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Abstract: We live in an environment of ever-growing demand for transport networks, which also
have ageing infrastructure. However, it is not feasible to replace all the infrastructural assets that
have surpassed their service lives. The commonly established alternative is increasing their durability
by means of Structural Health Monitoring (SHM)-based maintenance and serviceability. Amongst the
multitude of approaches to SHM, the Digital Twin model is gaining increasing attention. This model
is a digital reconstruction (the Digital Twin) of a real-life asset (the Physical Twin) that, in contrast
to other digital models, is frequently and automatically updated using data sampled by a sensor
network deployed on the latter. This tool can provide infrastructure managers with functionalities
to monitor and optimize their asset stock and to make informed and data-based decisions, in the
context of day-to-day operative conditions and after extreme events. These data not only include
sensor data, but also include regularly revalidated structural reliability indices formulated on the
grounds of the frequently updated Digital Twin model. The technology can be even pushed as far as
performing structural behavioral predictions and automatically compensating for them. The present
exploratory review covers the key Digital Twin aspects—its usefulness, modus operandi, application,
etc.—and proves the suitability of Distributed Sensing as its network sensor component.

Keywords: digital twin; digitalization; civil engineering; structures; structural health monitoring;
SHM; distributed sensing; distributed optical fiber sensors; DOFS; DFOS; review

1. Preface

In the past few decades, the rapid progress in information and communication tech-
nologies has led to a large-scale integration of computer-aided technologies into the stan-
dard practices of almost every industry, including civil engineering and construction.
Indeed, acronyms such as CAD, CAE, BIM, FEA, and PDM, are becoming common in the
industry and are probably spoken by professionals on a daily basis. Other increasingly
trendy and fashionable technologies whose names regularly appear in the context of annual
business plans and strategy meetings are machine learning, Big Data, Internet of Things,
Digital Twin, artificial intelligence, cloud computing, sensor networks, etc.

All of the above can be summarized in one word: digitalization. This can be defined
as the process of collecting information on physical assets and packaging them into a
digital representation of these assets that can be processed automatically [1]. As previously
mentioned, the adoption of digital technologies in the organization or in the operation
environment of a company can be considered a standard and widespread practice at this
time. Its impact on modern society has been so radical that some authors have compared it
to the 18th century industrial revolution [2,3]. In general, the digitalization of an asset has
allowed the automated collection of data that can be subjected to a mining process to better
understand process performance, cost drivers, and causes of risk [4]. Problems and risks
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connected to the operation of these assets can be detected and tackled before they become
critical, or bypassed completely due to the possibility of extracting real-time diagnostic data.
Buckley and Logan [5] listed the key improvements resulting from digitalization for the
process and project outcomes of various industries: fewer errors, greater cost predictability,
better understanding of a project, improved scheduling, and optimized design.

For civil engineering systems, digitalization is not only an improvement from an
overall design perspective, but also embodies the backbone of the logical next step of the
infrastructural management system, i.e., smart infrastructure. Indeed, as society moves
deeper into the twenty-first century, the demand for infrastructural assets is growing
rapidly, and productivity increasingly depends on these assets [6]. Smart infrastructure is
defined as the integration of a sensing network—providing real-time digital information
about the state of an asset—with physical infrastructure, in order to achieve real-time mon-
itoring, enhanced service delivery, and efficient decision making for the management of
infrastructure assets [7,8]. Additionally, digitalization supports and encourages the conver-
gence of infrastructure networks (enabling coordination between previously uncoordinated
activities) for improved efficiency, associated cost reductions, and maintenance [1]. As
correctly noted by the Project Digital Built Britain [9], this is all in the name of “enhancing
the natural and built environment, thereby driving up commercial competitiveness and
productivity as well as quality of life and wellbeing for the public. This will be achieved
through better planning, delivery and whole-life management of infrastructure and the
wider built environment”. Although the construction industry is currently one of the least
digitized sectors, it is predicted that, by 2025, full-scale digitalization will lead to annual
global cost savings of 13% to 21% in the design, engineering, and construction phases, and
10% to 17% over the operations phase [10].

The Digital Twin is easily the highest expression of the process of digitalization. Indeed,
it not only provides all of the above-mentioned advantages of digitalization and smart
infrastructures, but also provides a framework to automate and optimize the “cradle-to-
grave” processes associated with operating a civil engineering asset. According to Buckley
and Logan [5], although digital tools are utilized in the design stage (36% in USA, 49% in
UK, 49% in France, and 44% in Germany), they are not used as much in the construction
stage (28% in USA, 7% in UK, 3% in France, and 13% in Germany), and little to no use
is made in the post-construction stage (0% in USA, 2% in UK, 1% in France, and 0%
in Germany).

The base concept of the present article was born because the authors realized the
difficulty of finding clear indications, guidelines, and technical reports on the development
of a Digital Twin platform in the literature. Where should one start to develop a Digital
Twin? What aspects should be considered? What is the performance required by each
component according to its set objective? These are all questions whose answers can only
be found in a fragmental and limited way in the existing literature. Furthermore, based on
the commonly agreed-upon SHM potential of Distributed Sensing, the authors originally
planned to apply these sensors to the Digital Twin for civil engineering systems. However,
whenever browsing the literature for studies on the suitability of such a marriage, no
material was found. Both of the above-mentioned deficiencies can be explained by the
novelty and technological immaturity of the Digital Twin. As such, the present article
intends to contribute to the establishment of scientific bases that will enable, in the future,
the efficient development of the Digital Twin for civil engineering systems (potentially
powered by Distributed Sensing).

The aim of the present article is to examine the key aspects that characterize the Digital
Twin concept—its definition, usefulness, modus operandi, applications, etc.—from a civil
engineering perspective. Note that this paper is an exploratory review article and not a
technical review. As such, the authors do not report specific applications of the Digital
Twin to civil engineering systems, but rather collect, define, and expand on the advantages,
functioning principles, requirements, and applicative aspects of this implementation. Thus,
this paper has a dual purpose: (1) to facilitate an all-inclusive comprehension of the Digital
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Twin and, consequently, its implementation in industry and research; and (2) to assess the
potential of Distributed Sensing as a key component of the Digital Twin. Regarding the
former, the reader should keep in mind that, at present, the implementation of the Digital
Twin in civil engineering systems is still in its infancy; so much so, that very few applications
can be found in real life. Finally, a review of actual real-world applications of the Digital
Twin in civil engineering systems will be the focus of the authors’ subsequent publication.

In this paper, the discussion on the key principle of the Digital Twin–civil engineering
systems marriage is developed around the traditional “What, Why, How, Who and When”
approach. This ensures a comprehensive vision of all of the multiple facets of the subject
in question. In particular, after Section 2. Introduction, Section 3. Digital Twin: its multi-
disciplinary potential and applications tackles the first two questions in a universal manner
nonexclusive to the civil engineering field. Indeed, Section 3.1. What Are Digital Twins?
will answer the “what?” question by providing the reader with a formal but informative
definition of the Digital Twin. Section 3.2. Where Digital Twins? will answer the “where”
question by providing the reader with an overarching perspective of modern-day Digital
Twin applications in both research and industry. Section 4. Towards the Digital Twin for Civil
Engineering Systems moves the dialogue towards the civil engineering field. Section 4.1.
Why Digital Twins? answers the “why?” question and, in particular, why infrastructure
managers and stakeholders should integrate the Digital Twin concept into their infrastruc-
tural stock. Section 4.2. How Digital Twins? delves into the technological aspects unique
to the development of a Digital Twin for a civil engineering system i.e., “How [to develop
them]?”. Finally, Section 5. Distributed Sensing as Digital Twin Sensor Network Component
presents the advantages of a combination of these two cutting-edge technologies. Section 6.
Conclusions summarize the key points extracted in Sections 4 and 5.

