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Methods that use a linear genome reference for genome sequencing data analysis are reference-biased. In the field of clinical

genetics for rare diseases, a resulting reduction in genotyping accuracy in some regions has likely prevented the resolution of

some cases. Pangenome graphs embed population variation into a reference structure. Although pangenome graphs have

helped to reduce reference mapping bias, further performance improvements are possible. We introduce VG-Pedigree, a ped-

igree-aware workflow based on the pangenome-mapping tool of Giraffe and the variant calling tool DeepTrio using a specially

trained model for Giraffe-based alignments. We demonstrate mapping and variant calling improvements in both single-nucle-

otide variants (SNVs) and insertion and deletion (indel) variants over those produced by alignments created using BWA-MEM

to a linear-reference andGiraffemapping to a pangenome graph containing data from the 1000Genomes Project.We have also

adapted and upgraded deleterious-variant (DV) detecting methods and programs into a streamlined workflow. We used these

workflows in combination to detect small lists of candidate DVs among 15 family quartets and quintets of the Undiagnosed

Diseases Program (UDP). All candidate DVs that were previously diagnosed using the Mendelian models covered by the pre-

viously published methods were recapitulated by these workflows. The results of these experiments indicate that a slightly

greater absolute count of DVs are detected in the proband population than in their matched unaffected siblings.

[Supplemental material is available for this article.]

Recent advances in genome sequencing technology are improving
the accuracy of detecting genetic variants (Wenger et al. 2019).
However, the use of a single genome reference for read alignment
and variant calling still presents a problem. A sequence mapping
algorithm best aligns sequences to a reference when those se-
quences are present in the reference.Where a sample’s genome de-
viates significantly enough from the reference, reads will fail to
map properly (Sherman et al. 2019). This reference bias can be re-
duced using pangenome graphs. Pangenome graphs represent
multiple genomes as a series of variants (Garrison et al. 2018).
These graphs are further enhanced by incorporating haplotype in-
formation that is available in phased genotype data sets. This
haplotype information is embedded in a haplotype index (Sirén
et al. 2021). In previous work, we have found that mapping error,
in both simulation and real-data experiments, is reduced by using
population variant data in pangenome graph references (Garrison
et al. 2018; Sirén et al. 2021).

Parent-child trios provide evidence of sequence transmission
between generations. This helps to identify which variants in the
child occurred as de novo mutations, because these variants will
generally be absent in the parents. This information also helps to
determine phasing orientation of heterozygotes in the childwhich
can aid in detecting compound-heterozygous candidate DVs. In
typical clinical diagnostics, in particular for the case of rare diseas-
es, parental genomes are sequenced to help improve the chances of
successful clinical diagnosis of a proband (Clark et al. 2018).

The Undiagnosed Disease Program (UDP) of the National
Human Genome Research Institute (NHGRI) is charged with diag-
nosing previously undiagnosed individuals and discovering new
variants of clinical significance (Gahl and Tifft 2011; Gahl et al.
2012, 2015, 2016; Splinter et al. 2018). In 2009, the UDP began ex-
amining cases that have remained undiagnosed after previous ex-
haustive clinical examination. One part of their process involved
sequencing the genomes of patients, including some that included
parents, an affected proband, and one or more unaffected siblings.
Since the beginning of theUDP, they have seenmore than 500 dif-
ferent disorders and achieved a diagnostic success rate of over 30%,
including the discovery of new disorders (Gu et al. 2019). Most of
the pediatric cases examined by the UDP over the past 10 yr have
already had negative diagnostic results from clinical exomes. The
UDP applies further technologies, including whole-genome se-
quencing, RNA sequencing, and SNP-chip analysis to more
completely explore nonexonic and intergenic regions in an at-
tempt to solve negative exome cases (Gu et al. 2019). One of the
more difficult tasks of gene discovery is the detection of variants
in highly polymorphic, repetitive, and incompletely represented
regions of the genome, exactly where pangenome graphs can po-
tentially extend accuracy and precision.

We first describe VG-Pedigree, a software workflow for map-
ping and variant calling high-throughput sequencing data. The
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workflow leverages pedigrees in genome
graphs and uses machine-learning for
variant calling. Intermediary results
from VG-Pedigree are subsequently used
to identify candidate deleterious variants
by using a significantly upgraded, fully
automated single-stage implementation
of the UDP candidate analysis workflow
(Gu et al. 2019). These upgrades include
better software portability and usability,
change to the GRCh38 reference, use of
better population data sets, and newer
deleterious predictors than those used
in the previous version. The final up-
grade was the addition of a new software
module to detect and quantify large scale
mosaicism. This unified workflow was
designed to run from machine output
FASTA sequence data to a final short can-
didate list, but it ismodular. The first part
of VG-Pedigree produces an intermediate
set of BAM files and a jointly called VCF
file. The candidate analysis in the second
part could be run using any set of ge-
nome BAM formatted files plus a joint-
called VCF formatted pedigree data set.

Our aim is to demonstrate sequenc-
ing accuracy improvements and utility in applications regarding
the investigation of rare sample-specific variants in individuals.
We set out to evaluate this workflow by examining its mapping
performance and variant calling accuracy in simulated and real
benchmark data sets.We conclude by evaluating its ability to reca-
pitulate differences in candidate variant lists between sets of
matched proband and sibling pairs from a cohort of UDP quartets.

Results

Overview of VG-Pedigree

VG-Pedigree goes through a number of stages before final variant
calling (Fig. 1A). First, the set of short reads in the parent-parent-
child trio of the pedigree are mapped to a pangenome graph refer-
ence based on the 1000Genomes Project data set, termed 1000GP,
using VG Giraffe, and variants are then called using DeepTrio (Fig.
1B; The 1000 Genomes Project Consortium 2015; Sirén et al.
2021). Next, variants in 1000Genomes Project haplotypes that ap-
pear missing in the DeepTrio-called variants are imputed. The pur-
pose of this is to fill in common variants that were possiblymissed
by the variant callers in order to facilitate the phasing ofmore com-
plete haploblocks. The resulting variant file is phased using both
alignment and pedigree information (Fig. 1C). A parental graph
reference is then constructed using only the parental genotypes
from the joint-called VCF file (Fig. 1D). A haplotype index of
this graph reference for VG Giraffe is generated from the phased
genotypes of the parental samples. Once this graph is constructed,
the proband and siblings reads are remapped to this new parental
graph reference and variants are re-called using the newmappings
(Fig. 1B). Finally, the newly called variants of the child and sibling
samples are joint-called with the old parental variants to form the
final joint-called pedigree VCF.

