Skip to main content
. 2022 May 8;19(9):5724. doi: 10.3390/ijerph19095724
IAQ index and updates
j surrogate parameter
Φ j * fractional dose
Φj exposure level
Φj,e reference exposure limit
θ IAQ index
r relative impact ratio
xu/xs distribution functions for unsatisfactory/satisfactory IAQ index
LR likelihood ratio
Data processing Data processing
X data vector
rd/1 − rd test data/training data
nd,t/nd,g number of data points in the test/training set
AC model accuracy
ACbl baseline accuracy
TP/TN true positive/negative
FP/FN false positive/negative
N sample size
K number of folds
Units for IAQ parameters
ppm parts per million
μg m−3 microgram per cubic meter
Bq m−3 becquerels per cubic meter
CFU m−3 colony-forming units per cubic meter
Regularization
f cost function
yi true value
x β predicted value
C regularization factor
n number of dimensions
Decision tree/random forest
pj2 probability of j
j class
D tree’s maximum depth
ns/nr minimum number of samples
required to split an internal node/be at a leaf node
nf number of trees
Support Vector Machines
α, β constants
xi inputs
yi output class
M margin half-width
εi slack variables
c0, c1 hyperparameters for K(xi,xj)
K(xi,xj) kernel function
γ kernel coefficient
k-Nearest Neighbors
k constant
d(xi,yi) Euclidean distance
y^ predictions
W weight function
dk−1 neighbour distance
MLP-ANN
R dataset
m/o dimension for input/output
J local gradient of function f
β parameter
y independent variables
δ increment
Logistic regression
x 0 sigmoid’s midpoint of x
x inputs
k logistic growth rate
w coefficient vector