2. Introduction

We live in an environment of ever-growing demand for transport infrastructure net-
works, because these are relied on for the functioning and growth of regional economies.
Unfortunately, we also live in an environment of ageing infrastructure. Most bridges, for
instance, are reaching the end of their service lives and are generally inadequate to cope
with the increasing traffic demands and resilience requirements. Revealing data, which
are, on average, representative of the situation of most countries worldwide, are provided
by the American Society of Civil Engineers (ASCE)’s 2021 Infrastructure Report Card [11].
According to this report, of all the bridges in the USA, 42% are 50 years old or more and
7.5% are structurally deficient. On average, there are 178 million trips across a structurally
deficient bridge each day. Regrettably, this situation has led to an increasing number of
structural failures of highly populated infrastructural assets such as residential buildings
and bridges. In just the decade from 2011 to 2021, around 60 bridge failures occurred world-
wide, followed by an equally large number of fatalities. Of these failures, a conspicuous
example was the sudden and deadly collapse of the Morandi Bridge in Genova (Italy)
in 2018, which killed 43 people. For comparison purposes, the previous decade saw the
collapse of around 50 bridges; the decade prior to that saw 15; and the decade prior to that
saw 20.

However, as observed by Regier and Hoult [12], it is not feasible to replace all of the
structures that have surpassed their intended service lives, because of budgetary, logistical,
and environmental concerns. The only other possible approach consists of keeping the
assets that are still fit for purpose in service. As part of this new global and national
effort, engineering enterprises worldwide are required to embrace both classic and novel
methodologies to ensure the durability of national infrastructural assets and to reduce the
processes of rehabilitation, restoration, and regeneration.

The best approach to the issue of infrastructural durability is universally considered
to be Structural Health Monitoring (SHM) [13]. SHM can be understood as the continuous
measurement and analysis of key structural and environmental parameters under operating
conditions, for the purpose of warning of abnormal states or accidents at an early stage [14].
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Indeed, accurate information from the monitoring of structures is crucial to make the right
decisions on maintenance and user safety. However, these two aspects do not wholly
describe the potential of SHM. Indeed, as a by-product of keeping old infrastructure
in service, new environmentally taxing constructions that are not strictly necessary can
be avoided. Therefore, an environmental and sustainability potential is also embodied
by SHM. However, SHM, together with its intrinsic potential for sustainability, is still a
young scientific practice. As such, despite the increasingly large number of SHM-oriented
applications of condition-assessment inspections, testing, and monitoring, a scientific
consensus on their implementation is still absent. Consequently, to this day, such practices
have not been adequately addressed in structural codes and standards, leading to different
technological interpretations and implementations in every country. This lack has been
acknowledged by both scientific and governmental institutions. For instance, it is the focus
of the European-wide “IM-SAFE project” [15], whose main objectives are to clarify and
integrate the monitoring and maintenance-related “rules in the structural design codes by
filling-in the gaps in the current knowledge and closing the gap between the standard and
the practice [15]”. In other words, IM-SAFE plans to support the European Commission and
the European Committee for Standardization in preparing new standards in monitoring,
maintenance, and safety of transport infrastructure.

One of the greater challenges facing the civil engineering industry (formerly known as
the so-called “brick and mortar” industry) and, therefore, SHM, is adapting in record time
to the “digital push” and the consequent movement towards a full digitalization of the
existent infrastructural stock. This, for example, is the idea behind Building Information
Modeling (BIM) which, according to ISO 19650:2019, is the use of a digital representation
of a built asset to facilitate design and construction, and to form a reliable basis for de-
cisions. One can immediately see “the potential of BIM for the management of all the
information and documentation of an infrastructure project throughout its life cycle in a
digital environment” [16]. The previous wording of “throughout its life cycle” is key, as it
suggests how digitalization can help to boost the durability of the existent infrastructure
even as it reaches the end of its service life. To meet and exceed an infrastructure’s intended
purpose, a parallel intelligent digital platform has been very recently introduced, i.e., the
Digital Twin.

As amply explained later, the Digital Twin concept, similarly to BIM, also uses a digital
reconstruction of a real-life infrastructure or building, but takes it one step further by
integrating the former with data produced by sensors positioned on the latter. This sensor
deployment effectively acts as the nervous system of the real-life structure by providing
information on its well-being (structural health) or issues. A constant and automatic data
interchange (deformation, temperature, occurrence of hazardous events, etc.) between
the real-life and digital structure is therefore created. Through the integration of these
sensors in the so-called “smart buildings” or “smart infrastructure”, and through their
respective Digital Twin, concessionaries, stake holders, managers, and decision makers
can take data-based, informed, and “smart” decisions to ensure the durability and safety
of their infrastructural stock. This is perfectly embodied in Bolton et al. [9]’s Gemini
Principle statement: “Digital twins of physical assets are helping organizations to make
better-informed decisions, leading to improved outcomes”.

Overall, the global Digital Twin market size was valued at USD 3.1 billion in 2020 and
is projected to reach USD 48.2 billion by 2026 [17]. In regards to the construction industry,
it is estimated that the integration of Digital Twins will allow for savings of 15–25% by
2025 [18].

As can be determined from these numbers, the potential of a Digital Twin integration
into civil engineering systems is becoming increasingly apparent and sought after. An
example of this is Europe’s novel “ASHVIN: Digitizing and transforming the European
construction industry” project [10]. This is a joint effort among 14 European partners that
has the final goal of proposing a European-wide Digital Twin standard, an open-source
Digital Twin platform integrating the Internet of Things, image technologies, and a set
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of tools/procedures to apply the platform, in addition to the standard proven to ensure
specified productivity, cost, and safety improvements [10]. Interestingly, ASHVIN will
demonstrate its innovations on ten real-world projects across Europe and different areas
of construction, including three different railway bridges in Plasencia-Bajadoz (Spain), an
airport runway in Zadar (Croatia), and office buildings in both Göteborg (Sweden) and
Barcelona (Spain). Furthermore, as explored later, ASHVIN’s main page [10] conveys
another large potential of the Digital Twin, namely, the use of the constant flow of real-time
data between the twins and the historical data from other projects to provide the required
historical foundations for predictive and prescriptive analytics.

The aim of the present article is not only to explore the potential benefits of a Digital
Twin integration into civil engineering systems, but also to assess the suitability and
efficacy of the Distributed Sensing monitoring tool as the “sensor deployment” tasked
with feeding data into the Digital Twin. The reader should know that, whenever referring
to monitoring tools, one generally refers to instruments falling under the category of
“traditional monitoring techniques”, namely, inclinometers, accelerometers, extensometers,
total station surveys, load cells, GNSS-based sensors, etc. [19,20]. By themselves, these
can be considered sufficiently reliable since their correct deployment has been extensively
investigated and they are now widely acknowledged, thus ensuring reliable monitoring
and structural assessments. However, as stated in Baker [21], conventional forms of
inspection and monitoring are only as good as their ability to uncover potential issues in an
accurate and timely manner. Indeed, regarding the ability of damage detection, traditional
tools present several drawbacks, which include the need for the infrastructure’s service
interruption during their deployment; non-automated, non-real-time measurements; and
interference risk.

Modern monitoring technologies, instead, are aimed at tackling these limitations (fully
or partially surpassing them, depending on the sensor) by boosting the sensors’ precision,
automation, ease of deployment, etc. These technologies include, among others, Optical
Fiber Sensors (OFS), Global Positioning Systems (GPS), radars, Micro Electro Mechanical
Systems (MEMS), and Image Processing Techniques such as Digital Image Correlation
(DIC) [20,22]. In particular, OFS are dielectric devices used to confine and guide light, and
consist of several layers: a fiber core, cladding, and, occasionally, an external jacket aimed
at providing the fiber with mechanical resistance (see Figure 1).
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Figure 1. Optical Fiber Sensors: (a) a picture of the fiber and a (b) 3D illustration of its cross-
section—note that the latter is of an indicative nature only as many kinds of differently coated OFS
are available on the market [19].

