Skip to main content
. 2022 Apr 29;22(9):3401. doi: 10.3390/s22093401

Table 6.

Deep Learning Techniques results.

Dataset Technique Metrics References
Accuracy Precision Recall F-Measure
Uci Har CNN 92.71 93.21 92.82 92.93 [154]
LSTM 89.01 89.14 88.99 88.99
BLSTM 89.4 89.41 89.36 89.35
MLP 86.83 86.83 86.58 86.61
SVM 89.85 90.5 89.86 89.85
PAMAP2 CNN 91.00 91.66 90.86 91.16
LSTM 85.86 86.51 84.67 85.34
BLSTM 89.52 90.19 89.02 89.4
MLP 82.07 83.35 82.17 82.46
SVM 84.07 84.71 84.23 83.76
Propio Infrared Images LBP-Naive Bayes 42.1 - - - [155]
HOG-Naive Bayes 77.01 - - -
LBP-KNN 53.261 - - -
HOG-KNN 83.541 - - -
LBP-SVM 62.34 - - -
HOF-SVM 85.92 - - -
Uci Har DeepConvLSTM 94.77 - - - [156]
CNN 92.76 - - -
Weakly Dataset DeepConvLSTM 92.31 - - -
CNN 85.17 - - -
Opportunity HC 85.69 - - - [157]
CBH 84.66 - - -
CBS 85.39 - - -
AE 83.39 - - -
MLP 86.65 - - -
CNN 87.62 - - -
LSTM 86.21 - - -
Hybrid 87.67 - - -
ResNet 87.67 - - -
ARN 90.29 - - -
UniMiB-SAHR HC 21.96 - - -
CBH 64.36 - - -
CBS 67.36 - - -
AE 68.39 - - -
MLP 74.82 - - -
CNN 73.36 - - -
LSTM 68.81 - - -
Hybrid 72.26 - - -
ResNet 75.26 - - -
ARN 76.39 - - -
Uci Har KNN 90.74 91.15 90.28 90.48 [158]
SVM 96.27 96.43 96.14 96.23
HMM+SVM 96.57 96.74 06.49 96.56
SVM+KNN 96.71 96.75 96.69 96.71
Naive Bayes 77.03 79.25 76.91 76.72
Logistic Regression 95.93 96.13 95.84 95.92
Decision Tree 87.34 87.39 86.95 86.99
Random Forest 92.30 92.4 92.03 92.14
MLP 95.25 95.49 95.13 95.25
DNN 96.81 96.95 96.77 96.83
LSTM 91.08 91.38 91.24 91.13
CNN+LSTM 93.08 93.17 93.10 93.07
CNN+BiLSTM 95.42 95.58 95.26 95.36
Inception+ResNet 95.76 96.06 95.63 95.75
Utwente Dataset Naive Bayes - - - 94.7 [159]
SVM - - - 91.6
Deep Stacked Autoencoder - - - 97.6
CNN-BiGRu - - - 97.8
PAMAP2 DeepCOnvTCN - - - 81.8
InceptionTime - - - 81.1
CNN-BiGRu - - - 85.5
FrailSafe dataset CNN 91.84 - - - [160]
CASAS Milan LSTM 76.65 - - - [135]
Bi-LSTM 77.44 - - -
Casc-LSTM 61.01 - - -
ENs2-LSTM 93.42 - - -
CASAS Cairo LSTM 82.79 - - -
Bi-LSTM 82.41 - - -
Casc-LSTM 68.07 - - -
ENs2-LSTM 83.75 - - -
CASAS Kyoto 2 LSTM 63.98 - - -
Bi-LSTM 65.79 - - -
Casc-LSTM 66.20 - - -
ENs2-LSTM 69.76 - - -
CASAS Kyoto 3 LSTM 77.5 - - -
Bi-LSTM 81.67 - - -
Casc-LSTM 87.33 - - -
ENs2-LSTM 88.71 - - -
Proposal ANN 89.06 - - - [160]
SVM 94.12 - - -
DBN 95.85 - - -