Table 3.
Supervised Techniques results.
| Dataset | Technique | Metrics | References | |||
|---|---|---|---|---|---|---|
| Accuracy | Precision | Recall | F-Measure | |||
| UCI Machine Learning | Nearest Neighbor | 75.7 | - | - | - | [121] |
| Decision Tree | 76.3 | - | - | - | ||
| Random Forest | 75.9 | - | - | - | ||
| Naive Bayes | 76.9 | - | - | - | ||
| Aras (House A) | MSA (Margin Setting Algorithm) | 68.85 | - | - | - | [122] |
| SVM | 66.90 | - | - | - | ||
| ANN | 67.32 | - | - | - | ||
| Aras (House B) | MSA (Margin Setting Algorithm) | 96.24 | - | - | - | |
| SVM | 94.81 | - | - | - | ||
| ANN | 95.42 | - | - | - | ||
| CASAS Tulum | MSA (Margin Setting Algorithm) | 68.00 | - | - | - | |
| SVM | 66.6 | - | - | - | ||
| ANN | 67.37 | - | - | - | ||
| Mhealth | K-NN | 99.64 | - | - | 99.7 | [123] |
| ANN | 99.55 | - | - | 99.6 | ||
| SVM | 99.89 | - | - | 100 | ||
| C4.5 | 99.32 | - | - | 99.3 | ||
| CART | 99.13 | - | - | 99.7 | ||
| Random Forest | 99.89 | - | - | 99.89 | ||
| Rotation Forest | 99.79 | - | - | 99.79 | ||
| WISDM, SCUT_NA-A | Sliding window with variable size, S transform, and regularization based robust subspace (SRRS) for selection and SVM for Classification | 96.1 | - | - | - | [124] |
| SCUT NA-A | Sliding window with fixed samples, SVM like a classifier, cross-validation | 91.21 | - | - | - | |
| PAMPA2, Mhealth | Sliding windows with fixed 2s, SVM, and Cross-validation | 84.10 | - | - | - | |
| SBHAR | Sliding windows with fixed 4s, SVM, and Cross-validation | 93.4 | - | - | - | |
| WISDM | MLP based on voting techniques with nb-Tree are used | 96.35 | - | - | - | |
| UTD-MHAD | Feature level fusion approach& collaborative representation classifier | 79.1 | - | - | - | |
| Groupware | Mark Hall’s feature selection and Decision Tree | 99.4 | - | - | - | |
| Free-living | k-NN and Decision Tree | 95 | - | - | - | |
| WISDM, Skoda | Hybrid Localizing learning (k-NN-LSS-VM) | 81 | - | - | - | |
| UniMiB SHAR | LSTM and Deep Q-Learning | 95 | - | - | - | |
| Groupware | Sliding windows Gaussian Linear Filter and NB classifier | 89.5 | - | - | - | |
| Groupware | Sliding windows Gaussian Linear Filter and Decision Tree classifier | 99.99 | - | - | - | |
| CSI-data | SVM | 96 | - | - | - | [125] |
| LSTM | 89 | - | - | - | ||
| Built by the authors | IBK | 95 | - | - | - | [126] |
| Classifier based ensemble | 98 | - | - | - | ||
| Bayesian network | 63 | - | - | - | ||
| Built by the authors | Decision Tree | 91.08 | - | - | 89.75 | [127] |
| Random Forest | 91.25 | - | - | 90.02 | ||
| Gradient Boosting | 97.59 | - | - | 97.4 | ||
| KNN | 93.76 | - | - | 93.21 | ||
| Naive Bayes | 88.57 | - | - | 88.07 | ||
| SVM | 92.7 | - | - | 91.53 | ||
| XGBoost | 96.93 | - | - | 96.63 | ||
| UK-DALE | FFNN | 95.28 | - | - | - | [128] |
| SVM | 93.84 | - | - | - | ||
| LSTM | 83.07 | - | - | - | ||
| UCI Machine Learning | KNN | 90.74 | 91.15 | 90.28 | 90.45 | [129] |
| SVM | 96.27 | 96.43 | 96.14 | 96.23 | ||
| HMM+SVM | 96.57 | 96.74 | 96.49 | 96.56 | ||
| SVM+KNN | 96.71 | 96.75 | 96.69 | 96.71 | ||
| Naive Bayes | 77.03 | 79.25 | 76.91 | 76.72 | ||
| Logistic Reg | 95.93 | 96.13 | 95.84 | 95.92 | ||
| Decision Tree | 87.34 | 87.39 | 86.95 | 86.99 | ||
| Random Forest | 92.3 | 92.4 | 92.03 | 92.14 | ||
| MLP | 95.25 | 95.49 | 95.13 | 95.25 | ||
| DNN | 96.81 | 96.95 | 96.77 | 96.83 | ||
| LSTM | 91.08 | 91.38 | 91.24 | 91.13 | ||
