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Abstract

Organisms are exposed to ever-changing complex mixtures of chemicals over the course of their
lifetime. The need to more comprehensively describe this exposure and relate it to adverse health
effects has led to formulation of the exposome concept in human toxicology. Whether this concept
has utility in the context of environmental hazard and risk assessment has not been discussed in
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detail. In this Critical Perspective, we propose—by analogy to the human exposome—to define
the eco-exposome as the totality of the internal exposure (anthropogenic and natural chemicals,
their biotransformation products or adducts, and endogenous signaling molecules that may be
sensitive to an anthropogenic chemical exposure) over the lifetime of an ecologically relevant
organism. We describe how targeted and nontargeted chemical analyses and bioassays can be
employed to characterize this exposure and discuss how the adverse outcome pathway concept
could be used to link this exposure to adverse effects. Available methods, their limitations,
and/or requirement for improvements for practical application of the eco-exposome concept are
discussed. Even though analysis of the eco-exposome can be resource-intensive and challenging,
new approaches and technologies make this assessment increasingly feasible. Furthermore, an
improved understanding of mechanistic relationships between external chemical exposure(s),
internal chemical exposure(s), and biological effects could result in the development of proxies,
that is, relatively simple chemical and biological measurements that could be used to complement
internal exposure assessment or infer the internal exposure when it is difficult to measure.

Keywords

Exposome; Adverse outcome pathways; Suspect screening; Biomonitoring; Internal exposure;
External exposure

INTRODUCTION

Organisms are exposed to thousands of chemicals from natural and anthropogenic origins
throughout their lifetime. Typically, however, prospective assessments of chemical risk are
based on characterizing potential adverse effects caused by single chemicals. Similarly,
retrospective assessments designed to evaluate the efficacy of prospective assessments are
usually limited to an analysis of a subset of chemicals to which an organism may be
exposed. To fully understand the combined effects of chemicals (Kortenkamp & Faust,
2018), a comprehensive description of exposure and related environmental hazards is
therefore crucial. Monitoring of exposure from the external environment (e.g., via media
such as water or sediments) can be expanded to cover an ever larger number of chemicals,
in part through the use of bioassays for a more integrated assessment (Altenburger et al.,
2019). If the goal, however, is to predict adverse effects on organisms and populations,

the composition and amounts of chemicals (or their transformation products) that are
bioavailable to interact with internal molecular targets are most relevant. To better describe
this internal exposure, human health researchers have developed the concept of a chemical
“exposome,” which comprehensively describes the internal chemical environment. The
ultimate goal of this approach is to provide a clearer linkage between chemical exposures
and adverse effects, recognizing the complex interplay between chemical impacts and the
organism’s responses to contaminant stressors (Escher et al., 2017; G. W. Miller & Jones,
2013; Peters et al., 2011; Rappaport, 2011, 2012; Wild, 2005, 2012).

Historically, ecotoxicology has largely focused on external exposure concentrations for
deriving effect concentrations of concern. Starting in the mid-1980s, however, the concepts
of critical body residues and lethal body burdens, with a focus on single chemicals, began to
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emphasize the relevance of internal concentration (or dose) as opposed to external exposure
(Escher et al., 2011; Jarvinen & Ankley, 1999; McCarty et al., 2011; McCarty & Mackay,
1993; Meador et al., 2008). As for human health assessments, a comprehensive description
of complex internal exposures rather than a focus on individual chemicals could be useful
in both prospective and retrospective assessments of hazards to ensure that the risks of
individual chemicals can be evaluated in the context of mixtures.

The objectives of this Critical Perspective are to provide a useful definition of the
eco-exposome; elucidate the requirements, limitations, and challenges associated with
assessment of the eco-exposome; and identify available experimental and computational
tools for assessment of the eco-exposome. Recent developments in chemical analytics and
biological effects assessment have made possible a more comprehensive description of
chemical exposure in humans. The same technological advancements can be adopted in
ecotoxicology. Therefore, it is timely to discuss the application of the exposome concept for
environmental organisms.

The article is base on presentations and discussion emanating from a workshop coordinated
by the US Environmental Protection Agency and the Helmholtz Centre for Environmetal
Research - UFZ, Germany, held in August 2017 in Duluth, Minnesota, USA.

DEFINITION OF THE ECO-EXPOSOME

The (human) exposome has been defined as the totality of exposure from conception to
end of life, including exposures to exogenous chemicals and natural products, as well

as chemicals generated internally in response to toxic insult or lifestyle factors such as
diet, smoking, and stress (Rappaport, 2011; Wild, 2005, 2012). Recent applications of this
approach include studies investigating the link between air pollution and coronary heart
disease/asthma (Vineis et al., 2020), potential effects of air pollution on lung function in
children (Agier et al., 2019), and the association between in utero chemical exposure and
fetal growth (Agier et al., 2020).

The term “eco-exposome” was introduced in the National Research Council report Exposure
Science in the 21st Century: A Vision and Strategy (National Research Council, 2012). In
that report, the eco-exposome was defined as “the extension of exposure science from the
point of contact between stressor and receptor inward into the organism and outward to the
general environment, including the ecosphere” and included “narrating the flow and pulse of
exposures through the ecosphere, of which humans are part, [promoting] ... a more thorough
investigation of the potential sources of exposure and how these sources can be controlled

to protect public and ecosystem health.” In this definition, the environment was considered
as a meta-organism, and the boundaries separating external and internal exposures were not
clearly defined.