A significant ability of OFS is the measurement of mechanical and temperature-
variation-induced strains along the fiber length by means of light scattering and back-
scattering, which occur whenever the photons of the emitted light interact with the physical
medium through which it travels (the fiber’s core itself). When no strain or temperature
is imposed on the system, light propagates and is reflected throughout the imperfections
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with a given signature. By comparison, when strain or temperature values vary, the fre-
quency of the back scattered light is shifted. The measured strain values are then related
to the frequency shift. As a matter of fact, three different types of light scattering and
backscattering may occur in an OFS, namely, Raman, Brillouin, and Rayleigh [23]. All
have particular optical features that make one more suitable than the others relative to the
research objectives. Rayleigh backscattering, for example, allows for particularly accurate
strain sampling despite its reduced sensing range limit. This kind of backscattering repre-
sents the working principle behind Distributed Optical Fiber Sensors (DOFS or DFOS) or
Distributed Sensing technology.

Distributed Sensing utilizes OFS and, most importantly, an interrogator machine
able to accurately measure strains (down to 1 µε), temperature, and vibration in two or
even three dimensions [24]. These measurements can all be achieved in a completely
distributed manner (modern interrogation units can attain a spatial resolution of 0.63 mm)
and with measurement frequencies of 250 Hz [25]. Consequently, direct detection and
characterization (including recognition, localization, and quantification or rating) of local
strain changes generated by structural damage are intrinsic properties of such sensors.
Furthermore, Optical Fiber Sensors have some inherent advantages, such as corrosion
immunity, high durability, resistance to electromagnetic interference, small size, and light
weight, that elevate them beyond the classic monitoring tools [26]. On the basis of all of the
above characteristics of Distributed Sensing, the potential of this monitoring tool for SHM
applications becomes quite evident.

In fact, DOFS have already been employed in numerous real-life SHM applications,
including the monitoring of buildings (including skyscrapers), bridges, roads, geotechnical
engineering applications (pile foundations, soil and rock deformations, soil stabilization
anchors, mining), tunnels, pipes, and wind turbines. The authors redirect those readers
interested in a general overview of all of the above applications to the following literature
reviews: Bado and Casas [19] and Barrias et al. [23].

As previously noted, the present article first presents a short exploratory review
of Digital Twins, how they work, and the advantages of their application to the civil
engineering field. Finally, given the suitability of Distributed Sensing to SHM purposes,
this paper attempts to assess whether the performance of this tool meets the recommended
requirements for its implementation in a Digital Twin framework.

To properly conclude this introduction, the authors iterate a concept originally reported
in Seo [27], namely, civil engineering’s slow transition towards technology convergence.
This is a theory that asserts the absence of a clear distinctive line between the products and
applications of different disciplines; instead, a co-existence, intersection, and reciprocal
enhancement exist between the latter which, in turn, accelerates the overall technological
advancement [28]. The application of the Digital Twin to the civil engineering field and its
integration with Distributed Sensing monitoring technology to create “smart” structures
is the quintessential representation of such a development, as it joins civil engineering,
photonics, signal processing, materials engineering, computer engineering, etc.

3. Digital Twin: Its Multidisciplinary Potential and Applications

In order to gain a clear and general picture of the Digital Twin concept, the authors
dedicate the present section to understanding exactly what Digital Twins are and the degree
to which they can be applied to multidisciplinary challenges.

3.1. What Are Digital Twins?

Although there seems to be no general consensus on the origin of the Digital Twin,
two citations regularly appear whenever attempts are made to identify its source, which
have unofficially become the origins of this concept. These are (1) a presentation held at
the University of Michigan on Product Lifecycle Management by Grieves in 2002 [29], and
(2) a strategic technology roadmap published by NASA in 2010 [30].
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Regarding a formal and unique definition of the Digital Twin, due to its recent
emergence—as seen, the concept is only two decades old—a common agreement has
also not been reached. The definitions often seem to be interconnected to the specific end
goal of each Digital Twin application and, thus, vary slightly depending on the case. As part
of the review effort, the authors of the present article consulted and analyzed numerous
Digital Twin definitions from both frequently cited and novel scientific publications [31–34],
and have reached a unanimous agreement on two.

The first of these is a simpler and concise definition that nevertheless manages to
convey the core concepts behind a Digital Twins. The second is a less straightforward but
more technical definition that not only elucidates the meaning of Digital Twin but also
paints a clear picture of its key features. The authors decided to report only two definitions
of the Digital Twin concept, instead of the many available definitions, to promote the
convergence towards a single formal definition. Furthermore, the authors call for larger
efforts—from both industry and academia—to achieve this important goal. Reaching this
goal could represent the first step towards uniform methods, standards, and norms for the
creation, employment, and optimization of Digital Twins.

The first definition is from Boschert et al. [31]: “A [digital] comprehensive physical and
functional description of a component, product or system together with all available operational data
[ . . . ] useful in all the current and subsequent lifecycle phases”.

The second definition comes from Defraeye et al. [32]: “A Digital Twin of a certain
product is defined as a virtual representation of its real-world counterpart, which (1) contains
all essential elements, such as all geometrical components and material properties; (2) simulates
accurately and realistically all relevant processes and their kinetics throughout the product’s life-
cycle; and (3) is connected to the real-world product and processes by sensor data, which is preferably
continuously updated in real-time”.

These two definitions relay all of the key information on what a Digital Twin is:

• Digital Twins are virtual representations or replicas of a physical real-world asset (that
is, the Physical Twin). This can be achieved though 3D modeling, finite elements, etc.
Note that there is practically no limitation to what this real-world asset can be—a
manufacturing product [35], a horticulture product [32], any man-made asset of the
built environment [1], etc.

• In contrast to a traditional digital model (developed, for example, by means of
Computer-Aided Design software), Digital Twins are not restricted to being just geo-
metrically accurate digital replicas. Instead, as correctly stated in Lu and Brilakis [18],
in a Digital Twin, the geometric and graphical data are enriched by semantic infor-
mation, i.e., massive, cumulative, real-time, real-world data measurements. These
data include, but are not restricted to, engineering data (movements, deformations,
overheating), operational data, behavior descriptions, inspection reports, and main-
tenance history. As explained below, there additional data are extracted from the
Physical Twin by means of sensor networks—sensors, Internet of Things components,
etc.—positioned on it and paired or “twinned” to its Digital Twin by means of a
software framework. By twinning the Digital Twin with the Physical Twin asset—via
streams of real-time data from the embedded sensors—one can visualize live data that
describe the real-life asset, execute contextual inquiries, and perform any sort of data
exploration [36].

• The third and last key piece of information relayed by the two above definitions is
the utility of the Digital Twin throughout the life cycle of the real system. Indeed, as
constant updated input data are fed to the Digital Twin, it evolves alongside its Physical
Twin, constantly reporting and updating the currently available knowledge about the
static and dynamic status of the analyzed system. This last aspect is crucial to make
informed management decisions and implement novel solutions across the various life
cycle phases of a system. This represents a departure from the commonplace practice
of treating the design and operation of a system as separate phases.
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Note that, in the Digital Twin literature, a distinction between the Digital Twin and
the Digital Shadow is sometimes made [1,32,33,37] as follows: a Digital Shadow offers a
one-way data flow from the physical to the digital object, whereas a Digital Twin embraces
data exchange in both directions between the physical and digital assets.

