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The concept of pan-genome, which is the collection of all genomes from a population, has shown a great potential in ge-

nomics study, especially for crop sciences. The rice pan-genome constructed from the second-generation sequencing

(SGS) data is about 270 Mb larger than Nipponbare, the rice reference genome (NipRG), but it is still disadvantaged by in-

completeness and loss of genomic contexts. The third-generation sequencing (TGS) with long reads can help to construct

better pan-genomes. In this paper, we report a high-quality rice pan-genome construction method by introducing a series of

new steps to deal with the long-read data, including unmapped sequence block filtering, redundancy removing, and se-

quence block elongating. Compared to NipRG, the long-read sequencing-based pan-genome constructed from 105 rice ac-

cessions, which contains 604Mb novel sequences, is much more comprehensive than the one constructed from ∼3000 rice

genomes sequenced with short reads. The repetitive sequences are the main components of novel sequences, which partially

explain the differences between the pan-genomes based on TGS and SGS. Adding six wild rice accessions, there are about

879 Mb novel sequences and 19,000 novel genes in the rice pan-genome in total. In addition, we have created high-quality

reference genomes for all representative rice populations, including five gapless reference genomes. This study has made

significant progress in our understanding of the rice pan-genome, and this pan-genome construction method for long-

read data can be applied to accelerate a broad range of genomics studies.

[Supplemental material is available for this article.]

Since its first establishment in bacteria research (Tettelin et al.
2005), the concept of pan-genome refers to a notion that an indi-
vidual only contains a portion of genes of its species. Thus, pan-
genome construction anddetermination of gene presence-absence
variations (PAVs) have been an important subject in prokaryotic
and eukaryotic genome research, particularly with the rapid pro-
gress of sequencing technologies. Using the second-generation se-
quencing (SGS) technology, especially the Illumina sequencing
platform (sequencing by synthesis) with reads shorter than 200
bp, pan-genomes of major crops have been constructed, including
rice (Wang et al. 2018; Zhao et al. 2018), maize (Haberer et al.
2020), and soybean (Li et al. 2014). Significant amounts of gene
PAVs in major crop species have been revealed, and some of
them are important in crop improvement (Della Coletta et al.
2021). However, pan-genomes constructed from SGS data are dis-
advantaged by incomplete genome coverage and inaccurate gene
prediction. These problems can be largely resolved by long-read se-
quencing (LRS, also known as the third-generation sequencing

[TGS]) technology, which has been applied for constructing pan-
genomes in rapeseed (Song et al. 2020), soybean (Liu et al.
2020), tomato (Alonge et al. 2020), barley (Jayakodi et al. 2020), ap-
ple (Sun et al. 2020), and rice (Qin et al. 2021). However, the qual-
ity of a species pan-genome is determined by the sample
representativeness and population size as well as the construction
methods. Due to their importance, previously reported pan-ge-
nomes of major crop species constructed from SGS data and
from small/or less representative samples remain to be improved
and validated.

Here, we report an effort to construct high-quality pan-ge-
nomes for Asian cultivated rice, Oryza sativa L. (OS) using 105
OS accessions representing all of its major populations plus six ac-
cessions of its wild relatives, Oryza rufipogon (OR), using both TGS
and SGS. In addition to the gapless high-quality reference ge-
nomes for five of the major OS populations, the constructed rice
pan-genomes validated and greatly expanded the current rice
pan-genome constructed from the 3010 rice genomes (3K-RG) us-
ing SGS.
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Results

High-quality sequencing and assembly of genomes

for major OS populations

We selected 75 diverse rice accessions (Methods; Supplemental Ta-
ble S1) and sequenced themwith both Oxford Nanopore Technol-
ogies long-read (with a mean depth of 68.71×) (Supplemental
Table S2) and Illumina short-read (with a mean depth of 69.04×)
(Supplemental Table S3) platforms. With a total of 3 TB of raw
data, the 75 rice genomes were first de novo assembled and pol-
ished with both long reads and short reads, with a mean N50 of
22.21 Mb for contigs. The polished contigs were corrected and as-
sembled into chromosome-level scaffolds
with ameanN50 of 33.08Mb and amean
Benchmarking Universal Single-Copy
Orthologs (BUSCO) score of 98.25% for
these 75 genomes.

Another 13 assembled genomes
from other batches (Supplemental Table
S4) in addition to 25 TGS OS genomes
from public databases (Supplemental Ta-
ble S5) were also included in this study.

Assembly of gapless and high-quality

genomes for representative

rice populations

A total of nine genomes with fewest gaps
for representative rice populations (Sup-
plemental Table S6) were selected, includ-
ing the rice reference genome NipRG. For
NipRG, most (43, 58.9%) of its 73 gaps
were filled with corrected reads and pol-
ished contigs from 15 Geng/japonica (GJ)
genomes (Methods), and its genome was
increased from 373 to 395 Mb (Supple-
mental Fig. S1A; Supplemental Table S6).
For representative rice populations, we
applied similarmethods to create five gap-
less and three high-quality genomes. The
five gapless genomeswere for populations
Aus (cA,NATELBORO,386Mb),Xian (ind-
ica)-1B (XI-1B, PR106, 391 Mb), Xian-2
(XI-2, LARHAMUGAD, 391 Mb), Xian-3
(XI-3, LIMA, 393 Mb), and tropical Geng
(GJ-trp, KETANNANGKA, 389 Mb). The
three high-quality genomes were for Bas-
mati (cB, ARC10497, 387Mb), subtropical
Geng (GJ-sbtrp, CHAOMEO, 379Mb), and
temperateGeng (GJ-tmp,Qiutianxiaoting,
388Mb)with4, 3, and54gaps, respective-
ly (Supplemental Fig. S1B–I; Supplemen-
tal Table S6).