With the goal of harmonizing the assessment of human and environmental health risks, we
propose a narrower definition of the eco-exposome that aligns with the human exposome
definition. Our definition (see Textbox 1) expands on that previously proposed by Escher et
al. (2017) and is focused on the internal concentration in a manner similar to that outlined
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for the assessment of pharmaceuticals in aquatic fauna (T. H. Miller et al., 2018). This
focus on internal exposure is required to improve the linkage between exposure and effects
because typically only chemicals that enter the organism contribute to disruption of cellular
functions, potentially leading to adverse effects (Escher & Hermens, 2004).

Although the human exposome and eco-exposome are defined in similar terms, there are
differences in the application of these concepts. Measurements of the human exposome

are typically limited to nondestructive assessment of blood, urine, or feces. In contrast,
measurements made in the context of the eco-exposome can use whole organisms or
portions thereof, including known or suspected target tissues. In practice, individual
susceptibility represents an important factor for translation of the internal exposure to
effects in humans, whereas in ecotoxicology the assessment is most often focused on
maintenance of self-sustaining populations rather than the health of individuals. With respect
to application of the eco-exposome concept, many species (or model representatives of their
taxa/trophic level) are available for small-scale and/or high-throughput screening studies,
which enables experimental examination of mechanisms and perturbed pathways through
which a given internal exposure leads to adverse outcomes. This direct verification of
hypothesized adverse effects is only possible to a limited extent in humans (see, e.g., Preston
et al., 2020). By comparison with the human exposome, integration of the eco-exposome
over time can be more easily established by trans-sectional analysis; that is, by subsampling
different life stages from an entire population (an example of flame retardants is described
by Su et al. [2017]). Furthermore, for some ecologically relevant organisms, the life span

is short enough that the eco-exposome can be observed during their entire lifetime. One
major challenge of the eco-exposome concept involves the numerous taxonomic groups and
species in an ecosystem; however, one could envisage using selected species as sentinels for
a specific trophic level or environmental compartment, as is often done for ecological risk
assessment (van Leeuwen & Vermeire, 2007).

PRINCIPLES OF THE ECO-EXPOSOME ASSESSMENT

Chemical versus bioanalytical assessment of the exposome

While initial assessments of the human exposome focused largely on chemical
measurements, simultaneous consideration of the biological attributes of the internal
environment may provide additional means to better characterize complex exposures.
Accordingly, some authors have proposed that assessment of the (eco-)exposome should
be complemented by the use of biochemical receptor-binding assays (Chung et al., 2021),
in vitro cellular bioassays (Escher et al., 2017; Wild, 2012), and targeted omics techniques
(Escher et al., 2017; Wild, 2012). Bioassays can be used to measure effects caused by
extracted internal chemicals, thereby improving assessment of the eco-exposome. While
chemical analytics can provide internal exposure information for thousands of exogenous
compounds, current methods cannot detect all chemicals of potential toxicological concern,
so concurrent measures of biological effects may help account for undetected yet
toxicologically important chemicals and provide insight on potential mixture effects such
as synergism or antagonism (Escher et al., 2020).
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Bioanalytical assessment would also allow for improved consideration of the role of
endogenous chemicals synthesized by the body in response to exogenous chemicals

and relevant for signaling processes that trigger diverse toxicity pathways. For instance,
exposure to exogenous chemicals can result in elevated levels of reactive oxygen species
(ROS) normally produced by the body. Elevated ROS levels lead to covalent modification
of a sensor protein and stabilization of the nuclear factor erythroid 2—related factor 2
transcription factor, resulting in induction of antioxidant response pathways (Yamamoto et
al., 2018). While a meta-analysis revealed elevated ROS levels in organisms exposed to
higher levels of some pollutants in the environment (Isaksson, 2010), it is unclear whether
elevated ROS represents a biomarker of exposure or whether this response contributes to
the internal exposure and may mediate adverse effects. Similarly, endogenous hormone
levels may change in response to exposure to an environmental contaminant such as a

sex steroid or thyroid hormone synthesis inhibitor. Here, there is strong evidence that a
change in hormone levels, that is, the internal exposure, may represent a key causative
event for the propagation of adverse effects (Conolly et al., 2017; Crofton, 2008). Over
time, however, this adverse effect may trigger changes to the internal chemical environment
(e.g., through compensatory feedback mechanisms), resulting in an even more complex
situation, which is relevant to an integrated translation of exposure to biological effects.
These types of complex scenarios may be resolved by combining (internal) chemical
exposure assessment with analysis of key biological signaling molecules relevant to known
or suspected toxicity pathways. (A change in signaling molecule abundance can also be
defined as a key event [KE] in an adverse outcome pathway [AOP; see section Making the
Link between Exposure and Effect]. In this Critical Perspective, we consider such changes
to be part of a complex chemical exposure given that these molecules might be coextracted
with exogenous chemicals [see section Extraction] and contribute to an internal chemical
environment associated with toxic effects and organismal responses to such effects.)

The complementary application of chemical analysis and bioassays requires information
to link exposures to adverse effects of regulatory significance. Establishing these links

can be achieved by using the AOP framework. The AOP concept was first described
approximately a decade ago to support the translation of responses measured at different
levels of biological organization into effects germane to environmental risk assessors,
specifically changes in survival, growth/development, and reproduction that influence the
status of populations of organisms (Ankley et al., 2010). An AOP describes the supporting
evidence for an initial interaction of a chemical with a biological macromolecule (the
molecular initiating event [MIE]; e.g., an enzyme, receptor, or DNA) and the subsequent
downstream changes across levels of biological organization (captured as measurable
KEs) that culminate in an apical response of concern, the adverse outcome (Figure 1).
Hundreds of published studies have employed the AOP concept as a method to organize
and interpret biological data in the context of predictive toxicology. For this reason,

the AOP framework has received considerable international support relative to regulatory
activities associated with chemical risk assessment (https://www.oecd.org/chemicalsafety/
testing/projects-adverse-outcome-pathways.htm).