The candidate analysis workflow takes as input the set of
alignments and variant calls from VG-Pedigree and outputs a final

set of candidate DVs for the proband. This is done through a series
of filters and annotations. First, SnpEff is used to annotate the type
and function of variants within the joint-called pedigree VCF file
(Cingolani et al. 2012). The deleteriousness of these variants is pre-
dicted using the Combined Annotation Dependent Depletion
(CADD) software tool (Fig. 1E; Rentzsch et al. 2021). Next, a series
of filtration and analysismethods are applied to the annotated var-
iants, and the workflow outputs a set of candidate DVs for the pro-
band (Fig. 1F). The methods applied in the candidate analysis
workflow are an implementation of the methods described in Gu
et al. (2019). In this paper, we present enhancements to the meth-
ods and software of the candidate analysis workflow. An additional
module of the analysis workflow has also been developed which
automatically detects the presence and type of mosaicism in the
designated proband. These methods and improvements together
provide a more complete and accurate data set from which to dis-
cover rare variants that are causal to genetic diseases over the pre-
vious iteration.

We evaluated performance of this workflow based on four
main metrics. First, we evaluated the ability of the workflow to ac-
curately align reads to the correct position in a genome. Second,we
assessed the accuracy of variant calls based on those alignments.
Third, we looked at the ability of the analysis workflow to capture
DVs in the proband population versus the unaffected sibling pop-
ulation. Finally, we examined the runtime and costs of running
this workflow using a commercial cloud environment.

Mapping evaluation

Mapping was evaluated with both simulated and real sequencing
data. The former considers measures of mapping reads with a
known position. This was done by simulating reads from haplo-
typeswhose corresponding path locations in the graph are known,
so that we could identify when a read was mapped to the correct
location on the graph. We simulated reads by first constructing

Figure 1. Toil-VG-Pedigree workflow. Dotted lines indicate optional pathways in the workflow. (A)
Overall workflow diagram. (B) Single sample alignment and variant calling workflow. (C) Trio joint-gen-
otyping and phasing workflow. (D) Parental graph construction workflow. (E) Workflow for preprocess-
ing and annotation of pedigree variants required for candidate analysis. (F) The candidate analysis
workflow.
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sample graphs using benchmark sample variation data and then
generated paired-ended reads using error models and pair distance
distributions based on real-read data. We also made sure to only
simulate reads from benchmark samples that were not contained
within the pangenome references used in the graph mapping
methods. During evaluation, simulated readsmapped to the linear
references were injected to graph reference space for comparison
with graphmappers (see SupplementalMethods S1). Figure 2 illus-
trates the performance of 10 million read pairs that are simulated
from the Genome-in-a-Bottle (GIAB) HG002 version 4.2.1 high-
confidence variant sets (Olson et al. 2021).We also examined strat-
ified performance across regions of interest using 100million reads
simulated from the GIAB high-confidence regions. These regions
were all defined by GIAB (Krusche et al. 2019): low-complexity re-
gions that comprise regions of low sequence variability; low-
mappability regions that aremade up of duplicated andparalogous
sequence; the Major Histocompatibility Complex (MHC, also
known as HLA) which is known for maintaining a high density
of variation; 1000GP variant regions excluded from the GIAB sam-
ple (1000GP-excluded); and, specifically for HG002, the complex
medically relevant genes (CMRG) included in Wagner et al.
(2021a).

All conditions evaluated consist of the combination of amap-
per and a reference (see Supplemental Methods S2). The Giraffe-
Parent condition used VG Giraffe (Sirén et al. 2021) to align reads
to the parental graph reference as produced by the workflow up
to graph construction (Fig. 1D). The Giraffe-1000GP condition
used VG Giraffe to align reads to the pangenome reference. The

Giraffe-Primary condition used VG Giraffe to align reads to a linear
graph reference as produced using only the hs38d1 reference with
no variation, and the BWA-MEM-hs38d1 condition used BWA-
MEM (Li 2013) to align reads to the hs38d1 human reference
genome.

Figure 2 shows the receiver operating characteristic curves
(ROCs) of each tested mapper in all high-confidence regions,
1000GP-excluded regions, low-mappability regions, and MHC re-
gions. The curves are stratified by mapping quality (MAPQ). In
each evaluated region, Giraffe-Parent produced the highest F1,
both for reads with MAPQ60 and across all reads. When looking
at 1000GP-excluded variants within stratified regions, Giraffe-
Parent produced the highest total F1 across low-complexity regions
(Supplemental Fig. S1), low-mappability regions (Supplemental
Fig. S2), MHC regions (Supplemental Fig. S3), and CMRG regions
(Supplemental Fig. S4).

For all GIAB high-confidence regions, Giraffe-Parent gave the
most accurate alignments relative to the other examinedmappers.
Giraffe-Parent also achieved the highest total of correctly mapped
reads in all but the CMRG regions, the highest total of reads
mapped at MAPQ60 in low-mappabilityMHC and CMRG regions,
and the highest average percent identity between aligned reads
and the reference sequence across all regions (Supplemental
Table S1). In the high-confidence 1000GP-excluded regions of
the HG002 sample, Giraffe-Parent achieved the highest proportion
of correctly mapped reads, MAPQ60 reads, and average sequence
identity (Supplemental Table S2). Giraffe-Parent also produced
the highest proportions of perfectly aligned and gaplessly aligned

BA
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Figure 2. Mapping performance of 100 million read pairs simulated from HG002 high-confidence data sets. Four different alignments are compared
across four different regions and ROC curves are plotted with a log-scaled false positive rate on the x-axis and a linear-scaled true positive rate on the y-axis
with the mapping quality as the discriminating factor. Green curves represent graph alignments against the parental graph reference constructed from
HG003 and HG004 Illumina read graph alignments. Red curves represent alignments against the 1000GP graph reference. Purple curves represent align-
ments to the primary GRCh38 linear graph reference. Blue curves represent linear alignments against the hs38d1 reference using BWA-MEM. (A)
Alignments in GIAB v4.2.1 confident regions (from 10 million simulated read set). (B) Alignments in non-1000GP confident regions (from 10 million sim-
ulated Illumina read set). (C ) Alignments in GIAB v4.2.1 low-mappability regions (from 100 million simulated Illumina read set). (D) Alignments in GIAB
v4.2.1 MHC regions (from 100 million simulated Illumina read set).

VG-Pedigree and rare candidate variant analysis

Genome Research 895
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276387.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276387.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276387.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276387.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276387.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276387.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276387.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276387.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276387.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276387.121/-/DC1


reads, and the lowest proportion of soft-clipping reads across all ex-
amined confident (Supplemental Table S3) and 1000GP-excluded
regions (Supplemental Table S4).