Construction of the rice pan-genome

We constructed a high-quality rice pan-
genome from 111 rice genomes (Supple-
mental Table S1; Supplemental Fig. S2A–
D). A series of new steps were adopted
(Supplemental Fig. S3) to deal with long
reads. The rice pan-genome had a total
of 879Mb nonredundant novel sequenc-

es when considering homologies of more than 500 bases with se-
quence identity of at least 90%. The size of novel sequences was
still huge (>500Mb) even if we set the sequence identity threshold
to 50% (Supplemental Fig. S4A). Transposable elements (TEs) com-
prisedmore than half of novel sequences, including retroelements
(52.71%) and DNA transposons (16.05%). Gypsy, a long terminal
repeat (LTR) retroelement, accounted for 47.83%of novel sequenc-
es. The novel sequences were distributed widely but not evenly
across each chromosome (Fig. 1A). Chr 1 contained the highest
number of novel sequences, and Chr 11 had the highest length
of novel sequences, as compared to other chromosomes (Supple-
mental Fig. S4B,C). Genomic regions containing high densities of

B

A

Figure 1. Genomic features of the rice pan-genome derived from 111 rice accessions. (A) A Circos dis-
play of the rice pan-genome. From outer to inner circles, they stand for (a) chromosomes (centromeres are
in red), (b) novel sequences distributions, (c) insertion and (d ) deletion distributions (≥50 bp), (e) GC
content distributions (orange), ( f ) gene distributions (blue), (g) transposable element distributions (light
red), and (h) frequent translocation regions (≥20 translocation events in 1Mb). (B) Composition of trans-
posable elements in terms of the percentages of the genome size in the 111 rice accessions. (∗) NipRG.
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novel sequences tended to locate near centromeres (P<0.001,Wil-
coxon rank-sum test [WRST]), except two peaks near the telomeres
of Chr 4 and Chr 11 (Supplemental Fig. S4D–F). Different distribu-
tion patterns were observed for structural variations (SVs), al-
though high densities of novel sequences tended to have high
densities of deletions and translocations (Fig. 1A; Supplemental
Figs. S4G, S5A–I). Among all the rice genomes, the OR genomes
contained significantly more LTRs than OS genomes did (P=5.4 ×
10−5, WRST) (Fig. 1B), whereas genomes of HR12 and Suijing18
had far fewer LTRs, consistent with previous studies (Mahesh
et al. 2016; Nie et al. 2017).

A total of 19,319 novel protein-coding genes (2132 novel
gene families) absent in the MSU7 were predicted in the rice
pan-genome. Of these novel genes, 89.5% genes contained at least
one functional domain, including 66.3%genes annotated by Pfam
(Supplemental Fig. S6A). Using 122 RNA-seq data sets from roots
and leaves of 61 various rice accessions (Kawakatsu et al. 2021),
we found 19.9% of novel genes and 42.6% of MSU7 genes had ex-
pression evidence in at least one sample (Supplemental Fig. S6B).

With the rice pan-genome,weused the “map-to-pan” strategy
(Wanget al. 2018) to reveal gene (or gene family) PAVs (Fig. 2A).We
first showed that different long-read sequencing platforms and se-
quencing depths had very limited impact on the gene family PAV
assessment (Supplemental Fig. S7A).We thenestimated that the to-
tal number of gene families could reach 20,000 when the sample
size was approaching 60, although the number of the core gene
families was expected to be lower if more samples were included
(Fig. 2B; Supplemental Fig. S7B). In the rice pan-genome, 65.7%
(13,227) were core gene families (presented in all samples), 14.4%
(2890) were softcore or candidate core gene families (presented in
more than 90% of samples), 19.6% (3,938) were distributed or dis-
pensable gene families (present in <90% but more than one of the
samples), and only 0.2% (45) were private or unique gene families
(present only in one single sample) (Fig. 2C). All private gene fam-
ilies had only one member per gene family (Fig. 2D). When single
genes instead of gene families were used as the units, the rice pan-
genome consisted of 75,305 (55,986 MSU7+19,319 novel) genes
with 36.5% (27,460) core genes, 15.0% (11,325) softcore genes,
and 48.5% (36,504) distributed genes. Gene families with more
members tended to be core, and the opposite was also true for the
softcore or distributed gene families (Fig. 2D). The core or softcore
genes were enriched in GO terms like regulation of flower develop-
ment, negative regulation of transcription, and DNA-templated
and trichome morphogenesis (Supplemental Fig. S7C), whereas
distributed or private genes were enriched in GO terms like plant-
type hypersensitive response, cellular water homeostasis, and oli-
gosaccharide metabolic process (Supplemental Fig. S7D).

Differentpopulations/subpopulationsvaried in termsofpan-ge-
nomesizesandtheproportionsof theircoreanddistributedgenefam-
ilies/genes. XI, GJ, cA, cB, and OR had the pan-genomes of 19,947/
72,799, 19,848/70,943, 19,528/68,615, 19,674/69,400, and 19,679/
70,775 gene families/genes, respectively, and 73.5%/46.5%, 76%/
50.7%, 81.3%/59.2%, 78.2%/54.5%, and 78.3%/55.0% of their
gene families/geneswere core (Fig. 2B).Gene family PAV-based classi-
fication of the 105OS accessionswas largely consistentwith previous
classification of 3K-RG using single nucleotide polymorphisms (Fig.
2E,F; Supplemental Fig. S7E,F; Wang et al. 2018).