While the AOP concept has proven to be a valuable tool to support effects assessment, it
is limited by not having an explicit consideration of chemical exposure and toxicokinetics
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upstream of the MIE. To address this gap, the aggregate exposure pathway (AEP) framework
was proposed. An AEP describes the pathway from source to environmental media and
external to internal concentrations. Hence, it complements and links to AOPs (Teeguarden

et al., 2016; Figure 1). However, the AEP describes individual chemicals, or groups of
chemicals, linked to a specific MIE as exemplified by perchlorate exposure and inhibition

of the sodium iodine symporter (Hines et al., 2018). The eco-exposome concept provides a
more holistic vision of chemical risk assessment that considers the interactions in complex
mixtures, thereby augmenting the role of AEPs.

Eco-exposome versus mixture risk assessment

A risk assessment of ecological impacts based on individual chemicals does not capture

the reality of most environmental scenarios where exposure is to mixtures of chemicals
(Kortenkamp & Faust, 2018). Historically, assessments of well-defined mixtures of
toxicologically well-characterized chemicals have been performed and combined with
predictive models for concentration addition (for chemicals with similar mode of action)

or independent action (for chemicals with dissimilar action; Faust et al., 2003). A relevant
example of the former approach involves polychlorinated biphenyls (PCBs), polychlorinated
dibenzofurans, and polychlorinated dibenzo-p-dioxins, where potential mixture effects have
been based on a common mechanism of action, activation of the aryl hydrocarbon receptor
(Van den Berg et al., 1998). A mixture assessment can also be performed by summation

of toxic units with or without consideration of the mode of action (Kienzler et al., 2016;
Posthuma et al., 2019). The foregoing approaches to mixture assessment are restricted,
however, to chemicals that are identified as mixture components, can be quantified, and for
which appropriate toxicity data exist. For complex environmental mixtures, these traditional
approaches would only apply to a portion of the chemicals detected by chemical analysis
(Escher et al., 2020).

The eco-exposome concept seeks to comprehensively characterize the internal chemical
environment, including endogenous signaling molecules that may be affected by exposure to
exogenous chemicals. As such, the eco-exposome concept goes well beyond the traditional
assessment of defined chemical mixtures. Because of this expanded mixture perspective, the
eco-exposome assessment is potentially better suited to understanding biological effects in
the context of simultaneous or sequential perturbations for multiple pathways/responses

that derive from unknown components. Furthermore, by combining the eco-exposome
assessment with knowledge of chemical exposure and the mode of action of chemicals

of concern, a mechanistic link between complex exposure scenarios and effect may be
established.

METHODS TO MEASURE AND INTERPRET THE ECO-EXPOSOME

The goal of performing eco-exposome assessments is made possible by the availability of
established methods for sampling, sample extraction, targeted and nontargeted chemical
analyses and bioassays, and data integration and interpretation. In this section, we describe
the nature and application of some of these basic tools (Figure 2). The focus is on principles
for internal exposure assessment and, when available, on organisms in the environment.
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Methods for assessment of external exposure are considered when the approach may be
adapted to internal exposure prediction/assessment. Given that eco-exposome analysis is a
novel approach not yet routinely applied in environmental hazard and risk assessment, the
available tools and feasibility of performing a comprehensive assessment may considerably
change in the future.

An important initial step for eco-exposome assessment is a thorough design and planning

of sample collection. The type of sample (e.g., whole animals vs. specific organs or

body fluids) and the timing/season/frequency of sample collection, possibly including trans-
sectional sampling of life stages or age groups, all dictate the type of information and
associations that can be obtained through an eco-exposome assessment. To discriminate
chemical from nonchemical stressors, information on confounding factors such as nutritional
status, temperature stress, habitat quality, and so on, should be considered for the sampling
design; and appropriate additional samples and data should be collected. Nondestructive
approaches applied to humans, such as analysis of saliva or urine (Bessonneau et al., 2017;
Maitre et al., 2018), usually would not be required for environmental assessments. However,
in instances where these approaches might be required and possible (e.g., threatened

or endangered species, large species), noninvasive sampling techniques may be useful.
Examples include analysis of fish mucus and feces (Ekman et al., 2015; Hano et al., 2018).

An array of methods is available to extract chemicals from biological tissues; however,

none of these methods are comprehensive in terms of analyte coverage. It is common,
therefore, to tailor individual methods to specific chemical classes (e.g., metals vs. organics,
hydrophilic vs. hydrophobic chemicals). Furthermore, exhaustive extracts may contain many
endogenous chemicals, so sample cleanup is often required to avoid damaging analytical
instrumentation and/or confounding effects (e.g., masking effects; see Table 1) in chemical
analysis and bioassays (Reiter et al., 2020). For direct comparison of chemical analysis and
bioassay results, use of the same extraction and cleanup methods (albeit not necessarily the
same sample) is ideal.