3.2. Where Digital Twins?

Digital Twins are applied in a wide range of fields, some of which are niche and very
specialized, but most of which are conspicuous and present in our daily lives.

Among the former, it is worth mentioning what is considered the earliest application
of Digital Twin, even before it was called such [38]. In the 1970s, when planning the Apollo
13 space mission, NASA employed a “simulator” concept intended to reflect the condition
of the spacecraft. On the day of the launch (11 April 1970), an explosion in the oxygen
tanks critically damaged the main engine of the service module, causing oxygen to leak
into space. Although Apollo 13 was obviously not equipped with technology able to collect
data on the state of the module’s components and beam them back to base, NASA used
its state-of-the-art telecommunications technology to stay in touch with its spacecraft and
modify the simulators in order to reflect the real-life condition of the crippled craft [38].
Ultimately, the crew returned to Earth safely. NASA now uses the Digital Twin for both
manned and unmanned aircraft [32,39].

Regarding more “down to Earth” applications, Digital Twins are now being developed
for entire production plants—for the manufactured products on the production line and
for the machines building it [32]. TESLA, for example, aims to develop a Digital Twin for
every built car and, by means of the consequent synchronous data transmission between
the car and the factory, provide maintenance schedules tailored individually to each user,
thus optimizing resources [40]. Energy companies such as General Electric and Chevron,
in an effort to forecast the health and performance of their products over their lifetime,
use Digital Twins to track the operations of wind turbines [39]. Yet more wide-ranging
applications are regularly being proposed or are even already in use. Defraeye et al. [32]
studied the possible application of the Digital Twin to the supply chain of fresh horticultural
products. The authors highlighted the potential of monitoring the history of each shipment
because it is exposed to a unique and unpredictable set of temperatures and gases as it is
transported from the farm to the consumer. Saifutdinov et al. [41] describe the application of
a Digital Twin to an airport centralized traffic control system that can be trained to perform
the controller’s tasks through the implementation of machine learning. In Granacher
et al. [42], the authors propose the use of a Digital Twin to assist decision makers, steering
their exploration of the multi-criteria solution space and guiding them towards the most
optimal decisions, independently from the instance in which their choices are inputted
into the system. On the other side of the spectrum, Quilodrán-Casas et al. [43] used the
functionalities of the Digital Twin to develop epidemiological models aimed at gaining
a better understanding the spread of the COVID-19 disease. In particular, to study the
dynamics of epidemiological models, the authors used official virus spreading data from
the UK to developed two different Digital Twins of an idealized town, taking account of
the spatial dissimilarities.

As previously noted, among the most ambitious and complex applications of the
Digital Twin technology are “Smart Cities”. Assuming that understanding the “urban
metabolism” of a city (the production, import, and export of diverse natural and non-
renewable material flows) is key to reaching the goal of a sustainable city, the Smart City
technology powered by the Digital Twin is an ideal candidate to achieve this goal [44].
The whole idea uses the Digital Twin as a representation of a city in terms of its physical
assets [45], such as its geography/topography, energy and consumption, traffic, infrastruc-
ture, public safety, transportation, environmental sanitation, social services, health and
hygiene, culture and tourism, parks and entertainment, and water resources [46]. Ulti-
mately, a Smart City is a large-scale Digital Twin expressly designed with a people-centered
perspective, thus providing solutions aimed at improving the citizens’ quality of life from
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a holistic point of view, i.e., comprehensively encompassing all of its relevant aspects,
such as the economy, society, and environment [1]. It is acknowledged that the Digital
Twin of a Smart City should ideally provide a real-time response to the diversified needs
of its residents [46]. Its advantages, though, are not restricted to a reactive operational
framework (i.e., operational decisions taken “in response” to data reported by the sensors
deployed in the city), but can be also of a preventive nature. Indeed, the Digital Twin of a
Smart City enables urban planners, engineers, and architects to simulate solutions to the
city’s problems without actually implementing them, a practice named in [47] as Virtual
Experimentation and Virtual Test-Bedding. This kind of research can cover a vast number
of both independent and intertwined aspects of life in a Smart City, from mobility with
connected and autonomous vehicles, and health care in cyberspace [48], to optimization
solutions such as the integration of Deep Learning in a Smart City’s Digital Twin powered
by both Internet of Things components and Big Data Analysis technology [46]. To provide
an idea of the evolving popularity of the Smart City technology, the global revenue for
Smart City technologies, products, and services is projected to be worth around 150 billion
U.S. dollars in 2022 and around 250 by 2025 [49].

Some applications and prototypes of the Digital Twin technology in favor of a Smart
City can be found in Helsinki (Finland) [44] and Herrenberg (Germany) [50], but the most
well-known integration is Virtual Singapore [47]. The Singaporean Government, in col-
laboration with Dassault Systèmes [51], has created a three-dimensional model supported
by static and dynamic data from a pervasive set of sensors acting as a collaborative data
platform for the city. As stated in Dassault Systèmes Virtual Singapore dedicated page [20]:
“As part of its Smart Nation effort, Singapore wanted to develop a Smart City environment
to plan everything—from emergency evacuation to comfortable urban living”. The city
has already taken advantage of this technology. As example, in an attempt to manage
and contain the COVID-19 virus, in April 2020, the Singaporean Government launched a
platform named Space Out [52], which displays the city’s Digital Twin data about crowd
levels, thus enabling its citizens to make informed decisions in regards to safe distancing.
The city’s Digital Twin was also developed with the scope of enabling the test-bedding
of novel concepts and services, planning and decision making, and research on emerging
technologies. Some examples of this kind of application are:

• Calculating the amount of energy that could be generated by installing solar panels on
certain roofs;

• Developing and optimizing evacuation models for disaster management;
• Visualizing existing the landscape against ongoing and future construction projects to

harmonize and promote holistic urban planning;
• Identifying barrier-free routes for the disabled and elderly, taking into consideration the

surrounding physical landscape barriers, i.e., water bodies, vegetation, and infrastructure.

To gain a general perspective on the distribution of Digital Twin applications over
the various scientific domains, one can check the number of scientific publications per
field. Figure 2 shows a graph from Errandonea et al. [53] displaying the distribution
of publications on Digital Twins across various fields from 68 different journal articles,
conference proceedings, book chapters, reviews, and business articles collected from the
“Scopus” and “Web of Science” databases. As shown, the manufacturing and production
disciplines encompass the bulk of Digital Twin-focused scientific publications [34,53]. The
construction field represents roughly one-third of the publications. Indeed, although
the concept of the Digital Twin is increasingly gaining attention and relevance in the
field of civil engineering and in the management of the built environment, it is far from
reaching sufficient technological maturity [54]. This deficiency is one of the key reasons
why infrastructure managers are reluctant to undertake the economically and logistically
challenging procedure of implementing this innovative technology.
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4. Towards the Digital Twin for Civil Engineering Systems

The previous section focused on providing the reader with a general and multidisci-
plinary perspective on the definition of Digital Twins and the breadth of the spectrum of
their possible applications. The present section restricts the discussion to civil engineering
systems and, in particular, on the advantages provided by integrating these systems with
Digital Twins. This section also explores the practical and technical aspects to be considered
when attempting such an implementation.

4.1. Why Digital Twins?

Because civil engineering infrastructures cover key roles in the proper functioning,
security, and comfort of modern society, their time-induced deterioration and issues that
jeopardize their serviceability (e.g., corrosion, fatigue, creep, and shrinkage-induced short-
ening and cracking) should be treated with equivalent criticality.

