Skip to main content
. 2022 Apr 29;22(9):3401. doi: 10.3390/s22093401

Table 3.

Supervised Techniques results.

Dataset Technique Metrics References
Accuracy Precision Recall F-Measure
UCI Machine Learning Nearest Neighbor 75.7 - - - [121]
Decision Tree 76.3 - - -
Random Forest 75.9 - - -
Naive Bayes 76.9 - - -
Aras (House A) MSA (Margin Setting Algorithm) 68.85 - - - [122]
SVM 66.90 - - -
ANN 67.32 - - -
Aras (House B) MSA (Margin Setting Algorithm) 96.24 - - -
SVM 94.81 - - -
ANN 95.42 - - -
CASAS Tulum MSA (Margin Setting Algorithm) 68.00 - - -
SVM 66.6 - - -
ANN 67.37 - - -
Mhealth K-NN 99.64 - - 99.7 [123]
ANN 99.55 - - 99.6
SVM 99.89 - - 100
C4.5 99.32 - - 99.3
CART 99.13 - - 99.7
Random Forest 99.89 - - 99.89
Rotation Forest 99.79 - - 99.79
WISDM, SCUT_NA-A Sliding window with variable size, S transform, and regularization based robust subspace (SRRS) for selection and SVM for Classification 96.1 - - - [124]
SCUT NA-A Sliding window with fixed samples, SVM like a classifier, cross-validation 91.21 - - -
PAMPA2, Mhealth Sliding windows with fixed 2s, SVM, and Cross-validation 84.10 - - -
SBHAR Sliding windows with fixed 4s, SVM, and Cross-validation 93.4 - - -
WISDM MLP based on voting techniques with nb-Tree are used 96.35 - - -
UTD-MHAD Feature level fusion approach& collaborative representation classifier 79.1 - - -
Groupware Mark Hall’s feature selection and Decision Tree 99.4 - - -
Free-living k-NN and Decision Tree 95 - - -
WISDM, Skoda Hybrid Localizing learning (k-NN-LSS-VM) 81 - - -
UniMiB SHAR LSTM and Deep Q-Learning 95 - - -
Groupware Sliding windows Gaussian Linear Filter and NB classifier 89.5 - - -
Groupware Sliding windows Gaussian Linear Filter and Decision Tree classifier 99.99 - - -
CSI-data SVM 96 - - - [125]
LSTM 89 - - -
Built by the authors IBK 95 - - - [126]
Classifier based ensemble 98 - - -
Bayesian network 63 - - -
Built by the authors Decision Tree 91.08 - - 89.75 [127]
Random Forest 91.25 - - 90.02
Gradient Boosting 97.59 - - 97.4
KNN 93.76 - - 93.21
Naive Bayes 88.57 - - 88.07
SVM 92.7 - - 91.53
XGBoost 96.93 - - 96.63
UK-DALE FFNN 95.28 - - - [128]
SVM 93.84 - - -
LSTM 83.07 - - -
UCI Machine Learning KNN 90.74 91.15 90.28 90.45 [129]
SVM 96.27 96.43 96.14 96.23
HMM+SVM 96.57 96.74 96.49 96.56
SVM+KNN 96.71 96.75 96.69 96.71
Naive Bayes 77.03 79.25 76.91 76.72
Logistic Reg 95.93 96.13 95.84 95.92
Decision Tree 87.34 87.39 86.95 86.99
Random Forest 92.3 92.4 92.03 92.14
MLP 95.25 95.49 95.13 95.25
DNN 96.81 96.95 96.77 96.83
LSTM 91.08 91.38 91.24 91.13
CNN+LSTM 93.08 93.17 93.10 93.07
CNN+BiLSTM 95.42 96.58 95.26 95.36
Inception+ResNet 95.76 96.06 95.63 95.75
UCI Machine Learning NB-NB 73.68 - - 46.9 [130]
NB-KNN 85.58 - - 61.08
NB-DT 89.93 - - 69.75
NB-SVM 79.97 - - 53.69
KNN-NB 74.93 - - 45
KNN-KNN 79.3 - - 49.82
KNN-DT 87.01 - - 60.98
KNN-SVM 82.24 - - 53.1
DT-NB 84.72 - - 60.05
DT-KNN 91.55 - - 73.11
DT-DT 92.73 - - 75.97
DT-SVM 93.23 - - 77.35
SVM-NB 30.40 - - -
SVM-KNN 25.23 - - -
SVM-DT 92.43 - - 75.31
SVM-SVM 43.32 - - -
CASAS Tulum Back-Propagation 88.75 - - - [131]
SVM 87.42 - - -
DBM 90.23 - - -
CASAS Twor Back-Propagation 76.9 - - -
SVM 73.52 - - -
DBM 78.49 - - -
WISDM KNN 69 78 - 78 [132]
LDA 40 34 - 34
QDA 65 58 - 58
RF 90 91 - 91
DT 77 77 - 77
CNN 66 62 - 60
DAPHNET KNN 90 87 - 88
LDA 91 83 - 83
QDA 91 82 - 82
RF 91 91 - 91
DT 91 83 - 83
CNN 90 87 - 87
PAPAM KNN 65 66 - 66
LDA 45 45 - 45
QDA 15 19 - 19
RF 80 83 - 83
DT 60 60 - 60
CNN 73 76 - 73
HHAR(Phone) KNN 83 85 - 85
LDA 43 45 - 45
QDA 40 50 - 50
RF 88 89 - 89
DT 67 66 - 66
CNN 84 84 - 84
HHAR(watch) KNN 78 82 - 82
LDA 54 52 - 52
QDA 26 27 - 27
RF 85 85 - 85
DT 69 69 - 69
CNN 83 83 - 83
Mhealth KNN 76 81 - 81
LDA 38 59 - 59
QDA 91 82 - 82
RF 85 85 - 85
DT 77 77 - 77
CNN 80 80 - 80
RSSI KNN 91 91 - 91
LDA 91 91 - 91
QDA 91 91 - 91
RF 91 91 - 91
DT 91 91 - 91
CNN 91 90 - 91
CSI KNN 93 93 - 93
LDA 93 93 - 93
QDA 92 92 - 92
RF 93 93 - 93
DT 93 93 - 93
CNN 92 92 - 92
Casas Aruba DT 96.3 93.8 92.3 93 [133]
SVM 88.2 88.3 87.8 88.1
KNN 89.2 87.8 85.9 86.8
AdaBoost 98 96 95.9 95.9
DCNN 95.6 93.9 95.3 94.6
SisFall SVM 97.77 76.17 75.6 [134]
Random Forest 96.82 79.99 79.95
KNN 96.71 93.99 68.36
CASAS Milan Naive Bayes 76.65 [135]
HMM+SVM 77.44
CRF 61.01
LSTM 93.42
CASAS Cairo Naive Bayes 82.79
HMM+SVM 82.41
CRF 68.07
LSTM 83.75
CASAS Kyoto 2 Naive Bayes 63.98
HMM+SVM 65.79
CRF 66.20
LSTM 69.76
CASAS Kyoto 3 Naive Bayes 77.5
HMM+SVM 81.67
CRF 87.33
LSTM 88.71
CASAS Kyoto 4 Naive Bayes 63.27
HMM+SVM 60.9
CRF 58.41
LSTM 85.57