Table 6.
Deep Learning Techniques results.
Dataset | Technique | Metrics | References | |||
---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F-Measure | |||
Uci Har | CNN | 92.71 | 93.21 | 92.82 | 92.93 | [154] |
LSTM | 89.01 | 89.14 | 88.99 | 88.99 | ||
BLSTM | 89.4 | 89.41 | 89.36 | 89.35 | ||
MLP | 86.83 | 86.83 | 86.58 | 86.61 | ||
SVM | 89.85 | 90.5 | 89.86 | 89.85 | ||
PAMAP2 | CNN | 91.00 | 91.66 | 90.86 | 91.16 | |
LSTM | 85.86 | 86.51 | 84.67 | 85.34 | ||
BLSTM | 89.52 | 90.19 | 89.02 | 89.4 | ||
MLP | 82.07 | 83.35 | 82.17 | 82.46 | ||
SVM | 84.07 | 84.71 | 84.23 | 83.76 | ||
Propio Infrared Images | LBP-Naive Bayes | 42.1 | - | - | - | [155] |
HOG-Naive Bayes | 77.01 | - | - | - | ||
LBP-KNN | 53.261 | - | - | - | ||
HOG-KNN | 83.541 | - | - | - | ||
LBP-SVM | 62.34 | - | - | - | ||
HOF-SVM | 85.92 | - | - | - | ||
Uci Har | DeepConvLSTM | 94.77 | - | - | - | [156] |
CNN | 92.76 | - | - | - | ||
Weakly Dataset | DeepConvLSTM | 92.31 | - | - | - | |
CNN | 85.17 | - | - | - | ||
Opportunity | HC | 85.69 | - | - | - | [157] |
CBH | 84.66 | - | - | - | ||
CBS | 85.39 | - | - | - | ||
AE | 83.39 | - | - | - | ||
MLP | 86.65 | - | - | - | ||
CNN | 87.62 | - | - | - | ||
LSTM | 86.21 | - | - | - | ||
Hybrid | 87.67 | - | - | - | ||
ResNet | 87.67 | - | - | - | ||
ARN | 90.29 | - | - | - | ||
UniMiB-SAHR | HC | 21.96 | - | - | - | |
CBH | 64.36 | - | - | - | ||
CBS | 67.36 | - | - | - | ||
AE | 68.39 | - | - | - | ||
MLP | 74.82 | - | - | - | ||
CNN | 73.36 | - | - | - | ||
LSTM | 68.81 | - | - | - | ||
Hybrid | 72.26 | - | - | - | ||
ResNet | 75.26 | - | - | - | ||
ARN | 76.39 | - | - | - | ||
Uci Har | KNN | 90.74 | 91.15 | 90.28 | 90.48 | [158] |
SVM | 96.27 | 96.43 | 96.14 | 96.23 | ||
HMM+SVM | 96.57 | 96.74 | 06.49 | 96.56 | ||
SVM+KNN | 96.71 | 96.75 | 96.69 | 96.71 | ||
Naive Bayes | 77.03 | 79.25 | 76.91 | 76.72 | ||
Logistic Regression | 95.93 | 96.13 | 95.84 | 95.92 | ||
Decision Tree | 87.34 | 87.39 | 86.95 | 86.99 | ||
Random Forest | 92.30 | 92.4 | 92.03 | 92.14 | ||
MLP | 95.25 | 95.49 | 95.13 | 95.25 | ||
DNN | 96.81 | 96.95 | 96.77 | 96.83 | ||
LSTM | 91.08 | 91.38 | 91.24 | 91.13 | ||
CNN+LSTM | 93.08 | 93.17 | 93.10 | 93.07 | ||
CNN+BiLSTM | 95.42 | 95.58 | 95.26 | 95.36 | ||
Inception+ResNet | 95.76 | 96.06 | 95.63 | 95.75 | ||
Utwente Dataset | Naive Bayes | - | - | - | 94.7 | [159] |
SVM | - | - | - | 91.6 | ||
Deep Stacked Autoencoder | - | - | - | 97.6 | ||
CNN-BiGRu | - | - | - | 97.8 | ||
PAMAP2 | DeepCOnvTCN | - | - | - | 81.8 | |
InceptionTime | - | - | - | 81.1 | ||
CNN-BiGRu | - | - | - | 85.5 | ||
FrailSafe dataset | CNN | 91.84 | - | - | - | [160] |
CASAS Milan | LSTM | 76.65 | - | - | - | [135] |
Bi-LSTM | 77.44 | - | - | - | ||
Casc-LSTM | 61.01 | - | - | - | ||
ENs2-LSTM | 93.42 | - | - | - | ||
CASAS Cairo | LSTM | 82.79 | - | - | - | |
Bi-LSTM | 82.41 | - | - | - | ||
Casc-LSTM | 68.07 | - | - | - | ||
ENs2-LSTM | 83.75 | - | - | - | ||
CASAS Kyoto 2 | LSTM | 63.98 | - | - | - | |
Bi-LSTM | 65.79 | - | - | - | ||
Casc-LSTM | 66.20 | - | - | - | ||
ENs2-LSTM | 69.76 | - | - | - | ||
CASAS Kyoto 3 | LSTM | 77.5 | - | - | - | |
Bi-LSTM | 81.67 | - | - | - | ||
Casc-LSTM | 87.33 | - | - | - | ||
ENs2-LSTM | 88.71 | - | - | - | ||
Proposal | ANN | 89.06 | - | - | - | [160] |
SVM | 94.12 | - | - | - | ||
DBN | 95.85 | - | - | - |