Variant calling evaluation

In addition to examining the mapping performance of the work-
flow, we measured the accuracy of variants called in each work-
flow. Here, we use the version 4.2.1 release of the HG001,
HG002, and HG005 truth-set benchmarks as published by GIAB
(Zook 2020; Wagner et al. 2021a,b). The RealTimeGenomics
vcfeval tool (Cleary et al. 2015) and Illumina’s hap.py haplotype
aware-variant comparison tool (Krusche et al. 2019) were used
when comparing the results of variants called using alignments
of real reads to various combinations of mappers and references.
The mappers and references used include VG Giraffe against the
parental graph (Giraffe-Parent), which is the method used by VG-
Pedigree, and, for comparison, VG Giraffe against the 1000GP
graph (termed Giraffe-1000GP), BWA-MEM against the linear
hs38d1 reference (BWA-MEM-hs38d1), and Illumina’s Dragen plat-
form version 3.7.5 (Miller et al. 2015; Krusche et al. 2019; Olson
et al. 2021) against the linear hs38d1 reference (Dragen-hs38d1)
(see Supplemental Methods S3, S4). We tested our VG-Pedigree
pipeline using DeepTrio version 1.1.0 with trained child and par-
ent models for variant calling comparison in HG001. Training
used the Ashkenazi (HG002, HG003, HG004), and Han Chinese
(HG005, HG006, HG007) trio alignments using the Giraffe-
1000GP method for model training (see Supplemental Methods
S4.2). The DeepTrio-called variants achieve the highest accuracy
(F1: 0.9976) using Giraffe-Parent (Table 1A,B). This represents a to-
tal variant error (false positive and false negative) reduction of
4844 variants between Giraffe-Parent and BWA-MEM-hs38d1 rela-

tive to an error reduction of 2925 variants between Giraffe-
1000GP and BWA-MEM-hs38d1. In the 1000GP-excluded variants,
the Giraffe-Parent accuracy (F1: 0.9748) outperforms Giraffe-
1000GP (F1: 0.9717) by a greater margin than Giraffe-1000GP out-
performs BWA-MEM-hs38d1 (F1: 0.9691). This reflects an error re-
duction of 3210 variants between Giraffe-Parent and BWA-MEM-
hs38d1 relative to an error reduction of 1481 variants between
Giraffe-1000GP and BWA-MEM-hs38d1.

We then assessed HG002 andHG005 using the same training
method for themodel used in evaluating HG001. Themodels were
retrainedwithGiraffe-1000GP-aligned read data for all trio samples
except with Chromosome 20 completely held out for validation
purposes. Supplemental Figure S10, C and D and Supplemental
Table S5 show the results of training for HG002 and
Supplemental Figure S11, C and D and Supplemental Table S6
for HG005 results. The total number of errors in Chromosome
20 reduced from 1070 to 1051 (1.78%) and from 1130 to 909
(19.56%) variants for HG002 and HG005, respectively.

We also tested Giraffe-Parent using the default DeepTrio ver-
sion 1.1.0 models, which were not trained with Giraffe align-
ments. We found that, in using the HG005 and HG002 trios,
Giraffe-Parent or Giraffe-1000GP with the default DeepTrio models
outperforms the results achieved using standard BWA-MEM
(Supplemental Table S7A,B). The same performance gains are ob-
served for Giraffe-Parent in more difficult regions except in highly
repetitive regions for both HG002 and HG005 samples
(Supplemental Tables S8, S9).

ROC curves for DeepTrio calls stratified by genotype quality
also show performance gains. Figure 3, A and B shows the ROC
curves between the graph-based and linear-based alignmentmeth-
ods in HG001 for all confident regions and 1000GP-excluded vari-
ants, respectively. Supplemental Figures S10, A and B and S11, A

Table 1. vcfeval HG001 DeepTrio and DeepVariant Performance; vcfeval performance of the graph-based and linear-based pipelines with re-
spect to HG001 GIAB v4.2.1 truth variant call sets stratified by (A) DeepTrio on all HG001 regions, (B) DeepTrio on HG001 regions excluding
1000GP variants, (C) DeepVariant on all HG001 regions, and (D) DeepVariant on HG001 regions excluding 1000GP variants

Pipeline TP FP FN Precision Sensitivity F1

(A) DeepTrio HG001 all high-confidence regions

Giraffe-Parent 3,711,135 6444 11,258 0.9983 0.9970 0.9976
Giraffe-1000GP 3,708,607 5687 13,934 0.9985 0.9963 0.9974
BWA-MEM-hs38d1 3,705,297 5532 17,014 0.9985 0.9954 0.9970
Dragen-hs38d1 3,704,307 4586 18,001 0.9988 0.9952 0.9970

(B) DeepTrio HG001 all high-confidence regions, 1000GP-excluded

Giraffe-Parent 285,663 5222 9468 0.9820 0.9677 0.9748
Giraffe-1000GP 283,261 4422 11,997 0.9846 0.9591 0.9717
BWA-MEM-hs38d1 281,355 4356 13,544 0.9848 0.9538 0.9691
Dragen-hs38d1 280,317 3398 14,589 0.9880 0.9503 0.9688

(C) DeepVariant HG001 all high-confidence regions

Giraffe-Parent 3,710,974 8234 11,439 0.9978 0.9969 0.9974
Giraffe-1000GP 3,705,842 8751 16,704 0.9976 0.9955 0.9966
BWA-MEM-hs38d1 3,701,516 8594 20,806 0.9977 0.9944 0.9960
Dragen-hs38d1 3,700,322 7181 22,004 0.9981 0.9941 0.9961

(D) DeepVariant HG001 all high-confidence regions, 1000GP-excluded

Giraffe-Parent 285,782 6404 9248 0.9781 0.9685 0.9733
Giraffe-1000GP 280,890 6704 14,264 0.9767 0.9514 0.9639
BWA-MEM-hs38d1 279,005 7010 15,926 0.9755 0.9457 0.9604
Dragen-hs38d1 277,765 5610 17,173 0.9802 0.9415 0.9605

All mapped reads were called using DeepTrio and DeepVariant v1.1.0 genotyper using trained models. Best values in each column are highlighted in
bold text.
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andB illustrate performance in the same regions but for theHG002
and HG005 samples using the default DeepTrio models,
respectively.