Tissues are typically extracted using organic solvents, followed by different cleanup steps,
often focused on the digestion or removal of coextracted lipids or other matrix constituents
(Baduel et al., 2015). Such cleanup steps need to be adapted to the analytes of interest,

to avoid their removal and/or degradation (Schlittenbauer et al., 2015). This is especially
challenging if the methods aim at detecting a wide range of analytes including both
exogenous chemicals and biogenic molecules, such as in nontarget screening (Baduel et

al., 2015). Equilibrium passive sampling with polymers such as silicone can be used as

an alternative extraction technique for neutral, low—-molecular weight chemicals covering a
wide range of hydrophobicity, with octanol-water partition coefficients from approximately
10 to 108. Depending on the size of an organism, passive samplings can be applied to the
whole organism, homogenized tissues, or body fluids (Jahnke et al., 2014; Jin et al., 2013;
Jin, Escher, et al., 2015; Rojo-Nieto et al., 2019). Extraction with polymers avoids or largely
reduces coextraction of the matrix because proteins and ions do not partition into polymers.
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Therefore, passive sampling extracts can be subjected to chemical analysis or bioassays of
the resulting samples without further cleanup.

While it could be interesting—and relevant—to consider different organs (e.qg., liver, brain)
or fluids (e.g., plasma, urine) when characterizing internal exposures, this is difficult for
many ecologically relevant organisms because of their small body size (e.g., invertebrates,
young animals, and small fish species). In these cases, whole-body extractions may

have to be used. Higher levels in specific organs, however, could be diluted by whole-
body extractions. In some cases, toxicokinetic (TK) models developed for larger species
may be used to extrapolate from whole-body to tissue-specific chemical concentrations.
Alternatively, chemical analytics combined with spatial imaging could be applied for small
species (Halbach et al., 2019; Kirla et al., 2016).

Chemical analysis

Chemical analysis methods range from targeted methods that are based on the use

of standard compounds to suspect screening of expected chemicals such as predicted
metabolites without available reference standards to nontarget methods that aim to detect
and identify chemicals unknown from the perspective of described chemical structure,
chromatographic properties, and fragmentation patterns. Similar to extraction methods, the
choices made in designing and optimizing analytical methods will impact the suite of
chemicals that can be detected in both targeted and nontargeted analyses. No single method
will be truly comprehensive. For instance, the choice of the chromatographic method,

the ionization technique, or the use of gas chromatography versus liquid chromatography
for mass spectronomy analyses will limit detection to compounds with amenable
chromatographic properties. However, some of these limitations could be overcome by
combining different methods.

Targeted chemical analysis.—There are thousands of chemicals that could occur in

a given environmental sample. However, by necessity, chemical risk assessments typically
focus only on relatively few of these, defined by the overlapping subset of what is perceived
to be of concern in terms of unacceptable biological effects and what can actually be
measured. In tissues, analytical methods often focus on chemicals with high persistence
(e.g., organic pollutants such as PCBs, dioxins) and/or known/anticipated biological activity
(e.g., polycyclic aromatic hydrocarbons, pesticides, some pharmaceuticals; T. H. Miller et
al., 2018). Persistent organic pollutants have been focused on in the past because of their
high hazard potential.

Targeted approaches have the advantage that extraction and detection can be tailored for
the chemicals(s) of interest, providing maximum specificity, sensitivity, and data quality. In
contrast, if a large number of chemicals is to be detected simultaneously (or if nontargeted
analysis is conducted, see section Nontargeted Chemical Analysis), the analytical protocols
have to compromise toward the detection of a large variety of chemicals. An additional
limitation of targeted analysis is, of course, the need to have a standard for each of the
targeted chemicals.

Environ Toxicol Chem. Author manuscript; available in PMC 2023 January 01.



1duosnuel Joyiny vd3 1duosnuep Joyiny vd3

1duosnue Joyiny vd3

Scholz et al.

Page 9

Suspect screening analysis.—Suspect screening is used to extend chemical screening
beyond a limited number of targets to a set of possibly or likely occurring compounds even
if no reference standards are available. To this end, chromatograms are screened with high-
resolution mass spectrometry (HRMS) for large sets of compounds with known or predicted
structures and molecular masses of concern. Suspect screening can be based on chemical
suspect lists such as that available through the NORMAN Suspect List Exchange (https://
www.norman-network.com/nds/SLE/). Alternatively, suspect screening can be focused on
suspects closely related to the study aim such as predicted metabolites of target compounds
(Krauss et al., 2010). Suspect screening has been widely applied for the analysis of water
and sediment samples (e.g., Chiaia-Hernandez et al., 2014; Hug et al., 2014). Relatively
fewer examples exist for application of this method to body fluids (e.g., human urine or
blood [Plassmann, Brack, et al., 2015; Plassmann, Schmidt, et al., 2015]) or tissue extracts
of environmental organisms (Du et al., 2017; Musatadi et al., 2020).