Comparison of PAVs derived from SGS and TGS

In order to understand the impact of the sequencing technologies
on pan-genome analysis, we compared the gene PAVs derived from

SGS and TGS data separately for 75 rice accessions. Jaccard Indices
(JIs) of gene family PAVs detected by SGS and TGS were 0.7–1.0. In
particular, population GJ was the most consistent group with the
highest JIs, whereas XI was the most inconsistent group (Fig.
3A). This inconsistency occurred primarily in the TGS-detected re-
gions but not in the SGS-detected regions (Fig. 3B,C). Population
XI had a higher percentage of gene families/genes detected by
TGS, but not SGS, than that of GJ (Fig. 3B; Supplemental Fig.
S8A,B). We divided genes into three groups: TGS-preferred, SGS-
preferred, and no-preferred. GO enrichment analysis indicated
that TGS-preferred genes were enriched in GO terms like sulfur
amino acid metabolic process, response to glucose, and response
to sucrose (Supplemental Fig. S8C), whereas SGS-preferred genes
were enriched in the GO terms like protein N-linked glycosylation
(Supplemental Fig. S8D). We compared the gene features preferred
in the two different sequencing technologies. TGS-preferred genes
had higher GC contents and shorter CDS lengths than SGS-pre-
ferred ones (Fig. 3D,E). Most SGS-preferred genes had all CDS re-
gions overlapping with repeat elements (Fig. 3F), which were
related to DNA transposons and LTRs (Supplemental Fig. S8E,H).
However, genes with a higher percentage of LINEs (P=3.2 ×
10−11, one sided WRST, FDR=9.3 ×10−10) and RC/Helitron (P=
5.9 ×10−9, one sided WRST, FDR=8.5 × 10−8) were more frequent-
ly detected in TGS than in SGS (Supplemental Fig. S8E–J). These re-
sults suggest that SGS data tend to have a higher false-positive rate
in detecting gene PAVs, especially for genes containing repetitive
sequences. A few examples of gene absence (Fig. 3G; Supplemental
Fig. S8K) and gene presence (Fig. 3H; Supplemental Fig. S8L) iden-
tified by TGS, but missed by SGS, are shown. Because the read
alignment depths of the mapped regions in these examples were
approximately the same as that for TGS data (∼60×), we conclude
that gene PAVs or SVs supported by TGS data are real.

Comparison of the pan-genomes of 111 rice accessions

and 3K-RG

In order to compare the completeness of TGS based pan-genomes
from 111 rice accessions and the previously published 3K-RG
pan-genome derived from SGS data (Wang et al. 2018), we con-
structed two pan-genomes SGS (63-SGSRG) and TGS (63-TGSRG),
from the same 63 rice accessions used in both projects, and then
mapped the repeat-masked novel sequences to different pan-ge-
nomes at the genome sequence level. Twelvepairwise comparisons
weremade between novel pan-genome sequences from the follow-
ing data sets: 111-TGSRG (192 Mb/879 Mb nonrepeat sequences),
3K-RG (174 Mb/268 Mb nonrepeat sequences), 63-SGSRG
(65 Mb/120 Mb nonrepeat sequences), and 63-TGSRG (84 Mb/
339Mbnonrepeat sequences) (Supplemental Fig. S9A–L).At thege-
nomic sequence level, 92.4% (60Mb/65Mb) of the 63-SGSRGnov-
el sequences could be mapped to the 63-TGSRG, and 81.8% (69
Mb/84 Mb) of the 63-TGSRG novel sequences (length≥100 bps,
identity≥90%, E-value≤1×10−5) could be mapped to the 63-
SGSRG (Supplemental Fig. S9I–L). We identified few differences
presented in the total lengths of the mapped regions when the
identity percentage cutoff was set lower than 90% (Supplemental
Fig. S9A–L). Two conclusions were reached from these compari-
sons. First, with the same sequencing technology but different
numbers of accessions, more novel sequences could be detected
from more accessions (Supplemental Fig. S9C,E,H,J). Second,
with the same accessions but different sequencing technologies,
more novel sequences could be detected from TGS than from SGS
(Supplemental Fig. S9I,L).

The rice pan-genome derived from long reads
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We also compared the novel genes discovered from 111-
TGSRG, 63-TGSRG, 3K-RG, and 66-RG (53 OS and 13 OR represen-
tative accessions) (Zhao et al. 2018). With the same methods to
drop incomplete or short transcripts and select the protein se-
quence of the longest transcript for each gene from MSU7 and
66-RG, a total of 22,250 novel genes were obtained. Similar to
the genomic sequences results, we observed a high mapping rate
of the 3K-RG to the 63-TGSRG and 111-TGSRG at the gene se-
quence level, indicating that the pan-genomes constructed from
TGS were more complete. A total of 10,844 (87.0%) novel genes
discovered from 3K-RG could be mapped to the 111-TGSRG and
9760 (78.3%) novel genes could be mapped to the 63-TGSRG.
Similarly, 17,997 (80.9%) novel genes from 66-RG could be
mapped to the 111-TGSRG. However, only 10,754 (55.7%) of
111-TGSRG novel genes and 5397 (58.4%) of 63-TGSRG novel
genes could be mapped to the 3K-RG (Supplemental Table S7).
Overall, the gene level mapping rates were lower than genomic
sequence level mapping rates for pan-genome comparison

(Supplemental Table S8). Similar results were obtained at the pro-
tein level comparison of the pan-genomes at the global identity
cutoffs of 95% and 50% (Supplemental Tables S9, S10). Thus,
the TGS data in this study significantly increased the total number
of gene families/genes in the rice pan-genome. Based on these
comparisons and considering the presence of distributed and pri-
vate gene families, our results suggest that the current OS pan-ge-
nome consisting of 75,305 (20,122) protein-coding genes
(families) might be an underestimate of the real numbers of genes
and gene families in the world collection of the OS germplasm.