We also examined the difficult regions of the genome more
deeply for the HG001, HG002, and HG005 GIAB samples using
the sample-specific stratification (Wagner et al. 2021a,b). Giraffe-
Parent outperformed the other examined methods in the sample-
specific complex variants containing single-heterozygous SNPs
and indels or compound-heterozygous SNPs except for regions
that contain compound-heterozygous variants where at least one
of the variants is an indel. In those regions, either BWA-MEM-
hs38d1 or Dragen-hs38d1 achieved the highest F1 scores relative
to the Giraffe methods (Supplemental Tables S10–S12).

Comparing to DeepVariant

To compare themapping performancewith non-trio-based calling
methods, we ran the DeepVariant single sample genotyper on the
same alignments (Poplin et al. 2018a). This evaluation assesses
gains in variant calling accuracy brought by mapping to a graph
containing the subject’s parental information (Giraffe-Parent) ver-
sus simply mapping to a linear reference or a population based
pangenome graph (Giraffe-1000GP).

During evaluation of DeepVariant calls, like in our DeepTrio
evaluations, we focused on using models that were not trained
with pangenome graph alignments of the samples used in evalua-
tion. For HG001 alignments, a trained DeepVariant model was
used in evaluating HG001 whole genome results. This model was
trained using just the Giraffe-1000GP-aligned HG002 and HG004
sample reads. For evaluations of DeepVariant calls on HG002
and HG005 alignments, the default models of DeepVariant ver-
sion 1.1.0were used. InHG001, theGiraffe-Parentmethod achieves
the highest accuracy (F1: 0.9974) representing a total variant error
reduction of 9727 variants between Giraffe-Parent and BWA-MEM-
hs38d1 relative to an error reduction of 3945 variants between
Giraffe-1000GP and BWA-MEM-hs38d1 (Table 1C).

Illumina Dragen calling

We additionally tested using Illumina’s Dragen platform version
3.7.5 variant caller in place of DeepTrio (Miller et al. 2015). The
Dragen variant caller uses an algorithm similar to that of GATK

HaplotypeCaller and, like DeepVariant, does not use the parental
read mappings (Poplin et al. 2018b).

We used Dragen to call variants against the Giraffe pange-
nome and BWA-MEM linear reference mappings. Once again,
Giraffe-Parent produced the most accurate variant calls for HG002
and HG005. Giraffe-Parent produced the highest F1 score
(0.9965) in all confident regions for HG002 (Supplemental Table
S13). This is in contrast with the F1 performance of Giraffe-
1000GP (0.9953) and BWA-MEM-hs38d1 (0.9940). Total error is re-
duced by 18,754 variants between Giraffe-Parent and BWA-MEM-
hs38d1 relative to an error reduction of 9995 between Giraffe-
1000GP and BWA-MEM-hs38d1. For HG005, Giraffe-Parent pro-
duced the highest F1 score (0.9958) in all confident regions
(Supplemental Table S14). This is in contrast with Giraffe-
1000GP (F1: 0.9944) and BWA-MEM-hs38d1 (F1: 0.9931). Total er-
ror is reduced by 20,724 variants between Giraffe-Parent and BWA-
MEM-hs38d1 relative to an error reduction of 10,489 between
Giraffe-1000GP and BWA-MEM-hs38d1.

Breaking down the analysis to SNPs and indels reveals the
same trend. The Giraffe-Parent produced the highest F1 scores in
HG002 in all examined regions except for the CMRG genes, where
Dragen-hs38d1 achieves a higher accuracy in indels (F1: 0.959108)
relative to Giraffe-Parent (F1: 0.958785) (Supplemental Tables S15–
S20). Similar statistics are observed in HG005, where Giraffe-Parent
alignments produce the highest F1 in all SNPs and indels across all
confident regions (Supplemental Tables S21–S25).

Illumina Dragen graph comparison

Illumina’s Dragen platform version 3.7.5 has also implemented a
graph-based mapper. To compare, we also examined the perfor-
mance of the Dragen graph implementation for mapping and var-
iant calling (termedDragen-Graph-hs38d1) (Miller et al. 2015). The
Giraffe-Parent with the DeepTrio calling method outperformed
Dragen-Graph-hs38d1 across all confident regions of HG001,
HG002, and HG005 GIAB benchmarks (Supplemental Table S26).

Candidate analysis evaluation

As a quality-control procedure, we investigated the workflow’s
ability to identify DVs that are relevant to clinical disorders. We
ran the workflow on nuclear pedigrees of at least four individuals

BA

Figure 3. ROC curves of DeepTrio variant calling performance of the graph-based and linear-based pipelines with respect to HG001 GIAB v4.2.1 truth
variant call sets stratified by (A) HG001 high-confidence whole genome regions using trained DeepTrio models, and (B) HG001 high-confidence whole
genome regions excluding 1000GP variants using trained DeepTrio models.
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in size. Out of the UDP set of such 50 cohorts with identified can-
didate variants, a set of 15 cohorts was randomly chosen. The 15
cohorts include 15 probands and 22 unaffected siblings compris-
ing 18 females and 19 males. Ten out of 12 of the UDP probands
from these cohorts that have a known genetic diagnosis had their
causal variants recapitulated by this workflow. The list of
Mendelian models detected include homozygous recessive, de
novo, hemizygous, X-linked, mitochondrial, and compound-het-
erozygous genotypes. Of the 12 examined probands that have a
diagnosis attributed to a CLIA-validated variant, five were identi-
fied with de novo dominant nonsynonymous changes in an exon-
ic region, two had a de novo dominant frameshift in an exonic
region, two had compound-heterozygous variants where both
were nonsynonymous changes in exonic regions, and one had a
compound-heterozygous variant with a nonsynonymous change
in an exon and a change in an intronic/splice-site region. Of the
two that were missed, one had a large structural variant deletion
which the candidate analysis workflowwas not designed to detect.
The other was a male with a de novo variant on the X
Chromosome with a low CADD score that did not pass the work-
flow’s default CADD threshold. Supplemental Table S27 shows
the number and type of candidate variants detected by the work-
flow for all 37 individuals.

In addition, we compared the number and type of clinically
relevant variants that are identified between the affected proband
population and their matched unaffected sibling population to in-
directly evaluate the pipeline’s ability to identify DVs. This analy-
sis runs in two steps. First, for each family, the affected offspring
are set as the proband in theworkflow and the unaffected offspring
are set as the unaffected siblings. Then, for the second step, for
each family, the unaffected offspring are set as the proband and

the affected offspring are set as the unaffected siblings. Finally,
the set of candidate DVs from the probands in the first step are
compared against the set of candidate DVs from their matched un-
affected siblings in the second step.

