Atelectasis 0.751 0.79

Cardiomegaly 0.850 0.92

Effusion 0.833 0.79

Infiltration 0.670 0.89

Mass 0.694 0.88

Nodule 0.640 0.87

Pneumonia 0.700 0.77

Pneumothorax 0.792 0.81

Mean 0.7413 0.839
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TABLE IV

AUC comparison of SCALP for varying λ in Equation 5.

λ 0.99 0.90 0.85 0.80 0.75 0.70

AUC 0.766 0.794 0.822 0.839 0.818 0.785

A higher value of λ implies lower weight to the contrastive loss. Scalp achieves the best performance when 80% weight is given to classification 
loss and 20% weight is given to contrastive loss.
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