| IAQ index and updates | |
| j | surrogate parameter |
| Φ j * | fractional dose |
| Φj | exposure level |
| Φj,e | reference exposure limit |
| θ | IAQ index |
| r | relative impact ratio |
| xu/xs | distribution functions for unsatisfactory/satisfactory IAQ index |
| LR | likelihood ratio |
| Data processing | Data processing |
| X | data vector |
| rd/1 − rd | test data/training data |
| nd,t/nd,g | number of data points in the test/training set |
| AC | model accuracy |
| ACbl | baseline accuracy |
| TP/TN | true positive/negative |
| FP/FN | false positive/negative |
| N | sample size |
| K | number of folds |
| Units for IAQ parameters | |
| ppm | parts per million |
| μg m−3 | microgram per cubic meter |
| Bq m−3 | becquerels per cubic meter |
| CFU m−3 | colony-forming units per cubic meter |
| Regularization | |
| f | cost function |
| yi | true value |
| x β | predicted value |
| C | regularization factor |
| n | number of dimensions |
| Decision tree/random forest | |
| pj2 | probability of j |
| j | class |
| D | tree’s maximum depth |
| ns/nr | minimum number of samples required to split an internal node/be at a leaf node |
| nf | number of trees |
| Support Vector Machines | |
| α, β | constants |
| xi | inputs |
| yi | output class |
| M | margin half-width |
| εi | slack variables |
| c0, c1 | hyperparameters for K(xi,xj) |
| K(xi,xj) | kernel function |
| γ | kernel coefficient |
| k-Nearest Neighbors | |
| k | constant |
| d(xi,yi) | Euclidean distance |
| predictions | |
| W | weight function |
| dk−1 | neighbour distance |
| MLP-ANN | |
| R | dataset |
| m/o | dimension for input/output |
| J | local gradient of function f |
| β | parameter |
| y | independent variables |
| δ | increment |
| Logistic regression | |
| x 0 | sigmoid’s midpoint of x |
| x | inputs |
| k | logistic growth rate |
| w | coefficient vector |