There is an expected baseline load of rare deleterious variants
that all individuals inherit due to de novomutation and inefficient
selection against segregating variants (Henn et al. 2015). Figure 4A
shows the distribution between these two populations in the 15
pedigree cohort sample set. Figure 4B shows the distribution of dif-
ferences in the candidate DVs between the matched proband and
siblings. X-linked recessive candidate DVs were excluded from
both populations in order to improve comparability between
male and female samples. Compound-heterozygous candidate
pairs and candidate alleles that occupy the same locus are also
counted as one candidate for the purposes of this comparison.
The number of candidate DVs in the proband population is signif-
icantly different from their matched unaffected siblings set of can-
didate DVs (Wilcoxon signed-rank test P-value =0.03). Given a
large enough sample set, we might expect the median number of
rare deleterious variants in the proband population to be slightly
different from the median number of rare deleterious variants in
the unaffected sibling population. Due to two factors, the pro-
bands level of genetic burden is hypothesized to be slightly greater
than that of their unaffected siblings: all probands in this analysis
currently show phenotypic expression of their disease, and the un-
affected siblings are of similar age.

In addition, we ran the workflow on four undiagnosed cases
that have previously shown a negative or inconclusive clinical
exome and negative commercial genome assay results. From these
samples,wehave produced a numberof candidateDVs.Of the four
cases, two have candidate DVs thatmatch their phenotypic profile

BA

C

Figure 4. Proband-sibling pairwise candidate analysis results on 15 nuclear families of at least quartet in size, comprising a population of 15 probands
and 22 siblings. Plot A shows the average number of candidate variants between the probands and sibling populations. Seventeen red lines (four overlap-
ping) represent proband-sibling pairs where the proband has more DVs than their matched sibling, five blue lines (one overlapping) represent probands
that have less DVs than their matched sibling, and one green line, where probands have the same number of DVs as their matched sibling. The proband
population holds an average of 14.53 DVs whereas the sibling population has an average of 12.77 DVs. A one-tailed Wilcoxon signed-rank test of the hy-
pothesis that the probands have greater numbers of DVs than their matched siblings produced a P-value of 0.0333. (B) The distribution of proband-sibling
DV list size differences. (C) A mosaic region identified by the workflow (red box) overlaid with the SNP-chip B allele frequency plot for a UDP sample.
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and are being examined for clinical function; the other two cases
are undergoing further investigation. One of the two cases had
an identified mosaic region on Chromosome 7 detected by the
candidate analysis workflow (Fig. 4C). Concurrently, we ran the
analysis on the HG001(NA12878), HG002, HG005 probands
and, as expected, did not detect any signs of mosaicism.
Supplemental Tables S28 and S29 show the number and type of
candidate variants detected by the workflow.

Runtime evaluation

The workflows examined are runnable on the Terra platform (Van
der Auwera andO’Connor 2020).When running on a quartet with
30×–35× coverage paired read data, theworkflow takes a littlemore
than 8000 CPU h, for a total cost of ∼$100 (Supplemental Table
S30). The VG-Pedigree pipelinemakes up the majority of the com-
putation at about 8000CPUh and costs $92–$95, whereas the can-
didate analysis workflow runs in about 200CPUh and costs $3–$5.
Costs can vary based on the load of the cloud compute system and
the availability of lower-cost preemptable nodes.

Discussion

There is growing evidence that rare variants have the effect sizes,
diversity and abundance necessary to explain a substantial portion
of human genetic load (Simons et al. 2014; Hernandez et al. 2019;
Li et al. 2017). Pedigrees can help resolve harder-to-study regions
by giving orthogonal evidence in the form of Mendelian inheri-
tance to enhance the statistical power and phasing accuracy to cat-
egorize compound-heterozygote and de novo variation from a list
of called variants (Roach et al. 2010; Shugart et al. 2012; Peng et al.
2013; Sul et al. 2016). Graph-based approaches leverage additional
variation information during read mapping to mitigate the prob-
lems of alignment to complex regions of the genome (Garrison
et al. 2018; Sirén et al. 2021). Themethods and software developed
in this project are designed tomaximize the biological information
available to detect and interpret individual-level variation. The
software developed is scalable so that it can easily run on high-per-
formance compute clusters that support common batch systems
like Slurm (Yoo et al. 2003) or Kubernetes (Kane and Matthias
2018). It is publicly accessible in the toil-vg GitHub repository
and inWDL format, which is published in the Dockstore reposito-
ry (O’Connor et al. 2017; Van der Auwera and O’Connor 2020).

Alignment and genotyping performance of short-sequenced
reads is improved across all examined confident regions in the
GIAB samples. This is due to the parental genotypes contributed
to the pangenome reference used in the Giraffe-Parent method
that better match the child’s reads. The result of these improve-
ments translates to better coverage, mapping quality, and greater
variant calling accuracy in both confident and difficult regions
of the genome. All examinedUDP cases that have a known genetic
diagnosis based on theMendelianmodels covered by the previous-
ly published candidate analysis workflow have their causal vari-
ants recapitulated by this workflow (Gu et al. 2019). The
candidate analysis evaluation indicates detectable differences in
the number of candidate DVs identified between the affected
and unaffected offspring populations. This result shows a similar
trend to that of the analysis done on exome data sets from a larger
sample set, which also showed a statistically significant difference
(Gu et al. 2019). The main improvement in this analysis over the
previous analysis is that this analysis covers the whole genome in-
cluding intronic and intergenic regions.

A number of areas can be improved within this workflow.
One example is the training model used in DeepTrio. Our training
used a very limited number of benchmark samples, whichwas lim-
ited further to leave benchmark data for testing and development.
Given these limitations, there is room to improve the DeepTrio
model when additional well-sequenced and diverse benchmark
samples become available.

Variant calls from graph-based alignments are prone to error
due to the conversion of the native graph alignment map (GAM)
format output from VG alignments to the linear reference BAM
format. Information about the exact path of reads is lost during
this projection step which can result in reads appearing different
from the linear reference genome when the variant is already pre-
sent in a path in the graph reference.

Structural variants (SVs) are an important component of the
set of rare variants that contribute to disease (Weischenfeldt
et al. 2013; Abel et al. 2020). In previous work, there have been ef-
forts to tailor pangenome graphs and variant caller algorithms to
improve the accuracy of detecting SVs (Sirén et al. 2021).
Another avenue to improve this workflow is to apply pangenome
graphs with incorporated SV information as a module that runs
concurrently with the VG-Pedigree workflow. One of the samples
in the candidate DV analysis wasmissed by this workflow as it con-
tained a large SV deletion. Incorporating SVs into the VG-Pedigree
workflow would aid in the detection of such variants.