The current maintenance, rehabilitation, and retrofitting approach to civil engineering
systems is mostly time based (highway bridges and railway tunnels are typically inspected
once a year [55]). Generally speaking, the effectiveness of a maintenance approach is only
as good as its ability to detect in a timely manner the surge in criticalities and damage
to the structure [56]. Unfortunately, regarding the time-based approach, these issues can
only be detected during an inspection and at no other time. This delayed detection, and
the consequent delayed maintenance intervention, exposes the infrastructure users and
managers to an increased risk of structural failure. Although more frequent inspections
may seemingly solve this problem, more often than not they do not happen in light of the
involved operational costs and larger infrastructure downtime. Given these downsides
of the time-based approach, some authors called for an evolution of this maintenance
philosophy into a potentially more cost-effective condition-based approach [57]. According
to this approach, managers and operators can optimize the allocation of their budget by
performing structure maintenance only on those assets that actually require it, when they
require it. According to Farrar and Worden [57], the key prerequisite of the condition-based
maintenance is the deployment of a sensing system on the infrastructural assets. This
would then be able to monitor their response, notify the operator of the emergence of
defects or damage, and allow for corrective actions to be taken in a timely fashion, well
before the damage evolves into failure.

Condition-based monitoring, just like time-based monitoring, pertains to the category
of reactive systems, as opposed to preventive systems (i.e., systems able to anticipate
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and prevent potential hazards) [1]. If the adoption of the latter became common practice
among infrastructure managers, the operational life of civil engineering systems could
be significantly extended [57]. Not only can the Digital Twin concept help to establish
the condition-based maintenance approach as standard practice, it can also expand the
concept’s potential further by enabling fully preventive approaches.

Before describing how this can be achieved and how the Digital Twin can be of great
use for optimal management of civil engineering systems, it is important to look back to its
predecessor, i.e., Building Information Modeling (BIM). As defined by Camposano et al. [54],
BIM: (1) formally comprises a wide range of information systems used to generate, control,
and manage building information; and (2) supports the representation of built assets—in
terms of their 3D geometry and functional attributes—and their relationships using struc-
tured interoperable instruments. Furthermore, according to ISO 19650:2019, BIM allows for
the use of a digital representation of a built asset to facilitate design and construction, and
to form a reliable basis for decisions. Its introduction in the early 2000s allowed practition-
ers and researchers to represent not only the geometric characteristics of the components
of an asset (previously made through Computer-Aided Design or CAD), but also their
interconnections. It is acknowledged that models based on CAD and, subsequently, on
BIM, describe an asset in increasingly higher detail. However, it is important to understand
that these models are only representative of a particular asset at a specific instance in time.
In other words, whenever one develops a BIM model of an asset, it is analogous to saying
that one is “taking a picture” of that asset just as it is at that specific moment (see Figure 3a).
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Figure 3. The output of (a) a digital model (CAD or BIM) analogous to a “picture” of the asset at the
instance it was modeled and (b) a Digital Twin analogous to a “set of pictures” or “video” of the
evolution of the asset over time.

Digital structural models are often used for the design of a structural asset. Such mod-
els can be compared to a “blurred picture” of the structure because the “a priori” nature of
its input parameters (i.e., without any evidence from the realized structure, only according
to design codes) introduces a relevant degree of uncertainty in their design and construction
processes. Only once the structure has been constructed can the design parameters be fully
determined—and the uncertainty eliminated—through Non-Destructive Tests (NDTs) on
material samples (e.g., pull out tests) and on structural elements (e.g., proof load tests) [58].
Continuing the “picture” analogy, if one re-entered the above-mentioned test results into
the original design model (in other words, updating it “a posteriori”), one would obtain a
closer and less blurred “picture” of the realized asset. Although this “picture” is highly
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detailed—even going as far as to describe the innermost connections between the various
parts of its subject—it is nevertheless only a representation of the asset at the instance that
the “picture” was taken.

Now, assuming that the modeled subject (aka the subject of the “picture”) is a civil
engineering infrastructure asset—a bridge for example—it is of paramount importance to
consider its structural health and condition during the entirety of its service life, and not
only at a single instance (i.e., the moment the “picture” was taken). Therefore, consider-
ing that any structural system undergoes some degree of deterioration over time due to
natural aging and service operation (the main concerns in roadway bridges are fatigue
and corrosion), it is important to keep structural models updated to allow them to be used
for operational decision making. Furthermore, given a specific infrastructural asset, the
models should accurately represent the evolution of the asset-specific aging symptoms in
its asset-specific environmental context [58]. However, here is precisely where the setup of
traditional structural models fails and that of Digital Twins has significant potential.

As noted earlier, the trait of the Digital Twin that best embodies its potential is precisely
its continuous updating of the virtual model, which therefore “evolves” in conjunction
with the Physical Twin. This means that the virtual model progressively and automatically
integrates the deterioration of the real-life asset. As such, Digital Twins, in contrast to
standard virtual models, exist as a “sequence of pictures over time” or as a “video” (see
Figure 3b), with a refresh rate equal to the updating frequency of the structural model.
Due to its ability to track the life cycle of a physical asset across various points in time,
the Digital Twin can critically support decision making in both the design phase of a civil
engineering structure and in its operational life.

Having clarified this general framework, we now delve deeper into why infrastructure
managers should implement Digital Twins into their infrastructural stock. The following
discussion is separated into several points as follows.

• Damage detection efficiency. As specified by Gunner et al. [59], mathematical models
have long been used to identify the surge of criticalities in civil engineering structures,
but “comparison with recorded measurements is traditionally done in a one-off model
validation exercise”. This means that structural criticalities can go unnoticed, thus
representing a risk for the users and extra costs for the infrastructure managers due
to delayed interventions. Conversely, continuously monitoring of the response of a
structural system allows a Digital Twin to frequently—and automatically—update
and revalidate its model. This, in turn, provides visibility to the evolution of key
structural parameters and permits their continuous comparison with their predicted
counterparts (calculated within the digital model). Abnormal deviations between the
two, which are typically a symptom of structural damage [60] (e.g., the failure of one
or more pre-stressing tendons [61]), can therefore be swiftly identified and a timely
response triggered.

• Decision making support. The Digital Twin provides infrastructure managers and
decision makers with functionalities for controlling, monitoring, and optimizing a
physical asset. In those situations where maintenance interventions are required, the
Digital Twin allows for their proper timing and prioritization through data-driven,
updated, and accurate procedures [31]. Most importantly, however, the Digital Twin
supports decision makers by providing information on the structural reliability of
an asset, whether under daily operative conditions or after extreme events such as
earthquakes and floods. Based on this information, and with the help of predetermined
thresholds and emergency plans, the Digital Twin can help decision makers face
emergency situations, thus enabling swift and efficient responses. Considering all of
these aspects, it is easy to imagine how Digital Twins can be integrated into a holistic
Decision Support System for infrastructure managers.

• Addressing the infrastructure managers’ skepticism about SHM. It should be men-
tioned that infrastructure managers have a degree of skepticism about the trustworthi-
ness and effectiveness of SHM as an instrument on which to base important operational
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decisions. As a matter of fact, it is not uncommon that, despite the presence of a SHM
system in place, infrastructure managers still make decisions driven solely by their
experience or simply by common sense [62]. From this point of view, Digital Twins
may be a turning point for the industry because they have the potential to bridge the
gap between the technical sensing system/signal processing world and the managerial
world. Indeed, through its synthetic and graphic representational format, a Digital
Twin can finally allow infrastructure managers to clearly and intuitively visualize
and interpret the monitoring data, comprehend the current behavior of a structure,
and choose the best management strategy accordingly. In summary, when combining
the Digital Twin’s intrinsic potential for automated damage detection, maintenance
planning, and emergency response, with its intuitive representation of monitoring
data, it is finally possible to eliminate the skepticism of infrastructural managers in
regard to SHM.