Nontargeted chemical analysis.—Targeted approaches, even when they detect a large
number and variety of chemicals, cannot detect all chemicals of potential toxicological
relevance. Recognizing this fact, there has been an increasing emphasis on development

of nontargeted analytical approaches for complex mixture assessment that are more
comprehensive in terms of coverage and not restricted to chemicals for which analytical
standards are available (Hollender et al., 2017; Schymanski et al., 2015). Nontarget
screening employs HRMS to determine the mass of molecular ions of chemicals as
accurately as possible. The overwhelming number of signals for which information is
limited typically demands these signals be prioritized prior to their identification. This
prioritization depends on the aim of the study and may address frequent or rare peaks,
peaks with higher intensities, or those occurring only in affected organisms. Identification
of some chemicals can be achieved using databases, such as Wiley EI-MS, NIST-EI-MS, or
METLIN (Milman, 2015). The US Environmental Protection Agency’s chemistry dashboard
—which provides information for more than 700 000 compounds—also can be used to
identify chemical structures in nontargeted HRMS screening studies (McEachran et al.,
2018). Identification of detected chemicals is critical to establishing plausible linkages to
possible biological effects and move from qualitative non-target screening to a quantitative
assessment. However, even when the nontargeted analysis by HRMS does not reveal
compound identity, chemical “fingerprints” consisting of the totality of (nonidentified)
signals may provide insights as to exposure sources and trigger suspect screening for

these fingerprints in the exposure pathway from source to biological tissues (Brack et al.,
2019). To date, non-targeted analytical approaches have rarely been applied to extracts of
environmental species. One recent example is the analysis of contaminants in northern pike,
which identified the plasticizer diethyl phthalate and the surfactant perfluorooctane sulfonic
acid among the compounds with relatively high abundance (Tian et al., 2019). Another
example was provided by reanalysis of full-scan HRMS data from fish fillet samples
previously subjected to targeted analysis. This nontargeted assessment led to identification
of additional perfluoralkyl substances, including polyfluorinated carboxylic acids and
polyfluorinated telomer alcohols, hydroxylated polychlorinated biphenyls, and various
pesticides, herbicides, antifungals, pharmaceuticals, artificial sweeteners, and personal care
products (Baygi et al., 2021).
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Chemical adducts.—Electrophilic chemicals can form covalent bonds with DNA,
proteins, or glutathione, which requires a different approach for analysis compared with
solvent-based extraction of nonbound chemicals. As with unbound chemicals, protocols
are available for targeted as well as nontargeted analyses. The latter protocols are used
for assessment of the adductome, which represents the totality of chemicals bound to
tissues or nucleophiles (Rappaport et al., 2012). Analysis of DNA adducts generally
requires enzymatic digestion of a sample followed by a cleanup step to enrich the adducts
before application of MS-based methods (Balbo et al., 2014). In the case of proteins, the
assessment is typically focused on selected molecules such as serum albumin or hemoglobin
(Rappaport et al., 2012). Proteins with covalent modifications are enriched, digested, and
subsequently analyzed with MS.

Two scenarios for bioanalytical assessment of the eco-exposome are envisioned (Figures

1 and 2). In the first, bio-analytical tools such as in vitro assays would be employed to
measure the activity of extracts as a complement to chemical analyses. Quantification of
estrogenic effects or dioxin-like activities of mixtures extracted from tissue or blood using
in vitro bioassays would represent examples of this approach (Erdmann et al., 2013). In

the second scenario, effect-based methods would directly measure the consequences of
exposure in the species of concern, such as changes in gene or protein expression, enzyme
activity, or endogenous metabolite abundance linked to a specific toxicity pathway or AOP.
The traditional (effect-) biomarker approach reflects this second approach, which integrates
exposure and susceptibility to effects. Again, estrogenic chemicals represent an appropriate
example; thus, induction of the egg yolk protein vitellogenin in male fish provides an
integrated measure of internal exposure to chemicals that stimulate the estrogen receptor
(Cavallin et al., 2016). For both scenarios, there are targeted and nontargeted biological
approaches available (Figure 2).

Targeted bioanalytical assessment.—Targeted approaches may be used to study a
narrow group of chemicals that interact with a specific molecular target (e.g., activation
of the estrogen receptor) or a wide range of chemicals that provoke the same generalized
response to a toxic insult (e.g., markers of oxidative stress). Ideally, targeted bioanalytical
methods should be linked to an effect that is considered adverse and relevant for
maintenance of animal populations. There are a number of examples where such
bioanalytical methods have been applied to extracts of tissues or body fluids (Jin et al.,
2015b), such as the assessment of estrogenic chemicals in dolphin blubber (Yordy et al.,
2010), androgenic chemicals in the liver of various wild animals (Misaki et al., 2015)

and dugongs (Jin et al., 2013), aryl hydrocarbon receptor agonists in fish and seafood
(Kojima et al., 2011), thyroid hormone disruptors in polar bear blubber (Simon et al.,
2013), immunotoxicants in blubber from polar bears and whales (Desforges et al., 2017),
and chemicals in dugong blubber that induce adaptive stress response pathways (Jin et
al., 2015a). Similar assays also have been used for the comparative assessment of surface
waters (Blackwell et al., 2018; Neale et al., 2017; Schroeder et al., 2016). In theory, it is
possible to use these methods to compare effects associated with chemical mixtures in water
and biota; however, this approach would require that extraction procedures used for each
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sample matrix do not affect chemical composition or alternatively that effects on chemical
composition are similar for both sample types. When these types of bioassays are applied

as suites of measurements designed to capture multiple pathway-based bioactivities, the
assessment becomes more comprehensive and closer to a nontargeted approach. Polymerase
chain reaction arrays, targeted sequencing, and targeted MS-based proteome or metabolome
analyses that focus on a diverse set of selected targets or certain groups of targets (Shi et

al., 2016; Roberts et al., 2012; Kurokawa et al., 2004; Harrill et al., 2021) would represent
approaches that are intermediate to traditional targeted and nontargeted assessments.