| CNN+LSTM | 93.08 | 93.17 | 93.10 | 93.07 | ||
| CNN+BiLSTM | 95.42 | 96.58 | 95.26 | 95.36 | ||
| Inception+ResNet | 95.76 | 96.06 | 95.63 | 95.75 | ||
| UCI Machine Learning | NB-NB | 73.68 | - | - | 46.9 | [130] |
| NB-KNN | 85.58 | - | - | 61.08 | ||
| NB-DT | 89.93 | - | - | 69.75 | ||
| NB-SVM | 79.97 | - | - | 53.69 | ||
| KNN-NB | 74.93 | - | - | 45 | ||
| KNN-KNN | 79.3 | - | - | 49.82 | ||
| KNN-DT | 87.01 | - | - | 60.98 | ||
| KNN-SVM | 82.24 | - | - | 53.1 | ||
| DT-NB | 84.72 | - | - | 60.05 | ||
| DT-KNN | 91.55 | - | - | 73.11 | ||
| DT-DT | 92.73 | - | - | 75.97 | ||
| DT-SVM | 93.23 | - | - | 77.35 | ||
| SVM-NB | 30.40 | - | - | - | ||
| SVM-KNN | 25.23 | - | - | - | ||
| SVM-DT | 92.43 | - | - | 75.31 | ||
| SVM-SVM | 43.32 | - | - | - | ||
| CASAS Tulum | Back-Propagation | 88.75 | - | - | - | [131] |
| SVM | 87.42 | - | - | - | ||
| DBM | 90.23 | - | - | - | ||
| CASAS Twor | Back-Propagation | 76.9 | - | - | - | |
| SVM | 73.52 | - | - | - | ||
| DBM | 78.49 | - | - | - | ||
| WISDM | KNN | 69 | 78 | - | 78 | [132] |
| LDA | 40 | 34 | - | 34 | ||
| QDA | 65 | 58 | - | 58 | ||
| RF | 90 | 91 | - | 91 | ||
| DT | 77 | 77 | - | 77 | ||
| CNN | 66 | 62 | - | 60 | ||
| DAPHNET | KNN | 90 | 87 | - | 88 | |
| LDA | 91 | 83 | - | 83 | ||
| QDA | 91 | 82 | - | 82 | ||
| RF | 91 | 91 | - | 91 | ||
| DT | 91 | 83 | - | 83 | ||
| CNN | 90 | 87 | - | 87 | ||
| PAPAM | KNN | 65 | 66 | - | 66 | |
| LDA | 45 | 45 | - | 45 | ||
| QDA | 15 | 19 | - | 19 | ||
| RF | 80 | 83 | - | 83 | ||
| DT | 60 | 60 | - | 60 | ||
| CNN | 73 | 76 | - | 73 | ||
| HHAR(Phone) | KNN | 83 | 85 | - | 85 | |
| LDA | 43 | 45 | - | 45 | ||
| QDA | 40 | 50 | - | 50 | ||
| RF | 88 | 89 | - | 89 | ||
| DT | 67 | 66 | - | 66 | ||
| CNN | 84 | 84 | - | 84 | ||
| HHAR(watch) | KNN | 78 | 82 | - | 82 | |
| LDA | 54 | 52 | - | 52 | ||
| QDA | 26 | 27 | - | 27 | ||
| RF | 85 | 85 | - | 85 | ||
| DT | 69 | 69 | - | 69 | ||
| CNN | 83 | 83 | - | 83 | ||
| Mhealth | KNN | 76 | 81 | - | 81 | |
| LDA | 38 | 59 | - | 59 | ||
| QDA | 91 | 82 | - | 82 | ||
| RF | 85 | 85 | - | 85 | ||
| DT | 77 | 77 | - | 77 | ||
| CNN | 80 | 80 | - | 80 | ||
| RSSI | KNN | 91 | 91 | - | 91 | |
| LDA | 91 | 91 | - | 91 | ||
| QDA | 91 | 91 | - | 91 | ||
| RF | 91 | 91 | - | 91 | ||
| DT | 91 | 91 | - | 91 | ||
| CNN | 91 | 90 | - | 91 | ||
| CSI | KNN | 93 | 93 | - | 93 | |
| LDA | 93 | 93 | - | 93 | ||
| QDA | 92 | 92 | - | 92 | ||
| RF | 93 | 93 | - | 93 | ||
| DT | 93 | 93 | - | 93 | ||
| CNN | 92 | 92 | - | 92 | ||
| Casas Aruba | DT | 96.3 | 93.8 | 92.3 | 93 | [133] |
| SVM | 88.2 | 88.3 | 87.8 | 88.1 | ||
| KNN | 89.2 | 87.8 | 85.9 | 86.8 | ||
| AdaBoost | 98 | 96 | 95.9 | 95.9 | ||
| DCNN | 95.6 | 93.9 | 95.3 | 94.6 | ||
| SisFall | SVM | 97.77 | 76.17 | 75.6 | [134] | |
| Random Forest | 96.82 | 79.99 | 79.95 | |||
| KNN | 96.71 | 93.99 | 68.36 | |||
| CASAS Milan | Naive Bayes | 76.65 | [135] | |||
| HMM+SVM | 77.44 | |||||
| CRF | 61.01 | |||||
| LSTM | 93.42 | |||||
| CASAS Cairo | Naive Bayes | 82.79 | ||||
| HMM+SVM | 82.41 | |||||
| CRF | 68.07 | |||||
| LSTM | 83.75 | |||||
| CASAS Kyoto 2 | Naive Bayes | 63.98 | ||||
| HMM+SVM | 65.79 | |||||
| CRF | 66.20 | |||||
| LSTM | 69.76 | |||||
| CASAS Kyoto 3 | Naive Bayes | 77.5 | ||||
| HMM+SVM | 81.67 | |||||
| CRF | 87.33 | |||||
| LSTM | 88.71 | |||||
| CASAS Kyoto 4 | Naive Bayes | 63.27 | ||||
| HMM+SVM | 60.9 | |||||
| CRF | 58.41 | |||||
| LSTM | 85.57 | |||||