Refinements to the CADD scoringmetrics can bemade to en-
hance the detection of specific variants. One of the samples in the
candidate DV analysis thatwasmissed by this workflowwas amale
with a de novo variant on the X Chromosome with a low CADD
score that did not pass the workflow’s default CADD threshold.
To remedy this, the CADD threshold for de novo male X-linked
variants can either be lowered to enhance sensitivity or the
CADD program would need to adjust their scoring metrics to
take into account such variants and up-weigh their scores.

Further runtime improvements could also be made. The
workflow takes about 1.5 d and approximately 8000 total CPU h
at a cost of about $100 to process one family. This ismoderately ex-
pensive and slow relative to traditional methods, which havewell-
tuned hardware acceleration solutions and years of work optimiz-
ing computation time. GPU acceleration or field-programmable-
gate-array (FPGA) implementations of the graph alignment algo-
rithm could substantially accelerate the computation of the
graph-based algorithms.

There are a number of refinements that could be made to the
most expensive parts of this workflow. Reference construction of
the parental graph could be improved by altering and pruning
the haplotype index with the haplotypes discovered by the trio-
backed phasing stage of the pipeline. The use of graph-based vari-
ant callers would remove the need to subject alignments to linear
BAM files and therefore maintain potentially more information
that could be used to produce more accurate calls.

Additional orthogonal methods can be applied to the work-
flows presented. The reconstruction of sequences in a sample
from sequence data alone, known as de novo genome assembly,
can be used to support evidence of the genotypes detected in
this workflow. One tool, known asWHdenovo, can apply pedigree
information and long-sequence reads to enhance the construction
of sample-specific assemblies that can resolve potential genotyp-
ing errors in this workflow (Garg et al. 2020; Garg 2021).

New pangenome graphs are continuously being updated and
tested as more population variation is characterized. The
Telomere-to-Telomere genome project (T2T) has recently released
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a genome reference which exhaustively captures the centromeric
and telomeric sequence better than the previous GRCh38 version
of the human genome (Nurk et al. 2022). The Human Pangenome
Reference Consortium (HPRC) is a group of research institutions
that are tasked with the development of a pangenome reference
using the latest methods and data. By characterizing regions of
the genome not well-represented by existing variant data sets,
the pangenome references developed by the HPRC that incorpo-
rate new T2T sequences should further improve the performance
and accuracy of the workflows presented in this paper.

Methods

VG-Pedigree workflow

Pangenome graphs provide a framework for leveraging genomic
variation information to create a better-informed mapping proce-
dure than that provided by a linear genomic reference. The work-
flow presented here goes through a number of stages (Fig. 1A). The
first stage establishes parental haplotypes to construct a parental-
backed graph reference. It takes short reads from a trio and aligns
each to a population-informed graph reference. We use a graph
based on the 1000 Genomes data set (The 1000 Genomes Project
Consortium 2015; Sirén et al. 2021). It is still the largest and
most diverse set of phased genotypes available to the public with
broad consent. The 1000GP graph is based on the hs38d1 human
reference genome and the 1000 Genomes Project phase 3 variant
set that has been lifted over from GRCh37 to GRCh38 genome co-
ordinate space and is available in a publicly accessible Google
Cloud bucket.

Alignment of the parent-child trio to the 1000GP graph goes
through a number of steps that split andmerge read alignments to
enable distributed computation (Fig. 1B; Supplemental Fig. S5).
This greatly reduces time spent aligning reads, which is a major
bottleneck for the workflow. Afterwards, each chunked alignment
is projected back to the linear genome reference coordinate space
and corrected for duplicates and missing mate information, and
indels are realigned using ABRA2 (Mose et al. 2019). Following
alignment, samples in the trio are variant-called, producing a
per-sample gVCF genotype called file. A trio-based DeepVariant
extension (Poplin et al. 2018a), Google’s DeepTrio (Kolesnikov
et al. 2021), is used to call variants in this workflow. DeepTrio first
generates images based on the alignments between the parent and
child reads. Then, the DeepTrio variant caller is run concurrently
to call gVCFs for each contig for each sample in the trio. The
gVCFs are next joint-called with the Glnexus package (Yun et al.
2021) in order to merge and recall potentially uncalled variants
in the trio. Joint-calling gVCFs enhances DeepVariant-based calls
by reexamining trio variant sites that were confidently called in
one sample but not another. The joint-called trio VCF is then di-
vided by autosomal and sex-chromosomal contigs, with the mito-
chondrial contig only preserving the maternal set of called
genotypes and the Y chromosomal contig preserving the paternal
set of called genotypes.

A number of different schemes for phasing these variants
were explored using combinations of Eagle (Loh et al. 2016),
WhatsHap (Martin et al. 2016), and SHAPEIT4 (Delaneau et al.
2019). Supplemental Table S31 illustrates the performance of com-
binations of these programs when phasing the GIAB HG002 sam-
ple. Supplemental Table S32 shows phasing performance for the
GIAB Ashkenazi trio with respect to GRCh38- or GRCh37-based
graph alignments. Using Eagle followed by WhatsHap produced
the largest blocks of phased variantswhilemaintaining a switch er-
ror rate close to, or better than, themethodwith the largestmedian

haplotype block size from this list:WhatsHap in combinationwith
SHAPEIT4. Following the alignment and variant calling step, a
phasing subpipeline is run on these contig VCFs using the Eagle-
WhatsHap phasing method (Fig. 1C; Supplemental Fig. S6).
Missing genotypes are imputed using Eagle version 2.4.1 (Loh
et al. 2016). Finally, the contig VCFs are phased with trio- and
read-backed methods using WhatsHap (Martin et al. 2016). That
final set of contig VCFs is then filtered down to just the parental
genotype sets and passed into the graph construction workflow.

Following the phasing stage of the workflow, the phased var-
iants from that step and a linear reference in FASTA are passed as
input into the graph construction step (Fig. 1D; Supplemental
Fig. S7). VG mappers use a variety of indexes (Sirén et al. 2021).
To facilitate this need, the constructionworkflow generates a com-
bination of indexes based on the requirements of the VG Giraffe
mapper.

After constructing the parental graph, the offspring reads can
be realigned to it. GVCFs are called from offspring alignments to
the parental graph reference (Fig. 1B; Supplemental Fig. S5).
Finally, variants are jointly called, once again with the Glnexus
package (Yun et al. 2021), by combining previously computed
gVCFs of the 1000GP-aligned parents with gVCFs derived from
the parental graph-aligned offspring.

The methods developed here for the VG-Pedigree workflow
are implemented in the software framework toil-vg under the
“toil-vg pedigree” subcommand which makes use of the TOIL
workflow engine (Vivian et al. 2017) for cloud-based and cluster-
compute systems and is available at GitHub (https://github.com/
vgteam/toil-vg).