• Predictive maintenance approach. The Digital Twin allows for behavioral predictions
of an infrastructural asset that can be used to understand ahead of time whether the
structure may transit towards a damaged state (e.g., cracking) or exceed the value for
its serviceability limit (e.g., excessive deflection). The forecasting of future courses of
action can be expanded by incorporating simulation models, data analytics, or machine
learning features [54]. For example, by monitoring localized structural failures over
long periods of time—for instance, the opening of cracks in a reinforced concrete
element [63]—machine learning algorithms can track key performance indicators so
that failure modes can be predicted and maintenance planned [36].

• Potential for automation of infrastructure. A Digital Twin can potentially link both the
Physical and the Digital Twins with a bi-lateral data exchange. Through such a data
feedback loop, both simulated and real twins can develop capacities for autonomy
and “learn from and reason about their environment” [64].

• Potential for sustainability. As a Digital Twin evolves over time with the constant
input data fed into its system, the “right-time interventions” empowered by this
technology can not only expand the service life of the built infrastructure, but also lead
to a reduction in emissions and in the modern day redundant use of raw material [65].
Therefore, the implementation of Digital Twins translates into increased efficiency,
sustainability, and resilience of civil engineering systems [1].

The authors believe that to properly end the present section it would be suitable to
summarize the advantages and disadvantages of a possible Digital Twin implementation
in a civil engineering system, as shown in Figure 4.
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4.2. How Digital Twins?

When designing a Digital Twin, several key aspects need to be taken into consid-
eration, such as: the choice of digital modeling technology, software framework, sensor
network, sensor positioning, data input refresh rate, and operational thresholds. However,
before considering any of these aspects, one needs to clarify and outline the End-User
Requirements (EURs) of the Digital Twin.

Defining the EURs is equivalent to asking: “what kind of data do I want the Digital
Twin to collect and report”? This is not always obvious. Tao and Qi [39] exemplify how
complicated this can be: “To model a wind turbine, for example, [one] might require [the]
monitoring of vibrations from the gearbox, generator, blades, shafts and tower, as well as of
voltages from the control system. Torques and rotation rates, temperatures of components
and the state of the lubricating oil must also be tracked, together with environmental
conditions (wind speed, wind direction, temperature, humidity and pressure)”. Generally,
the EURs of a Digital Twin define the information required by its end-users [18]—whether
these are engineers, infrastructure managers, both, or others—or, that is, the expected
output for the proper design/management of the asset in question.

For this purpose, defining the EURs requires a profound knowledge of the asset under
analysis and of all the external factors that might affect its performance. In [59], Gunner
et al. accurately defined the various associated with EURs, from their definition to their
practical outcomes; therefore, the authors of the present article encourage consultation with
this reference. In order to define the EURs of a Digital Twin, one needs to: (1) identify
all the possible risks to the structural integrity of the asset and to the safety of its users;
(2) establish what data is required in order to capture the presence of such a risk; (3) identify
possible actions, interventions, and procedures to mitigate these risks; and (4) establish
what data is required in order to properly plan and put into practice these mitigation
actions. It is through the extraction of this information (how to identify and mitigate the
risk) that a Digital Twin can efficiently assist decision makers in their efforts to extend the
service lives of their infrastructure. Note that, in most situations, decisions such as those
above are multifactorial, i.e., they depend not just on the state of the structure, but also on
other aspects such as the availability of resources [66]. Therefore, the greater the number of
influencing factors visible to the Digital Twin, the more appropriate its suggested course of
action. Once the EURs are defined, the actual design of the Digital Twin can finally take
place. The following step concerns the virtual model itself.

Generally, for civil engineering applications, virtual models of an asset are developed
by means of traditional analytical models (based on formulas from code, constitutional laws
of materials, geometry, and physics), numerical models (such as finite element models),
statistical models (based on the correlation between measurable quantities), and sometimes
even “black box” algorithms provided by the stakeholders of the asset themselves [67].
Although a Digital Twin can also employ these as its virtual model, the characteristic
that distinguishes its application from that of traditional approaches is the previously
mentioned property of continuously updating the model on based on structural behavioral
and physical property data sampled directly from the Physical Twin.

Note that measuring the response of a structure from its construction stage onward
is of critical importance to the development of an accurate Digital Twin model. Indeed,
if the monitoring starts during the construction stage, the Digital Twin would include all
the structural response variations that occurred during the operational life of the structure,
e.g., maintenance work and transit of exceptional loads. In this way, the Digital Twin can
accurately reproduce not only the current structural response, but also all its previous
history, thus reducing the model uncertainties and improving the accuracy of behavioral
predictions. Instead, if the monitoring starts when the structure has already been opera-
tional for a number years, the Digital Twin will be limited to being a structural model that
is identical to that of the design stage, with input parameters calibrated in such a way that
the predicted response matches the measured response.
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Because the update process of a Digital Twin is key to its performance, its internal
structural model can be considered to be a “deterministic black box” with a set of regularly
updated parameters as input and a set of structure response predictions as output. As
noted earlier, it is possible to update the Digital Twin in two ways: (1) by directly measuring
the model parameters (e.g., concrete strength and Young’s modulus) with in situ tests (e.g.,
NDTs), and consequently inserting them into the model; or (2) measuring the structural
response by means of sensors, comparing it to the model prediction, and indirectly updating
the model parameters through an inference process (e.g., Bayesian inference, maximum
likelihood estimation, and supervised or even unsupervised learning processes [68]). The
former is the most accurate approach but, at the same time, the most taxing and most
limited of the two. For this reason, NDTs typically require professional inspectors on site,
they are limited in time (the tests cannot be more frequent than one every few months),
and the tests—and their consequent data—are limited to the easily accessible part of a
structure. In contrast, measuring the structural response of an asset through a sensor
network (updating method 2) results in an easier data extraction process, because accurate
and objective measurements can be taken by SHM systems in an automated and remote
manner. Nevertheless, since the updating of the model is indirect in nature, if great care is
not taken when designing both the monitoring system and the updating procedures, this
latter method may lead to a higher degree of uncertainty [69]. Focusing only on the second
of these updating methodologies, to effectively update a Digital Twin with monitoring
observations, the SHM system must be accurately designed.

First, based on the main structural uncertainties of the asset in question, civil engi-
neers must accurately study its static mechanism and identify which of the measurable
quantities/parameters are most sensitive to the surpassing of limit states (definition of
the EURs). Subsequently, structural operators must define their measurement accuracy
to ensure an updated Digital Twin that is precise enough to be used as an informative
tool for the proper management of the realized structure. Finally, based on the previous
aspects, the monitoring system designer must select the proper sensing technology, with
its ensuing performance in terms of measurement accuracy, sampling frequency (or rate),
transmission rate, maintainability, measurement range, possibility of integration into a
complex monitoring system, etc. [70].

The sampling rate of the sensor network is an especially important aspect to consider.
Regarding the turbine example from Tao and Qi [39], the authors efficiently describe the
complexity of selecting a sampling rate: “Engineers might monitor vibrations from a turbine
gearbox every minute, meaning they would miss shorter glitches. But sampling every
second could yield way too much data, leading to transmission bottlenecks”. Once the
optimal sensor is selected, the monitoring system designer must define an optimal number
of sensors to deploy and their strategic position on the structure [39,71]. Too few sensors
may lead to inaccurate descriptions of the assets—on which preventive maintenance relies—
and to erroneous predictions, which can work against any process optimization attempt.
Too many sensors may also be counterproductive, as the user can be overwhelmed by
data, among which key information may be lost—i.e., data dispersion—and the software
framework may be taxed excessively, potentially causing bottlenecks, delays, and crashes.
The location of the sensor network on the Physical Twin also matters because only its correct
positioning allows for the extraction of data comparable to the simulated data extracted
from the Digital Twin [59].