Nontargeted biological assessment.—There are several omics-based approaches that
can be employed to comprehensively capture system-wide responses without preselection of
specific endpoints (Figure 2). Observed changes at the molecular level not only capture
integrated responses to contaminant mixtures but potentially can be linked to adverse

effects through application of the AOP framework and associated concepts (Brockmeier

et al., 2017). This linkage to adverse effects can be supported by analyzing the enrichment
of predefined pathway-specific gene sets or AOP-related gene sets (Subramanian et al.,
2005) based on curated databases such as the Kyoto Encyclopedia of Genes and Genomes
(Kanehisa & Goto, 2000) or the Comparative Toxicogenomics Database (CTD). The latter
database represents an assembly of gene expression data from hundreds of different studies
with chemical stressors (Davis et al., 2019). One challenge in establishing causative linkages
of chemicals to adverse effects is that it can be difficult to distinguish primary, direct effects
from indirect compensatory and adaptive biological responses. In the future, association

of measured gene/metabolite responses with KEs represented in AOPs may facilitate the
distinction of direct effects responsible for adverse outcomes (Pittman et al., 2018).

A specific benefit of metabolomic analyses is that the MS-based techniques employed can
measure endogenous and exogenous chemicals, thereby providing an integrated data set that
links internal exposure to potential effects (Niedzwiecki, 2019). In addition, these analyses
are generally performed on biofluids such as urine and bile, which provides potentially
important information regarding the metabolism of both endogenously and exogenously
derived chemicals (Bouatra et al., 2013).

Individual omics-based techniques may only show responses to specific classes of
biomolecules. Ideally, therefore, a multi-omics approach should be employed (see Canzler et
al., 2020). Omics-based approaches can be applied directly to an organism sampled from a
contaminated environment. Alternatively, extracts of tissues from an organism could be used
to measure omics responses using in vitro systems. To date, however, this second approach
has only been applied to organisms or cells that were exposed to extracts from water rather
than tissue extracts. For example, Zhen et al. (2018) described the use of metabolomics in

a zebrafish cell line treated with water extracts containing complex chemical mixtures to
define biological pathways perturbed by components of the sample. While such an approach
can support initial identification of potential hazards associated with a given exposure
scenario, additional investigation is required to establish whether a specific risk is actually
relevant to a species of concern in the environment under consideration.
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Challenges, confounding factors, and limitations for assessment of the eco-exposome

Despite the technological advances we have described, there are several challenges
associated with an eco-exposome assessment (Table 1), including the analytical
discrimination of exogenous chemicals from endogenous chemicals present at very high
concentrations. This challenge may hamper efforts to link observed effects to toxic

(but unrecognized) chemicals present as part of a larger mixture. In such cases, an

external exposure assessment (i.e., measurement of these chemicals in environmental
media) may serve as an indicator of potential internal exposure. A key feature of an
eco-exposome assessment is the goal of integrating an organism’s cumulative exposure
over its entire lifetime. In particular, the capture of critical time windows of life stage—
specific susceptibility may be important to link the eco-exposome with adverse effects.

In some cases, it may be sufficient to apply a trans-sectional assessment, which involves
simultaneous monitoring of many organisms in a given population at different life stages. In
addition, there may be cases where the exposure is relatively stable because of the size of
the receiving water (e.g., in large lakes) or because of a continuous chemical discharge (e.qg.,
observed for the river Danube [Rico et al., 2016]). In such instances, it would be feasible to
conduct an exposure assessment over an entire lifetime for organisms that have a short life
span. In cases of intermittent exposure, a complexity may be approached that is difficult to
resolve. These intermittent exposures can be further complicated by life-history factors such
as migration and reproduction. Finally, species-specific factors such as habitat preference
can impact any type of exposure, making it difficult to extrapolate between species. In
general, integration of ecological factors into the exposome is challenging but could be
achieved through various approaches. For instance, ecological parameters could serve as
modulating factors when predicting the transition from exposure to population effects using
the AOP framework (see section Making the Link between Exposure and Effect). Such an
attempt has been suggested to estimate potential combined effects of climate change and
chemical exposure and may be extended to an exposome assessment (Hooper et al., 2013).
Approaches that used Bayesian network models represent a further example to estimate

the impact of chemical exposure versus other environmental factors (e.g., oxygen levels,
temperature, habitat, population structure; Mitchell et al., 2021) with a focus on population
development and could be applied in the exposome assessment as well.

Assessment of the eco-exposome inherently accounts for TK processes that control
chemical uptake and accumulation in exposed organisms. It does not resolve these TK
processes; however, an understanding of TK would be relevant for translating an internal
exposure to an external exposure (“reverse toxicokinetics”) and could provide a basis for
extrapolating internal exposure data to untested species. The TK models used to perform
these extrapolations can be informed by in vitro measurement of key parameters such as
plasma protein binding and intrinsic metabolic clearance (Pearce et al., 2017). For species
extrapolation of effects, toxicodynamic differences between organisms may be important.
For example, cross-species conservation of relevant protein targets for a given chemical and
the subsequent chain of events leading to a potential adverse effect can vary among species.
Computational tools to evaluate molecular target similarity such as SegAPASS (Sequence
Alignment to Predict across Species Susceptibility) could be used to assess cross-species
susceptibility to chemicals of concern (LaLone et al., 2016).
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Information pertaining to nutritional status, behavior, and duration/fluctuations in exposure
may also be important for cross-species extrapolation of exposure and effects. Tracers of
diet and habitat (e.g., carbon and nitrogen stable isotope ratios, fatty acids) have been used
to assess dietary exposures to chemical stressors and examine risk relative to population
development (Bracey et al., 2020; Cabana & Rasmussen, 1994; Hoffman et al., 2020). These
studies show that diet, trophic level, habitat, and behavior (movement) can vary by life stage,
resulting in stage- or age-specific changes in both individual exposure and translation of
external exposure to internal concentration. These stage- or age-specific changes result in
substantial interpopulation variability in risk, especially when integrated over an animal’s
lifetime. These tracers may also be applied to estimate the contribution of nonchemical
stressors such as the presence of invasive species which can affect diet, nutrition, or habitat
(Lepak et al., 2019). Finally, because the ultimate goal of environmental risk assessment