The workflow is also made available in WDL format in the
Dockstore (O’Connor et al. 2017; Van der Auwera and O’Connor
2020) repository at https://dockstore.org/workflows/github.com/
vgteam/vg_wdl/vg-pedigree-giraffe-deeptrio:master.

Candidate analysis workflow

A primary endpoint goal for this workflow is variant detection to
identify likely causes of the genetic disorders in the UDP cases.
Traditional variant filtration techniques narrow down a set of var-
iants, but they are usually not exhaustive enough to narrow the list
down to an actionable number of variants without truncation
(Kobren et al. 2021; Pedersen et al. 2021). Further, they often do
not specialize in the detection of compound-heterozygous candi-
dates in noncoding regions. Traditionally, a large proportion of
work is needed to validate the clinical functionality for each vari-
ant (Baldridge et al. 2017). Given this downstream cost, this work-
flow focuses on reducing that cost by minimizing the number of
variants that need to be examined in the final list. The analysis
workflow takes in a very large set of variants and filters them
by examining a series of variant attributes, each of which follows
an order of most-certain to least-certain true-positive data types
(Fig. 1F).

Additional improvements and features were added to this im-
plementation of the methods developed in the Gu et al. (2019)
study. In this paper, we have adapted all components and annota-
tions used by the workflow to be compatible with the GRCh38 ref-
erence genome coordinate system. The CADD engine software
suite has been updated to version 1.6 which incorporates greater
accuracy in determining deleterious variants located in splice sites
and introns (Rentzsch et al. 2021). We have also updated the pop-
ulation annotation data set to use gnomAD v3.1, which has incor-
porated a larger proportion of samples producing more accurate
and exhaustive population allele frequencies (Karczewski et al.
2020). The maximum minor allele frequency (MAXMAF) calcula-
tion implemented in the population/deleterious-backed variant
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filtrationmodulewas altered to use a binomial instead of a Poisson
distribution (Supplemental Fig. S8D). A critical bug was patched
that was found to erroneously output X-linked candidate variants
for females.We implemented a newmodule that automatically de-
tects the presence, location, and type of copy number variant
(CNV) mosaicism in the proband.

The alignment and variant calling workflow output is pro-
cessed with various annotation programs before they are able to
be passed as input into the candidate analysis workflow. Post-pro-
cessing the final data sets comprises SnpEff annotation, indel-re-
alignment, and converting to a one-variant-per-row format that
has pedigree-consistent indels, for each of the samples in the ped-
igree (Fig. 1E; Supplemental Fig. S9). The CADD (Rentzsch et al.
2021) software suite is used in this analysis workflow to predict
the deleteriousness of a given variant. Any variants that are unique
to the CADDdatabase in the joint VCF have a deleterious score cal-
culated by the software.

The analysis portion of the workflow examines and filters the
pedigree variant file in the context of Mendelian inheritance,
alignments against the parental-based graph reference, population
variant frequency, and predictions of variant effects on gene func-
tion and expression (see Supplemental Methods S5; Gu et al.
2019). Using these filters generates a set of variants that are further
filtered by examining the BAM files for sequence and alignment
noise surrounding each variant (Gu et al. 2019). This produced a
final short list for clinical examination. The workflow then cleans
up the resulting candidate list of identifiable errors and artifacts.
Typical candidate lists produced by this pipeline consist of 10–50
variants (Supplemental Tables S27, S28). These lists include com-
pound-heterozygous variants located in noncoding regions of
the genome.

One new implementation of the workflow is the detection of
CNVmosaicism. Mosaicism is a genetic event where a single sam-
ple possesses multiple populations of cells that possess different
proportions of variants. The goal of the program is to detect
stretches of phased variants that show consistent and significant
evidence for deviation in allele depth (AD) contributed by the
mother and father. The first step is to phase a set of heterozygous
genotypes in the proband by examining the parental genotypes.
The phasing done here is more stringent than in the previous
method described in the VG-Pedigree workflow because we are
looking for a sequence of easily phasable SNPs and so the proce-
dure is rule-based, instead of WhatsHap which is based on statisti-
cal models. A given genotype in the proband is phasable if two
conditions are met: at least one parent has a homozygous geno-
type, and the other parent is heterozygous. If a large enough pro-
portion of genotypes are phased in this way, the program
examines regions of sufficient length for consecutive stretches of
allele balance deviation. A sliding window of 10,000 phased geno-
types is used to scan each chromosome and find the boundaries of
themosaic region. For each SNPwithin thiswindow, theADof one
parent is subtracted from the AD of the other parent. A t-test is ap-
plied to the list of AD differences within the window to test if the
distribution is significantly different from the nullmodel of no dif-
ference. If the t-test statistic is greater than the input threshold,
then a region of possible mosaicism is detected and subsequently
logged in a separate file for further examination. This threshold
was determined empirically against mosaic-positive samples ob-
tained by the UDP. This differs from traditional CNV callers in
that this program incorporates trio information to look for partial
deletion or duplication events at megabase scales at a continuous
level of granularity.

This program can also determine three types of mosaicism:
uniparental isodisomy-disomy, trisomy-disomy, and monosomy-
disomy. In uniparental isodisomy-disomymosaicism, the individ-

ual has populations of cells where a proportion of their genome
shares both copies from only one of their parents, and the rest of
their cells have inherited a copy from both parents. These types
of mosaics are detected by examining the total read depth of the
child and parents within the candidate mosaic region. If the pro-
portion of total read depth between the child and parents is the
same, and the proportion of ADs of the phasable SNPs between
the child and parents is not the same, then the program will clas-
sify the mosaic region as uniparental isodisomy-disomy.

In trisomy-disomy mosaicism, the individual has popula-
tions of cells where a proportion of their genome has inherited
two copies of the same chromosome from one of their parents
and one copy from the other parent, and the rest of their cells
have inherited a copy from both parents. If the proportion of total
read depth in the child is greater than their parents, then the re-
gion is classified as trisomy-disomy mosaicism. Alternatively, in
monosomy-disomy mosaicism, the individual inherits only one
copy from only one parent in some of their cells, and the rest of
their cells inherit one copy from each parent. In this case, if the to-
tal read depth in the child is less than that of their parents, then the
region is classified as monosomy-disomy mosaicism.

All modules have been implemented in software containers
to improve portability and interoperability with other workflow
engines (Schulz et al. 2016; Kane and Matthias 2018). The candi-
date analysis workflow is implemented within the toil-vg software
package under the toil-vg analysis subcommand. The candidate
analysis workflow is also available in WDL format in the
Dockstore repository (https://dockstore.org/workflows/github
.com/cmarkello/bmtb_wdl/bmtb:main).