Comparison of OS and OR pan-genomes

To understand the difference between the OS and OR pan-ge-
nomes, we compared the pan-genome constructed from 105 OS
rice accessions (105OS-TGSRG) and that from six OR rice acces-
sions (6OR-TGSRG). In contrast to the size of 604 Mb (133 Mb
nonrepeat) novel sequences in the 105OS-TGSRG pan-genome, a
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Figure 2. Gene family PAVs in 111 rice accessions. (A) Heatmap of gene family PAVs of 111 rice accessions. (B) The pan-genome size estimation using 111
rice accessions for all rice accessions and subpopulations (All, Wild, XI, cA, GJ, cB). (C) The sample numbers and percentages of core, softcore, distributed,
and private gene families. (D) The percentage of core, softcore, distributed, and private members in gene families. (E) The PCA analysis of 111 rice acces-
sions using gene family PAVs. (F) The clustering of 111 rice accessions using gene family PAVs.
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total of 363Mb (90Mbnonrepeat) novel sequenceswere identified
in the 6OR-TGSRG pan-genome. With repeat sequences masked,
73.7% (98 Mb/133 Mb) of novel sequences from 105OS-TGSRG
could bemapped to 6OR-TGSRG, and80% (72Mb/90Mb) of novel
sequences from 6OR-TGSRG can be mapped to 105OS-TGSRG.

Compared with the total 17,961 gene families in MSU7,
105OS-TGSRG and 6OR-TGSRG contain 20,035 and 19,679 gene
families, and 98.9% (17,772/17,961) gene families in MSU7 could
be found in 6OR-TGSRG, 97.9% (19,614) 105OS-TGSRG gene fam-
ilies were present in the 6OR-TGSRG, and 99.7% (19,614) 6OR-
TGSRG gene families were detectable in the 105OS-TGSRG (Fig.
4A,B). Overall, 68.5%, 11.8%, 19.1%, and 0.2% of the gene fami-
lies in the 105OS-TGSRG were core, softcore, distributed, and pri-
vate, respectively. Most (13,227) of the core gene families were
shared among 105OS-TGSRG and 6OR-TGSRG (Fig. 4C). The sim-
ilarity among 6OR-TGSRG was lower than that among 105OS-

TGSRG (Fig. 4D). The 105-TGSRG pan-genome contained a total
of 17,961 gene families each with at least one MSU7 gene and
2074 gene families with noMSU7 gene.When including the novel
sequences and 65 novel gene families from the 6OR-TGSRG, we
obtained a total of 275 Mb (879 Mb minus 604 Mb) newly discov-
ered novel sequences and 2139 novel gene families. The GO en-
richment analysis indicated that these OR-specific genes were
enriched in cellular water homeostasis, oligosaccharide metabolic
process, oligopeptide transport, plant-type hypersensitive re-
sponse, iron-sulfur cluster assembly, glucosinolate biosynthetic
process, regulation of defense response, plant ovule development,
cellular response to nitrogen starvation, flavonoid biosynthetic
process, and unidimensional cell growth.

A well-known gene, GW6 (grain width 6, LOC_Os06g15620)
encoding a GA-regulated GAST family protein and positively regu-
lating grain width and weight (Shi et al. 2020), is only present in
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Figure 3. Comparison of gene family PAVs derived from the SGS and TGS data. (A) Jaccard Indices of gene family PAVs derived from SGS and TGS. (B) The
number of gene families in each rice accession detected fromSGS or TGS. Inmost rice accessions, especially in population XI, manymore gene families were
detected from the TGS data than the SGS data. (C) The number of genes versus their ΔAccession numbers. For each gene, its ΔAccession number = number
of accessions with this gene detected by TGS−number of accessions with this gene detected by SGS; >50: TGS-preferred genes (n=9321); <−50: SGS-
preferred genes (114); and −50∼50: No-preferred genes (65,870). (D–F ) CDS feature comparison for genes preferred by SGS or TGS. (D) GC contents, (E)
lengths, (F) repeat contents. A two-sided Wilcoxon rank-sum test was used to measure the significance of differences. (∗∗∗) P<0.001. (G) The read align-
ment of gene LOC_Os06g49820 in rice accession QUAN indicates that a deletion near this gene is ignored from SGS. (H) The read alignment of another
gene LOC_Os04g01520 indicates insufficient reads from SGS are mapped to this gene region, whereas reads from TGS cover it.
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seven OS accessions (Suijing18, Kitaake, JADO,MUKKALA BAZAL,
MAEKJO,Qingjinzaosheng, and 91–382) and twoORones (wild65
and wild111), whereas a thaumatin-like gene, PR5 (LOC_Os12
g43430), is present in 6OR-TGSRG but absent in 105OS-TGSRG.

Associations between gene PAVs and phenotypes

To demonstrate how the gene PAVs contribute to rice phenotypic
variations, we performed genome-wide association analysis
(GWAS) for gene PAVs in 105OS-TGSRG with phenotypes and de-
tected 14,471 significant gene PAV-phenotype associations (P<
0.05, FDR<0.05). These associations included 8130 genes (5604
MSU7 genes and 2526 novel genes) significantly associated with
nine phenotypes (Supplemental Fig. S10A; Supplemental Table
S11). Because of missing phenotypic data and limited sample
size, these gene PAV-phenotype associations with less significance
(low P-values but high FDRs)may also be valuable (Fig. 5A; Supple-
mental Fig. S10B–E). Figure 5, B–I, shows several associations be-
tween gene PAVs and important agronomic traits. For example,
the absence of LOC_Os01g27930 (a retrotransposon protein) is as-
sociated with an increased grain length-width ratio (Fig. 5C),
whereas the presence of LOC_Os01g27930 is associated with in-
creased grain width (Fig. 5G). The absence of the well-known
Green Revolution gene, SD-1 (LOC_Os01g66100), is associated
with significantly reduced plant height (P=7×10−4, FDR=0.07).
These results indicate that gene PAV is an important contributor
to the phenotypic variation in rice populations.