is the protection of populations and ecosystems, a translation from the individual level

is required. This is also a major difference relative to the focus of human exposome
assessments on individual health, which requires additional efforts to address the population
relevance. The translation from the individual to the population is a challenging task and
cannot be experimentally verified easily. Therefore, at least for a screening-level analysis,
this might be achieved using computational tools to predict population responses (Kramer et
al., 2011; Perkins et al., 2019).

While some of the limitations described in this Critical Perspectives are challenging

to overcome, practical application of the eco-exposome concept nonetheless enables
development of a formalized framework for defining plausible linkages between exposure
and effects. At present, it is somewhat difficult to apply experience gained from human
exposome assessments because many of these have been hypothesis-driven and/or restricted
to the assessment of a fairly limited (<100) number of analytes (Huhn et al., 2021).

MAKING THE LINK BETWEEN EXPOSURE AND EFFECT

The goal of a comprehensive exposure assessment is to provide a basis for diagnosis of
chemicals or groups of chemicals to which organisms were exposed and/or reliable and
quantitative prediction of adverse effects. A variety of agnostic (i.e., nontarget) statistical
and computational approaches, including logistic regression, partial least squares regression
(PLS), and machine learning, have been utilized to identify environmental factors associated
with biological effects in both eco- and human exposome research (Collette et al., 2019;
Jeong et al., 2018; Rappaport, 2012; Zheng et al., 2020). For example, Collette et al. (2019)
used PLS combined with cross-validated predictive residuals analyses to identify stressors
related to endogenous metabolite profiles in a zebrafish cell line exposed to water sample
extracts from 38 different US streams. A comparative assessment of analytical, regression-
based approaches for exposome studies indicated multivariate approaches (e.g., sparse

PLS, Graphical Unit Evolutionary Stochastic Search) as preferable to univariate approaches
(Agier et al., 2016). Alternatively, the Connectivity Map approach applied to relate omics
responses in fish to chemicals in water samples could be applied to establish links to internal
concentrations (Wang et al., 2016). Ontology-based analysis of effect patterns (Wang et al.,
2019) or machine learning approaches (Nagata et al., 2014) established in other scientific
fields also could be adapted to discover associations in an eco-exposome context.
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Several studies have integrated prior knowledge of chemical-biological interactions (e.g.,
genes, metabolites) to link external exposures to observed effects on the transcriptome using
information from databases such as CTD (Schroeder et al., 2017; Williams et al., 2011).
Given the absence of standardized data analytics approaches and a bias of a priori methods
toward known exposure—effect associations, an integration of multiple lines of evidence
stemming from agnostic and a priori knowledge-derived analyses may be the best available
option. A study by Perkins et al. (2017) demonstrated how context likelihood of relatedness
analysis can be integrated with a priori knowledge of chemical-gene interaction data to
identify chemicals of concern. Another example of an integrative approach is the “meet

in the middle” analysis deployed by a human exposome study where ultra-fine particle
exposure and asthma were linked to several perturbed metabolic pathways, in part via
logistic regression (Jeong et al., 2018).

While agnostic approaches are appropriate for identifying potential associations between
exposure and effects, the establishment of causal links typically requires the incorporation of
existing or new mechanistic information. The AOP framework is designed to facilitate the
establishment of causal relationships between endpoints based on plausible relationships
examined using weight-of evidence criteria (Becker et al., 2015). As such, AOPs are
uniquely suited for identifying and supporting a mechanism-based link between chemical
exposure and adverse effect(s). Eco-exposome assessments can benefit from integration of
the AOP concept in at least two ways (Figure 3). First, AOPs such as those cataloged in

the open-source AOP wiki (https://aopwiki.org/) can be used to predict potential adverse
effects based on chemical/bioanalytical information obtained as part of the assessment.
Second, information from AOPs can be used to identify relevant bioanalytical measurements
that might be needed to address apical endpoints of potential concern in a given eco-
exposome assessment scenario. For example, if an eco-exposome analysis is aimed at
resolving potential reproductive effects in fish, there are several gene expression and/or
metabolomic endpoints relevant to estrogen or androgen signaling or steroid hormone
synthesis (Ankley et al., 2009). Conversely, eco-exposome measurements could be used to
inform the development of AOPs. Specifically, the analytic portion of an eco-exposome
analysis may indicate the presence of chemical stressors (or bioactivities) of concern,
leading to targeted prioritization of AOP development based on the identification of relevant
MIEs.