Candidate deleterious variants for the proband and sibling
populations of the 15 cohort proband-sibling pairwise analysis
can be found as Supplemental Data. The deidentified sequencing
and phenotype data for all Undiagnosed Diseases Network (UDN)
and UDP samples used in the candidate analysis evaluation are
available in theNationalCenter for Biotechnology (NCBI) database
of Genotypes and Phenotypes (dbGaP; https://www.ncbi.nlm.nih
.gov/gap/) under the accession number phs001232.v4.p2.

Software availability

Both the VG-Pedigree workflow and the candidate analysis work-
flow are implemented in the software workflow engine TOIL
(Vivian et al. 2017) for cloud-based and cluster-compute systems
under the software framework toil-vg. They are callable using the
“toil-vg pedigree” and “toil-vg analysis” subcommands, respec-
tively. “toil-vg” is available at GitHub (https://github.com/
vgteam/toil-vg). The workflows are also made available in WDL
format in the Dockstore (O’Connor et al. 2017) repository
at https://dockstore.org/workflows/github.com/vgteam/vg_wdl/
vg-pedigree-giraffe-deeptrio:master and https://dockstore.org/
workflows/github.com/cmarkello/bmtb_wdl/bmtb:main.

Input data and scripts used in the mapping evaluation, vari-
ant calling evaluation, and runtime evaluation are all publicly
available and listed in the open source code (MIT license) as pro-
vided in Supplemental Code and are also available from GitHub
(https://github.com/cmarkello/vg-pedigree-paper).

Low-complexity, low-mappability, andMHC regions were de-
fined by the following BED files, respectively, and intersected us-
ing BEDTools against the GIAB sample-specific all confident
region benchmark BED files: https://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/release/genome-stratifications/v2.0/GRCh
38/LowComplexity/GRCh38_AllTandemRepeatsandHomopoly
mers_slop5.bed.gz, https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/
release/genome-stratifications/v2.0/GRCh38/union/GRCh38_alll
owmapandsegdupregions.bed.gz, https://ftp-trace.ncbi.nlm.nih

VG-Pedigree and rare candidate variant analysis

Genome Research 901
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276387.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276387.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276387.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276387.121/-/DC1
https://dockstore.org/workflows/github.com/cmarkello/bmtb_wdl/bmtb:main
https://dockstore.org/workflows/github.com/cmarkello/bmtb_wdl/bmtb:main
https://dockstore.org/workflows/github.com/cmarkello/bmtb_wdl/bmtb:main
https://dockstore.org/workflows/github.com/cmarkello/bmtb_wdl/bmtb:main
https://dockstore.org/workflows/github.com/cmarkello/bmtb_wdl/bmtb:main
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276387.121/-/DC1
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://github.com/vgteam/toil-vg
https://github.com/vgteam/toil-vg
https://github.com/vgteam/toil-vg
https://github.com/vgteam/toil-vg
https://dockstore.org/workflows/github.com/vgteam/vg_wdl/vg-pedigree-giraffe-deeptrio:master
https://dockstore.org/workflows/github.com/vgteam/vg_wdl/vg-pedigree-giraffe-deeptrio:master
https://dockstore.org/workflows/github.com/vgteam/vg_wdl/vg-pedigree-giraffe-deeptrio:master
https://dockstore.org/workflows/github.com/vgteam/vg_wdl/vg-pedigree-giraffe-deeptrio:master
https://dockstore.org/workflows/github.com/vgteam/vg_wdl/vg-pedigree-giraffe-deeptrio:master
https://dockstore.org/workflows/github.com/vgteam/vg_wdl/vg-pedigree-giraffe-deeptrio:master
https://dockstore.org/workflows/github.com/vgteam/vg_wdl/vg-pedigree-giraffe-deeptrio:master
https://dockstore.org/workflows/github.com/cmarkello/bmtb_wdl/bmtb:main
https://dockstore.org/workflows/github.com/cmarkello/bmtb_wdl/bmtb:main
https://dockstore.org/workflows/github.com/cmarkello/bmtb_wdl/bmtb:main
https://dockstore.org/workflows/github.com/cmarkello/bmtb_wdl/bmtb:main
https://dockstore.org/workflows/github.com/cmarkello/bmtb_wdl/bmtb:main
https://dockstore.org/workflows/github.com/cmarkello/bmtb_wdl/bmtb:main
https://dockstore.org/workflows/github.com/cmarkello/bmtb_wdl/bmtb:main
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276387.121/-/DC1
https://github.com/cmarkello/vg-pedigree-paper
https://github.com/cmarkello/vg-pedigree-paper
https://github.com/cmarkello/vg-pedigree-paper
https://github.com/cmarkello/vg-pedigree-paper
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v2.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeatsandHomopolymers_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v2.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeatsandHomopolymers_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v2.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeatsandHomopolymers_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v2.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeatsandHomopolymers_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v2.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeatsandHomopolymers_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v2.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeatsandHomopolymers_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v2.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeatsandHomopolymers_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v2.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeatsandHomopolymers_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v2.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeatsandHomopolymers_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v2.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeatsandHomopolymers_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v2.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeatsandHomopolymers_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v2.0/GRCh38/LowComplexity/GRCh38_AllTandemRepeatsandHomopolymers_slop5.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/union/GRCh38_alllowmapandsegdupregions.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/OtherDifficult/GRCh38_MHC.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/OtherDifficult/GRCh38_MHC.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/OtherDifficult/GRCh38_MHC.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/OtherDifficult/GRCh38_MHC.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/OtherDifficult/GRCh38_MHC.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/OtherDifficult/GRCh38_MHC.bed.gz


.gov/giab/ftp/release/genome-stratifications/v2.0/GRCh38/OtherDiffic
ult/GRCh38_MHC.bed.gz (Quinlan and Hall 2010; Wagner et al.
2021b). The analysis of called variants in the HG002 complex
medically relevant genes used the HG002 CMRG v1.00 VCF
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/Ashkenazim
Trio/HG002_NA24385_son/CMRG_v1.00/GRCh38/SmallVariant/
HG002_GRCh38_CMRG_ smallvar_v1.00.vcf.gz and BED file
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/
HG002_NA24385_son/CMRG_v1.00/GRCh38/SmallVariant/HG00
2_GRCh38_CMRG_smallvar_v1.00.bed (Wagner et al. 2021a).
Sample-specific difficult region BED files were extracted from
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/
genome-stratifications/v3.0/GRCh 38/GenomeSpecific/.
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