Discussion

One of the primary objectives in this studywas to construct a high-
quality rice pan-genome. To achieve this, we carefully selected 105
OS accessions, most from the core collections of 3K-RG, represent-
ing different rice populations of diverse geographic origins and

used different sequencing platforms. In
addition to the 105 OS accessions, six
wild relatives were also included to
make the rice pan-genome complete.
The constructed reference genomes and
pan-genomes for major OS populations
allowed us to understand some technical
elements regarding how to efficiently
construct them using both TGS and
SGS technologies and to uncover several
properties of the rice pan-genomes.

We adopted the strategy of “map-to-
pan” to construct the rice pan-genome
and obtain gene PAVs (Sun et al. 2017;
Wang et al. 2018; Song et al. 2020; Li
et al. 2021). Because this strategy de-
pends on the quality of the reference
genome, we chose Nipponbare as the
reference genome (NipRG). We further
introduced the concept of unmapped se-
quence blocks to reduce the sizes of high-
ly similar sequences in pan-genomes
derived from TGS data, applied a new al-
gorithm to the acceleration of the cluster-
ing of representative sequences, removed
potential contaminants using the NT se-
quence database, and verified novel
sequences with mapped reads and

elongated these sequences to keep complete gene structures in
gene prediction. There are still some drawbacks in our approach.
The size of novel sequences may be underestimated because drop-
ping short unmapped sequence blocks, clustering the sequences,
and choosing the representative sequences is a process of losing se-
quences. Even though amethod of sequence elongationwas intro-
duced to make their structures complete for genes overlapping
with the boundaries of novel sequences, the number of novel pre-
dicted genes is underestimated. The constructed rice pan-genome
contains a total of 70,624 protein-coding genes clustered (with
95% identity) in 20,122 gene families, including 2132 novel
gene families missing inMSU7 and 1153 novel gene families miss-
ing in 3K-RG.

One of the primary goals in constructing a species pan-ge-
nome is to reveal the gene PAVs, an important but largely unchar-
acterized component of genomic variations in its populations. Our
classification of the sequenced OS accessions based on the ob-
tained gene PAVs was consistent with known rice population
structure (Wang et al. 2018), indicating gene PAVs are amajor con-
tributor to the rice population differentiation. However, we noted
significant differences between TGS and SGS in detecting gene
PAVs. For example, SGS data often fail to detect genomic sequence
variations found by TGS data, especially deletions containing or
near repeat elements with high similarity. Finally, the large num-
bers of gene PAV-phenotype associations identified by GWAS
clearly demonstrated that gene PAVs are an important contributor
to the phenotypic variation in rice populations.

Considerable efforts have been taken to construct high-qual-
ity gap-free reference genomes inmany crop plants, but high-qual-
ity gap-free reference genomes have been only constructed in rice
(Song et al. 2021), because this can be a very expensive and chal-
lenging task for species of large genome sizes, even with the TGS
technologies. In this study, we used an efficient strategy to con-
struct high-quality reference genomes of rice by filling gaps with

B

A

C

D

Figure 4. Overlap between genes and gene families in the OS (Cultivated) and OR (Wild) rice pan-ge-
nomes. (A) Intersection of gene family PAVs from sixOR rice accessions. (B) Intersections of pan gene fam-
ilies from six OR rice accessions,MSU7, and 105OS rice accessions. (C ) Intersections of core gene families
from six OR rice accessions and 105 OS rice accessions. (D) Similarity in cultivated and wild rice
subpopulations.
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closely related genomes from the same population, resulting in
nine high-quality reference genomes for all major rice popula-
tions, including five gap-free ones. It should be pointed out that
each of these reference genomes might be slightly shorter than
the real one, as we used the shortest sequences of the related acces-
sions to fill the gaps.

The high-quality rice genomes and pan-genomes resources,
and the gene PAVs obtained in this study will facilitate the global
efforts of rice functional genomics and improvement in the future.

Methods

Sample collection

A total of 111 rice accessions with 113 samples were used in this
research (Supplemental Table S1), including 69+13 OS genomes
and six OR genomes from three batches obtained in this study
plus publicly available TGS data of 25 OS genomes in addition to
the NipRG sequences (Supplemental Fig. S2; Supplemental
Tables S1, S5).

In the first batch, nineOS accessions (H7L1 [Huanghuazhan],
H7L26 [CDR22], H7L27 [PsBRC28], H7L28 [PsBRC66], H7L29
[IR64], H7L30 [Teqing], H7L31 [IR50], H7L32 [OM1723], and
H7L33 [Phalguna]) from the breeding program at the Institute of
Crop Sciences, Chinese Academy of Agricultural Sciences were
sequenced by the Pacific Biosciences (PacBio) and Illumina
platforms.

In the second batch, four OS accessions (SE-3 [BR 24], SE-19
[Zhong 413], SE-33 [BG 300], and SE-134 [Haonnong]) were se-
quenced by the Nanopore and Illumina platforms.

In the third batch, 67 were selected from 3K-RG to represent
nine subpopulations (XI-3, XI-2, XI-1B, XI-1A, GJ-trp, GJ-tmp, GJ-
sbtrp, cB, cA) each with 6–11 samples of different geographic ori-
gins (Wang et al. 2018). Two additional high-yield rice cultivars
(QUAN and WSSM) and six wild rice accessions from different re-
gionswere chosen as well. These 75 rice accessionswere sequenced
by the Nanopore and Illumina platforms.