To optimize the use of a Digital Twin, it should be updated accurately and frequently.
An accurate updating depends mostly on measurement uncertainty (i.e., the sensors’ perfor-
mance), model uncertainty, and the inference methodology (i.e., the algorithm to update the
parameters of the model based on monitoring data). Regarding the latter, several method-
ologies are now commonly in use. The least-squares deterministic model calibration is an
easy and fast inference method; however, this approach strongly suffers from overfitting
problems in practical engineering applications, where errors associated with measurements
and models are not negligible and datasets are typically too small [68]. Bayesian methods



Sensors 2022, 22, 3168 16 of 23

can overcome such a problem by considering the prior distributions of model parame-
ters, which allows outliers in datasets to be neglected (e.g., Strain Reading Anomalies
of Distributed Sensing [72]) and prevents a Digital Twin update due to malfunctioning
or broken sensors. It should be noted, however, that Bayesian methods typically require
an iterative process to estimate the posterior distribution of model parameters (e.g., the
Metropolis–Hastings algorithm [73]). Finally, in the past decade, machine learning has ex-
perienced rapid growth in its applications to data analysis and numerical model parameter
estimations, with both supervised and unsupervised algorithms (the performance of the
latter is currently still under investigation) [74].

Generally, the Digital Twin update frequency (also called the refresh rate) depends on
the technology (sensors, computational performance of the hardware used), the measured
quantity (raw volume of sampled data to process), and the inference method. Different Dig-
ital Twin applications require different refresh rates. To elucidate this point, Callcut et al. [1]
compared the real-time data requirements for Digital Twins employed in centralized airport
air traffic control, in a smart vehicle navigation system, and in a maintenance planning
scenario for bridge maintenance. Clearly, the first two applications require real-time refresh
rates, whereas the latter does not. As can be implied, a real-time refresh rate is not always
possible or necessary. Therefore, it can be stated that a Digital Twin should integrate a new
set of attributes and key values only after each significant change in the physical asset,
i.e., with frequency analogous to the occurrence of case-to-case “significant” changes [54].
Thus, the best refresh rate is not necessarily real time, but rather “right time” [1]. Note
that, in civil engineering, high refresh rates should also be contemplated. This is the case,
for example, in structures whose elements are characterized by fragile failure mechanisms
(such as shear keys of prestressed concrete bridges) or for structures located in highly
seismic areas.

From a practical perspective, the Digital Twin refresh rate depends on the technology,
the measured quantity, and the inference method. Regarding the former, if the refresh
rate of a Digital Twin is required to match the sampling rate of the sensor network, then it
may range from 4000 kH for accelerometers and 250 Hz for DOFS, to one measurement
every 15–30 min for robotized topographic stations [22]. Note that the frequency of data
transmission can be real time in the case of wired sensors (e.g., Distributed Sensing) or
characterized by intervals up to minutes long for wireless sensors (e.g., accelerometers
based on the LoRaWAN protocol) [22]. Furthermore, different data may be available at
different frequencies because they are acquired by different sensors. In this case, the update
process can be instructed to start as soon as different datasets become available or at specific
intervals after all the data has been received [75]. Furthermore, depending on the model
parameter to be estimated, the analysis can run each time that a new measurement is
acquired (e.g., temperature compensation of strain measurements), or it may wait for a
dataset (e.g., vibrational frequency estimated through operational modal analysis), thus
causing a refresh rate delay. Finally, the analyses may have different durations based
on the number of iterations required by the inference method (e.g., one iteration for the
least-squares deterministic calibration of a linear model vs. 1000 iterations, at least, for a
Bayesian parameter estimation through a Markov Chain Monte Carlo simulation [76]).

Finally, after discussing the Digital Twin inference methodology, the sensor network
requirements, and the refresh rate, its operational functionalities are now discussed, with
a particular focus on emergency thresholds. Different emergency responses are activated
when an “extreme” value is measured or when a previously determined threshold is
surpassed. One such approach is described in Ballio et al. [77], who use several deterministic
evolution scenarios of the safety conditions of a structure with a clear threshold between
them. These scenarios are: Normalcy (no critical situation is foreseen); Alert (situation
is evolving to potentially critical); Warning (situation may become critical); and Severe
warning (structure is at its limit condition, collapse may happen at any time). The following
provides a list of possible threshold-based approaches, based on which the Digital Twin
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can trigger an emergency alarm and response. These are sorted by response speed and
complexity of the involved framework:

• Threshold on measurements. In this scenario, the Digital Twin is updated with moni-
toring data collected up to instant t−1, on the basis of which it automatically calculates
a predicted structural state or behavior at instant t with a specific interval of confi-
dence. Then, the monitoring system measures the real-life structural behavior at time
t and the software framework compares it against the above predicted behavior. If the
measured behavioral value lays outside the upper/lower thresholds of the predicted
value’s interval of confidence, the structural behavior is classified as “unexpected” or
“divergent”, and an emergency plan is activated [78]. Note that, for this approach, the
time requested to activate the alarm depends only on the sampling and transmission
frequency of the sensing system. Potentially, this approach allows for a near real-time
response to an emergency but is susceptible to false positives and false negatives. As
such, it is usually advised to design the emergency response in such a way that the
alarm is activated only after observing at least a few similar measurements outside the
interval of confidence [79].

• Threshold on the structure condition/health state. The Digital Twin is updated to
the last available measurement and the probability of failure of the existing structure
is estimated by means of a structural reliability analysis [80]. If the probability of
failure is found to be higher than a threshold value (typically around 10−6 for civil
infrastructure [81]), an emergency plan activates. Here, the time requested to activate
the alarm depends on the inference method used to update the model. Deterministic
methods operate at close to real time but are less reliable for complex virtual models.
Bayesian methods, by comparison, are more reliable but can take up to a few minutes.

• Threshold on the expected utility of management strategies. In this case the Digital
Twin is integrated into a Decision Support System. Here, the process of making a
decision about the management of a structure is formalized into a decision tree repre-
senting the possible management strategies and structural condition states. According
to the principles of the expected utility theory or other decision theories [82], decision
thresholds can be defined based on the expected utility of management strategies.
Monitoring data are then compared to the decision thresholds and an emergency plan
is activated accordingly [78]. The time requested to activate the alarm depends only
on the sampling and transmission frequency of the sensing system. Precautions must
be taken to avoid false positive and negative responses.

The following section outlines the reasons why Distributed Sensing fully meets the
requirements specified in the above paragraphs, and thus represents an ideal candidate for
the sensor network part of the Digital Twin.

5. Distributed Sensing as Digital Twin Sensor Network Component

The application of Distributed Sensing to the civil and structural engineering field has
slowly but steadily increased in recent years [23,26], and has gaining increased traction
as an SHM tool [19,83]. As testament to this, the IM-SAFE report [15] listed Distributed
Sensing among the main trends of the best future practices in monitoring, assessment, and
maintenance of transport infrastructure, with a definition as follows: “SHM with novel (non-
remote) technologies: distributed sensing, wireless and energy-efficient sensor technologies”.

The reason for this surge in applications can be interpreted in light of OFS features
and how these are adapted for SHM purposes [83]. The following lists the DOFS features
of interest for such applications:

• DOFS (not all OFS kinds) allow completely distributed monitoring, with monitoring
points spaced less than 1 mm apart [25].

• They allow for measurement at high frequencies of 250 Hz [25].
• Their small diameter and minimal stiffness allow for a very high degree of deployment

configuration complexity, regardless of whether this implies circumferential surfaces,
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sharp corners, surface irregularities, etc. It is even possible to embed them inside
structural elements with a minimal level of intrusiveness.

