Skip to main content
. 2022 Apr 29;22(9):3401. doi: 10.3390/s22093401

Table 9.

Transfer Learning Techniques results.

Dataset Technique Metrics References
Accuracy Precision Recall F-Measure
CSI KNN 98.3 - - - [179]
SVM 98.3 - - -
CNN 99.2 - - -
Opportunity KNN+PCA 60 - - - [180]
GFK 59 - - -
STL 65 - - -
SA-GAN 73 - - -
USC-HAD MMD 80 - - - [181]
DANN 77 - - -
WD 72 - - -
Proposal KNN-OS 79.84 85.84 91.88 88.61 [182]
KNN-SS 89.64 94.41 94.76 94.52
SVM-OS 77.14 97.04 79.23 87.09
SVM-SS 87.5 94.39 92.61 93.27
DT-OS 87.5 94.61 92.16 93.14
DT-SS 91.79 95.19 96.26 95.71
JDA 86.79 92.71 93.07 92.89
BDA 91.43 95.9 95.18 95.51
IPL-JPDA 93.21 97.04 95.97 96.48
KNN-OS 79.84 85.84 91.88 88.61
Wiezmann Dataset VGG-16 MODEL 96.95 97.00 97.00 97.00 [183]
VGG-19 MODEL 96.54 97.00 97.00 96.00
Inception-v3 Model 95.63 96.00 96.00 96.00
PAMAP2 DeepConvLSTM - - - 93.2 [184]
Skoda Mini Checkpoint - - - 93
Opportunity PCA 66.78 - - - [185]
TCA 68.43 - - -
GFK 70.87 - - -
TKL 70.21 - - -
STL 73.22 - - -
TNNAR 78.4 - - -
PAMAP2 PCA 42.87 - - -
TCA 47.21 - - -
GFK 48.09 - - -
TKL 43.32 - - -
STL 51.22 - - -
TNNAR 55.48 - - -
UCI DSADS PCA 71.24 - - -
TCA 73.47 - - -
GFK 81.23 - - -
TKL 74.26 - - -
STL 83.76 - - -
TNNAR 87.41 - - -
UCI HAR CNN-LSTM 90.8 - - - [186]
DT 76.73 . - - [187]
RF 71.96 - - -
TB 75.65 - - -
TransAct 86.49 - - -
Mhealth DT 48.02 - - -
RF 62.25 - - -
TB 66.48 - - -
TransAct 77.43 - - -
Daily Sport DT 66.67 . . .
RF 70.38 . . .
TB 72.86 . - -
TransAct 80.83 - - -
Proposal Without SVD (Singular Value Decomposition) 63.13% - - - [188]
With SVD (Singular Value Decomposition) 43.13% - - -
Transfer Accuracy 97.5% - - -
PAMAP2 CNN 84.89 - - - [189]
UCI HAR 83.16 - - -
UCI HAR kNN 77.28 - - - [190]
DT 72.16 - - -
DA 77.46 - - -
NB 69.93 - - -
Transfer Accuracy 83.7 - - -
UCF Sports Action dataset VGGNet-19 97.13 - - - [191]
AMASS DeepConvLSTM 87.46 - - - [192]
DIP 89.08 - - -
DAR Dataset Base CNN 85.38 - - - [193]
AugToAc 91.38 - - -
HDCNN 86.85 - - -
DDC 86.67 - - -
UCI HAR CNN_LSTM 92.13 - - - [194]
CNN_LSTM_SENSE 91.55 - - -
LSTM 91.28 - - -
LSTM_DENSE 91.40 - - -
ISPL CNN_LSTM 99.06 - - -
CNN_LSTM_SENSE 98.43 - - -
LSTM 96.23 - - -
LSTM_DENSE 98.11 - - -