Another 25 OS samples were downloaded from the NCBI Se-
quence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra), in-
cluding CHAO MEO::IRGC 80273-1, Azucena, KETAN NANGKA::
IRGC 19961-2, ARC 10497::IRGC 12485-1, IR 64, PR 106::IRGC

E

F

B
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C D

IG HLOC_Os07g11430 LOC_Os01g27930 LOC_Os011g07630

LOC_Os10g11454LOC_Os01g27930LOC_Os12g27960

Figure 5. The associations between phenotypes and gene PAVs. (A) The association heat map of gene PAVs and phenotypes (only associations with
P < 1 ×10−5 and FDR<5×10−2 are displayed). (Mean GW) mean grain width, (Mean PBN) mean primary rachis branch, (Mean PH) mean plant height,
(Mean PL)mean plant length, and (SCCOREV) seed coat color. The phenotypes startedwith “mean” aremeasured in this research. (B–I) Some examples of
gene PAVs significantly associatedwith phenotypes: (B)Mean plant length and LOC_Os12g27960 (P=7.7 × 10−7, FDR =2.5 × 10−2); (C) Grain lengthwidth
ratio and LOC_Os01g27930 (P=1.0 × 10−6, FDR=8.2 × 10−3); (D) Mean plant height and a predicted gene elg79355_pred_17924 (P=1.7 × 10−6, FDR=
1.7 × 10−2); (E) Mean primary rachis branch and LOC_Os10g11454 (P=1.7 × 10−6, FDR =2.3 × 10−2); (F) Seed coat color and LOC_Os07g11430 (P=2×
10−6, FDR=2.1 × 10−2); (G) Grain width and LOC_Os01g27930 (P=2.2 × 10−6, FDR=1.3 × 10−2); (H) Mean grain width and LOC_Os11g07630 (P=2.7
× 10−6, FDR=3.2 × 10−2); (I) Culm number and a predicted gene elg13797_pred_60137 (P=7.0 × 10−6, FDR=2.3 × 10−2).
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53418-1, LIMA::IRGC 81487-1, KHAOYAIGUANG::IRGC 65972-1,
GOBOL SAIL (BALAM)::IRGC 26624-2, LIU XU::IRGC 109232-1,
LARHA MUGAD::IRGC 52339-1, NATEL BORO::IRGC 34749-1
(Zhou et al. 2020), R600 (PRJNA564911), Tetep (PRJNA482013),
Suijing18 (Nie et al. 2017), IR64, Sadri (Choi et al. 2020), Basmati
(Choi et al. 2020), HR-12 (Mahesh et al. 2016), Nagina 22
(PRJNA315689), Shuhui498/R498 (Duetal. 2017),CarolinaGoldSe-
lect (PRJNA503892), Zhenshan 97 (PRJNA302542), IR8
(PRJNA353946), and Kitaake (Jain et al. 2019). Three different se-
quence data sets of IR64 (onenewly sequenced sample and twopub-
lic samples), a well-known rice cultivar widely grown in Southeast
and SouthAsia,were included as samples to compare the differences
in sequencing platforms and sequencing depth.

De novo assembly, polishing, scaffolding and evaluation

For 75 newly sequenced OS accessions, each genome size was esti-
mated using KmerGenie v1.7051 (Chikhi and Medvedev 2014)
with short reads. The raw Nanopore long reads were checked by
NanoPlot v1.0.0 and trimmed (≥Q7, ≥1000 bp) by NanoFilt
v2.6.0 (De Coster et al. 2018). The trimmed long reads were cor-
rected and assembled using NextDenovo v2.2.0 (https://github
.com/Nextomics/NextDenovo). After genome assembling, the
contigswere polishedwith both long and short reads. First, contigs
were polished using Racon v1.4.11 (Vaser et al. 2017) and Medaka
v0.11.5 (https://github.com/nanoporetech/medaka) with long
reads. Next, all short reads were quality-controlled using FastQC
v0.11.8 (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc) and trimmed using Trimmomatic v0.39 (Bolger et al.
2014). The contigs were mapped with short reads using Bowtie 2
v2.3.5.1 (Langmead and Salzberg 2012) and polished one round
using Pilon v1.23 (Walker et al. 2014).

For nine accessions sequenced by PacBio and Illumina
platforms, the long reads were assembled using FALCON v1.8.7
(Chin et al. 2016). The assembled contigs were then polished
using smrtlink v4.0 (https://www.pacb.com/support/software-
downloads) with long reads and using Pilon with short reads.

Four of the 13 accessions were sequenced by Nanopore and
Illumina platforms (SE-3 [BR 24], SE-19 [Zhong 413], SE-33 [BG
300], and SE-134 [Haonnong]).The long reads were first corrected
using NextDenovo and then assembled using smartdenovo
(https://github.com/ruanjue/smartdenovo). The assembled con-
tigs were polished using Pilon three times with short reads.

For other rice accessions, we directly used assemblies and long
reads published in the NCBI SRA database in downstream analysis.
With the NipRG’s guide, contigs misassembled were corrected and
chromosome-level scaffolds were achieved using RaGOO RagTag
v1.0.0 (Alonge et al. 2019), which invoked MUMmer v3.9.4
(Kurtz et al. 2004) at the mapping step and minimap2 v2.17 (Li
2018) at the checking step. The quality of each genome assembly
was evaluated by mapping to the NipRG with at least 90% as the
threshold using QUAST v5.0.2 (Mikheenko et al. 2018). The com-
pleteness of each genome assembly was evaluated using BUSCO
v5.1.2 (Seppey et al. 2019) with the database embryophyta_odb10
(eukaryota, 2020-09-10).

Structural variation calling, merging, and filtering

The long reads were mapped to the NipRG using minimap2 v2.17
(Li 2018) and sorted using SAMtools v1.9 (Li et al. 2009). Structural
variations were detected with Sniffles v1.0.11 (Sedlazeck et al.
2018) as recommended (Zhou et al. 2019). The samples were fil-
tered (allele frequency≥0.05, support reads≥10, SV size≥50
bp), and all filtered SVs were merged (distance <1000 bp between
breakpoints, taking SV type and strand into account) into 316,611

nonredundant SV records using SURVIVOR v1.0.7 (Jeffares et al.
2017).