A major challenge associated with integration of the AOP and eco-exposome concepts is
the need to address chemical mixtures that include individual components acting through
known and unknown MIEs (and corresponding AOPS). To address this challenge, recent
efforts have focused on the development and use of interactive AOP networks as a basis for
predicting mixture effects (Knapen et al., 2018; Villeneuve et al., 2018). These efforts, while
in their early stages, nonetheless offer a conceptual basis needed to apply pathway-based
approaches to the prediction of toxicity associated with complex chemical mixtures (e.g.,
Ankley et al., 2020). Databases that link pathway information and molecular targets to
MIEs and KEs may be used to infer known AOPs from omics data (Pittman et al., 2018).
Conversely, toxicogenomic assessments may generate new hypotheses for AOPs targeted by
an internal exposure and lead to the further development or application of targeted assays
that support exposure assessment (Figure 2).
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In principle, linked AOP-exposome assessments could provide a basis for tracing back
from MIEs or downstream KEs to specific chemical stressors of greatest concern from
an effects perspective. Examples of this type of retrospective analysis in environmental
surveillance have been provided by Schroeder et al. (2016) and Corsi et al. (2019), albeit
for external exposure assessment. Bioinformatic approaches such as the AOP Explorer,
Bayesian network analysis, and other network-based tools can facilitate this type of
decoding the eco-exposome for both the prediction of adverse effects and the diagnosis
of exposure (Knapen et al., 2018; Perkins et al., 2019; Villeneuve et al., 2018).

An additional complicating factor in establishing links between exposure and effects is the
time-varying nature of internal exposures. Furthermore, adaptation and recovery may be
possible across a wide range of exposures, while exposures that exceed a critical threshold
or persist for a sufficiently long period of time may overwhelm cellular (e.g., damage
repair) and systemic physiological (e.g., homeostatic) defense mechanisms. Quantitative
AOP models could be used to account for biochemical and physiological adaptations
mediated by feedback loops, as illustrated by an example for steroid synthesis inhibitors
and their effects on reproduction in fish (Conolly et al., 2017; Doering et al., 2019).

SUMMARY AND PROSPECTUS

Among the greatest challenges facing toxicologists is the need to comprehensively

assess exposure and establish causal linkages between this exposure and potential or
observed biological changes. To assist in predicting risks associated with these exposures,
toxicologists in the human health community proposed the concept of the exposome. While
basing estimates of risk on some measure of an organism’s lifelong internal exposure

to chemicals is intuitively appealing—and certainly reasonable from a toxicological
perspective—it is emerging technologies in the areas of analytical chemistry, molecular
biology, and informatics that have made assessment of the exposome a truly practical notion.

Incorporation of the exposome concept into ecological risk assessments is a logical
evolution. There are, however, important differences between human health and ecological
assessments with respect to the collection and interpretation of exposome data. Ecologically
relevant species of concern may be very short-lived and provide comparatively small
sample masses (relative to humans), which can result in the need for innovative sampling
approaches such as the pooling of organisms and collection over a longer time period.

In other instances, collection of eco-exposome data may be easier than for human health
analyses; for example, for most species of interest it is possible to employ terminal
(destructive) sample collection in both field and laboratory settings. In contrast, human
biomonitoring studies are often based on the collection of body fluids such as blood or urine,
which are not necessarily representative of the complete internal exposome.

Interpretation of exposome data presents different challenges for ecological versus human
health assessments. For example, in ecological risk assessments, there is an emphasis on
interpretation of exposure information in the context of population- rather than individual-
level responses. In this Critical Perspective we have emphasized the complementary use
of chemical analyses and bioassays as a means of evaluating the presence and integrated
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bioactivity of multiple contaminants operating via common or different toxicity pathways
and capturing molecular and biochemical responses to an internal contaminant exposure.

By incorporating molecular and biochemical endpoints into an eco-exposome assessment,

it may be possible to “flag” the possible occurrence of undetected but biologically active
chemicals. Such data also provide critical information required to interpret potential adverse
effects on organisms of interest. Ultimately, the need to understand and predict risks
associated with complex chemical mixtures requires a means to relate the resulting exposure
(i.e., the exposome) to apical effects of interest to risk assessors. The AOP framework is
uniquely well suited for this purpose.

Although the eco-exposome concept is itself relatively new, the basic approaches it
encompasses are not. For example, ecotoxicologists have for many years emphasized the
utility and importance of using internal chemical dose as a basis for predicting toxic effects.
We are confident that as the eco-exposome concept is incorporated into assessment scenarios
ranging from environmental monitoring to quantitative predictions of risk, the challenge of
addressing the ecological effects of complex mixtures will become increasingly tractable.
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TEXTBOX 1:
Definition of the eco-exposome

The eco-exposome represents the totality of internal exposure over a lifetime to
individuals of a given species. This includes exposure to anthropogenic chemicals, their
biotransformation products, and/or adducts. Endogenous signaling chemicals, changed in
response to exposure of anthropogenic chemicals, could contribute to the totality of an
internal exposure and the translation of this exposure to biological responses.
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FIGURE 1:

The eco-exposome assessment in relation to aggregate exposure pathways, cellular toxicity
pathways, and adverse outcome pathways. The fish sketch represents one possible organism
for which an eco-exposome assessment could be conducted. Endogenous chemicals are
chemicals normally synthesized by the body that are involved in some type of cell signaling
pathway. The levels of these endogenous chemicals may change as a direct consequence of
exposure to exogenous chemicals and/or because of cellular and organismal responses to
toxic effects. AEP = aggregate exposure pathway; AOP = adverse outcome pathway; MIE =
molecular initiation event; KE = key event; AO = adverse outcome.
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FIGURE 2

Analytical and effect-based methods to characterize the eco-exposome.
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FIGURE 3:
Benefits of the integration of the eco-exposome concept and the adverse outcome pathway

framework. AOP = adverse outcome pathway.
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