Gap-filling in constructing OS reference genomes

In constructing reference genomes for different OS populations,
gap-filling was performed using TGS-GapCloser v1.1.1 (Xu et al.
2020) with both corrected reads and polished contigs. For NipRG
(http://rice.plantbiology.msu.edu/annotation_pseudo_current
.shtml), corrected Nanopore long reads from 15 accessions of GJ
were used separately to fill gapswith the recommended parameters
of “‐‐tgstype ont ‐‐min_idy 0.9 ‐‐min_match 300 ‐‐ne”. Polished
contigs from 15 GJ accessions were further used separately to fill
gaps with the parameters of “‐‐tgstype ont ‐‐min_idy 0.9 ‐‐min_
match 1000 ‐‐ne”. The gaps are filled with the reads or contigs ac-
cording to the highest QS (Quality Score) defined in TGS-
GapCloser, which considered the alignment length and the align-
ment identity percentage between a candidate sequence (a read or
contig) and the flanking sequence next to the gap.

Whenmultiple sequences from different accessions could fill
a gap, the sequence (a corrected read or polished contig) of mini-
mum length was selected.

Similar methods were performed for gap-filling to construct
high-quality reference genomes of all K9 subpopulations except
XI-1A, with specific samples in Supplemental Table S6.

Pan-genome construction

The system diagram of our new pan-genome constructionmethod
is shown in Supplemental Figure S3. From the QUAST outputs of
the genome assemblies, the unmapped regions of sequences
were defined as unmapped sequence blocks. The unmapped se-
quence blocks longer than 500 bp were retrieved from both fully
and partially unaligned sequences. These blocks were mapped to
NipRG (including mitochondrion and plastid) again using mini-
map2 v2.17 (Li 2018), and the sequencesmappedwith≥90% iden-
tity and 80% coverage were removed. The remaining sequences
were clustered into nonredundant sequences with identity cutoff
of 90% using Gclust v1.0.0 (Li et al. 2019) and EUPAN v0.44 (Hu
et al. 2017) blastCluster. After that, the remaining sequences
were mapped to NT database (June 18, 2020) using BLAST+
v2.10.1 (Camacho et al. 2009) BLASTN. The sequences with hits
not fromViridiplantae were dropped and the rest of the sequences
were defined as candidate novel sequences.

A coverage-basedmethodwas used to checkmisassemblies in
candidate novel sequences. Reads were mapped to NipRG added
candidate novel sequences and sorted using SAMtools v1.9 (Li
et al. 2009). We calculated the candidate novel sequence coverage
from either short or long reads using BEDTools v2.29.2 (Quinlan
and Hall 2010). Finally, the candidate novel sequences with cover-
age≥90% in at least one sample were considered as verified novel
sequences.

We tried to elongate sequences with 5000 bp to retain the
whole gene body in the gene annotation step and shortened se-
quences with no novel genes in elongated regions after a similar
gene-removing step. The novel representative genes were kept.
The final pan-genome was generated by combining NipRG and
novel sequences, with MSU7 and novel genes. The genomic fea-
tures of the pan-genome were plotted using RCircos v1.2.1
(Zhang et al. 2013) in R v4.0.2 (R Core Team 2020).

Transposable element annotations

For the chromosome-level scaffolds and novel sequences of OS
accessions, transposable elements were identified using
RepeatMasker v4.1.0 (http://www.repeatmasker.org) with the
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parameter “-no_is -nolow”. The library is the manually curated
rice TE database (rice6.9.5.libin) downloaded from GitHub (https
://github.com/oushujun/EDTA/blob/master/database) (Ou et al.
2019).

Gene prediction of novel sequences

All protein-coding genes in the obtainednovel sequenceswere pre-
dicted withMAKER2 v2.31.10 (Holt and Yandell 2011), a gene pre-
diction system combining ab initio predictions, transcripts, and
protein homologies. Oryza genus proteins’ sequences from the
NCBI Protein database (date: Dec. 3, 2020, species from plants,
source from PDB, RefSeq, UniProtKB/Swiss-Prot) and rice EST
mRNAs v163a were downloaded from PlantGDB (Duvick et al.
2008). The low complex repeat sequences were soft-masked with
RepeatMasker v4.1.0 (search engine: NCBI/RMBLAST v2.10.0, da-
tabase: Dfam_3.1 [Storer et al. 2021], Repbase-20181026 [Bao et al.
2015]) first before running MAKER2. The evidence such as ab ini-
tio predictions from AUGUSTUS v3.3.3 (Stanke et al. 2008), ESTs
and proteins were collected to evaluate the quality of gene predic-
tion models. Exonerate v2.4.0 (https://www.ebi.ac.uk/about/
vertebrate-genomics/software/exonerate) polished BLAST hits,
and each of the realigned sequences identified by BLAST around
splice sites were retained. A total of 30,883 transcripts were
dropped because of incomplete coding regions (lack of start/stop
codons). Finally, 96,425 transcripts each with a complete coding
region were predicted. Of these, 28,529 transcripts overlapped
with novel sequences that do not locate in the elongated
sequences.

Novel genes and gene families

For the gene level analysis, the longest transcript isoforms of both
the 55,986 reference (MSU7) genes and predicted genes in the nov-
el sequences were translated into protein sequences and clustered
with 95% identity using CD-HIT v4.8.1 (Fu et al. 2012). In total,
70,624 clusters were identified. Of these, 19,319 novel genes
were identified.

For the gene family-level analysis, the protein sequences of
the longest gene transcript isoforms were clustered using Markov
Chain-based algorithm OrthoMCL v2.0.9 (Li et al. 2003) with
the parameter “percentMatchCutoff = 50, evalueExponentCutoff
=−5”, which invokes BLAST+ v2.10.1 (Camacho et al. 2009)
BLASTP at the step of sequence comparison. In the end, 20,122
gene familieswere identified (9778 familieswith at least two genes,
10,344 families each with one single gene), including 17,990 gene
families with at least one reference gene and 2132 gene families
with only novel predicted genes. The proteins each with the lon-
gest protein coding length in the gene families were treated as rep-
resentative ones. The novel representative genes in the gene
families were kept, including (1) novel gene families (the novel
representative genes with no reference gene member in the same
gene family), and (2) existing gene families with novel representa-
tive genes (the novel representative genes with at least one refer-
ence gene member in the same gene family). Finally, 2132 novel
gene families and 3260 existing gene families with novel represen-
tative genes were obtained.

RNA-seq validation, functional domains, and GO annotations

of the predicted novel genes

RNA-seq data from 122 public samples (61 rice accessions of two
tissues) were collected to validate the expressions of genes. All
raw reads were quality-controlled using FastQC v0.11.8 and
trimmed using Trimmomatic v0.39. The trimmed reads were
mapped to all transcripts (including 55,986 MSU7 genes and

19,319 novel genes). Only readsmapped in a proper pair were con-
sidered using SAMtools v1.9. The coverage of transcripts was com-
puted using BEDTools v2.29.2. The protein sequences of the
predicted novel genes were extracted and input to InterProScan
v5.45-80.0 (Jones et al. 2014) to predict domains and important
sites of their proteins. The GO terms of proteins were annotated
as described in a previous study (Wang et al. 2018). Finally,
75.9% (14,658/19,319) of the predicted novel genes were annotat-
ed with at least one GO term. GO enrichment analysis was per-
formed using the package clusterProfiler v3.16.1 (Yu et al. 2012)
in R v4.0.2. The GO terms with adjust P<0.05 using the
Benjamini–Hochberg (BH) method were retained.

Gene PAVs analysis

The trimmed short and long reads weremapped to the rice pan-ge-
nome with Bowtie 2 v2.3.5.1 (Langmead and Salzberg 2012) and
minimap2 v2.17 (Li 2018). Then, the alignment results were sorted
with SAMtools v1.9 (Li et al. 2009). The coverage of each position
in the all OS genomes was computed using BEDTools v2.29.2
(Quinlan and Hall 2010) with the parameter “genomecov -bga
-split”. A gene was considered as present when its gene body and
CDS coverages were over 85% and 95%, respectively, according
to its mapped short reads or long reads. Otherwise, it was consid-
ered as absent. A gene family was considered as present when at
least one of its gene members was present. The Jaccard Index
(also called Jaccard similarity coefficient) was used to quantify ge-
netic similarity between two genomes. For gene (or gene family)
sets A and B of two samples, it was computed as

Jaccard Index = |A>B|
|A<B| .

The higher the Jaccard Index is, themore similar two samples
are. All predicted genes or gene families were divided into the core,
softcore, distributed, and private predicted genes or gene families
in a specified population. The classification of genes/gene families
as softcore and distributed ones are based on exact binomial tests
(P≥0.05). The pan-core gene family curve was computed with
PAVs of subsamples randomly selected from different subpopula-
tions 100 times. The outliers in sample clustering according to
TEs and PAVs were not considered in the subsampling (TG52,
TG64, TG75, TG16, TG11, TG34, TG54, TG34, TG12, and TG85).

Comparisons between different rice pan-genomes derived from

111/63 rice accessions (111-TGSRG/63-TGSRG/63-SGSRG) and

3010 rice accessions (3K-RG)

Sixty-three OS accessions from 3K-RG were selected to build OS
pan-genomes as reported previously (Wang et al. 2018) in three
steps of getting unaligned contigs (≥500 bp), removing redundant
sequences, and dropping contaminants.

The repeat-masked novel sequences in 111-TGSRG/3K-RG/
63-TGSRG/63-SGSRG were mapped to 111-TGSRG/3K-RG/63-
TGSRG/63-SGSRG. A query sequence with various identity and
length was considered according to a different cutoff.

At the gene level, we mapped the transcripts and proteins of
novel genes to the constructed pan-genomes, transcripts, and pro-
teins. We mapped the transcripts of novel genes to construct the
sequences from different rice pan-genomes using BLASTN. The
identities ≥95% were considered as mapped regions, and tran-
scripts with ≥95% of their regions covered were considered as
mapped ones.We alsomapped the transcripts and proteins of nov-
el genes to each other from different rice pan-genomes using cd-
hit-est-2d and cd-hit-2d in CD-HIT v4.8.1.
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Detection of PAV-phenotype associations

The phenotypic data for agronomic traits of the 105 OS accessions
were downloaded from the RFGB (http://www.rmbreeding.cn/
phenotype) (Wang et al. 2020) and Rice SNP-Seek Database
(https://snp-seek.irri.org) (Mansueto et al. 2017). Fisher’s exact
test was used to detect gene PAV-discrete phenotype associations,
and theWilcoxon rank-sum test was used to detect gene PAV-con-
tinuous phenotype associations in R v4.0.2. P-valueswere adjusted
using the FDR method, and a threshold of FDR<0.05 was used to
claim a significant gene PAV-phenotype association.

Data access

The raw sequencedata generated in this studyhavebeen submitted
to the Genome Sequence Archive in China National Center for
Bioinformation (https://ngdc.cncb.ac.cn/bioproject/) under acces-
sion numbers PRJCA005926, PRJCA007821, and PRJCA007822.
The source codes used in this study are available at GitHub (https
://github.com/SJTU-CGM/TGSRICEPAN) and as Supplemental
Code. The results data are available at https://cgm.sjtu.edu.cn/
TGSrice/index.html.
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