• Their ease of deployment can be achieved by simply applying an adhesive over them.
• Their monitoring length is very flexible and can vary from half a millimeter to tens

of kilometers.
• They have intrinsic immunity to electro-magnetic interference.
• They are designed with a long life cycle. Indeed, their main component, silica, is

highly resistant to corrosion and can withstand high tensile loading.
• Silica core OFS are highly resistant to temperature and can measure temperatures from

−200 to 800 ◦C.

In the following, the authors discuss how, due to these and other Distributed Sensing
features, this is the ideal tool to fulfill the role of the sensing component in a Digital Twin.

Potentially, the main goal of a Digital Twin is to provide a clear and accurate picture
of the behavior of a structure. As previously mentioned, in order to achieve this goal, it
is important to properly select the kind of sensor based on its ability to accurately detect
variations in the parameter that has been defined—during the definition of the EURs—as
the most indicative of changes in the behavior of the structure. The adjective “accurately”
in the previous sentence is notable. This can be understood in different ways, which,
nevertheless are all encompassed by Distributed Sensing.

The distributed nature of DOFS measurements enables the mapping of temperature,
strain, and vibration distributions at any point along a fiber with a very high spatial
resolution (0.63 mm). Consequently, geometrically, Distributed Sensing enables the painting
of a very clear picture of the distribution and evolution of these mechanical parameters
along the monitored structural elements (versus reporting the tensile state of a limited
number of points, as is the case with punctual sensors). This allows the modeling of
an accurate digital model inside the Digital Twin that is able to convey comprehensive
and accurate information on the state of the monitored structural member. In turn, the
availability of this highly detailed data increases the degree of confidence with which
infrastructural managers can make a decision and undertake a certain course of action
regarding the operative management of their stock of infrastructure.

The comprehensiveness of the data available through DOFS is not restricted to the
high spatial resolution, but also encompasses the structural element under surveillance.
Indeed, due to their small diameter and minimal stiffness, DOFS can be easily deployed on
structural surfaces having limited accessibility and ability to be inspected. Furthermore, an
increasingly popular trend in modern research is the embedding of DOFS inside plain or
reinforced concrete structures with a minimal level of intrusiveness [19,84]. This provides
insight into a structure’s inner workings and physics (e.g., the bond between concrete and
steel [85,86]), deformations [87,88], shrinkage [89], deflections [90], and cracking [91]. Due
to the internal position of DOFS, the relaying of the above data to the Digital Twin allows
for efficient planning of interventions on defective or over-stressed structures, even before
any damage appears on their surface.

Distributed Sensing also allows for very frequent measurements (250 Hz). Note that
this sampling speed is not reduced by transmission delays because Distributed Sensing
falls under the category of “wireless sensors”. Due to this sampling rate, a wide range
of possible approaches to Digital Twin updating and emergency planning is available.
For example, with a frequency of 250 Hz, one can potentially revalidate the model up to
250 times per second (practically qualifying it as real time) even though, as previously
mentioned, it is not necessary that a high sensor sampling rate should be translated 1:1
to a Digital Twin refresh rate. Indeed, this would expose the user to false negatives (and
consequent false alarms), overlooking of key clues regarding structural malfunction, and
transmission bottlenecks. Nevertheless, a high sampling rate allows swift validation of
the correctness of abnormal measurements by comparing a sampled value against several
successively sampled values. If it is found that the abnormal measurement is not an outlier
but an actual structural behavioral discrepancy (e.g., fragile structural failure or occurrence
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of an extreme natural event), a high Digital Twin refresh rate may be crucial for a timely
trigger of an emergency plan. In short, the high sampling frequency of Distributed Sensing
provides the infrastructure manager with a high level of discretion about the choice of the
Digital Twin refresh rate, with all options compatible with a wide variety of EURs.

6. Conclusions

We live in an environment of ever-growing demand for transport networks, which also
have ageing infrastructure. However, it is not feasible to replace all of the infrastructural
assets that have surpassed their service lives. The commonly established alternative is to
increase their service life by means of Structural Health Monitoring (SHM). Among the
multitude of approaches to SHM, the Digital Twin is gaining increasing attention. The
present article provides an exploratory review of the key aspects of a Digital Twin, such
as its usefulness, modus operandi, and application, and an analysis of the suitability of
Distributed Sensing as its sensor network component.

First, the key features of a Digital Twin were identified as follows: (1) the Digital Twin
is a virtual representation or replica of a physical real-world asset (i.e., the Physical Twin);
(2) in a Digital Twin, the geometric data are enriched by semantic information, engineering
data, and operational data extracted from the Physical Twin by means of sensor networks
deployed on the latter; (3) the Digital Twin’s biggest departure from traditional digital
models is its ability to monitor and report the structural behavior and health of a civil
engineering asset throughout the entirety of its service life.

The latter point represents the biggest potential for an SHM application of a Digital
Twin. On this topic, the key conclusions were:

• The Digital Twin provides infrastructure managers and decision makers functionalities
for controlling, monitoring and, optimizing a physical asset;

• The Digital Twin automatically performs frequent revalidation and updates of the
structural model, providing visibility of the evolution of key structural parameters
and ensuring that no structural criticality is unnoticed;

• The Digital Twin allows for timely interceptions of sudden differences in the predicted
versus measured responses, which are typically symptoms of damage;

• The Digital Twin allows for the proper timing and prioritization of maintenance
interventions, thus helping the conversion of the modern time-based maintenance
approach to a more performant and sustainable condition-based approach;

• The Digital Twin supports decision makers by providing information on the structural
reliability of an infrastructural asset, whether under daily operative conditions or after
extreme events such as earthquakes and floods;

• The Digital Twin can help address the skepticism of infrastructural managers in regard
to making decisions based only on SHM data;

• The Digital Twin can be integrated into Decision Support Systems and used to con-
sistently support the infrastructural manager in maintaining the operation of an
infrastructural asset well beyond its service life;

• The Digital Twin allows for behavioral predictions of an infrastructural asset, which
can be used to understand ahead of time whether the structure may transit towards
a damaged state (e.g., cracking) or exceed the value for the serviceability limit (e.g.,
excessive deflection);

• The Digital Twin can allow for a certain degree of operational automation from the
structure itself by linking both the Physical and the Digital Twins with a bi-lateral data
exchange, effectively establishing a continuous data-feedback loop.

Finally, based on an extended analysis of the key aspects to consider when designing a
Digital Twin, the authors assessed the optimal suitability of Distributed Sensing as a sensor
network component. The main conclusions were as follow:

• The distributed nature of DOFS measurements enables the mapping of temperature,
strain, and vibration distributions at any point along a fiber with a very high spatial
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resolution (0.63 mm); this allows the construction of an accurate digital model inside
the Digital Twin;

• The accuracy of the Digital Twin model made possible by distributed measurements
increases the degree of confidence with which infrastructural managers can make de-
cisions and undertake a certain course of action regarding the operative management
of their stock of infrastructure;

• Due to their small diameter and minimal stiffness, DOFS can be easily deployed on
structural surfaces with limited accessibility and ability to be inspected;

• DOFS can be bonded inside reinforced concrete structures, thus allowing Digital Twins
to provide an insight into their inner workings and potential damage; this can allow
for efficient maintenance interventions before any damage appears on their surface;

• Distributed Sensing also allows for very frequent measurements (250 Hz), through
which the Digital Twin can swiftly validate the correctness of abnormal measurements
and, if proven correct (indicative of damage), trigger a timely emergency response;

• The high sampling frequency of Distributed Sensing provides an infrastructure man-
ager with a high level of discretion regarding the choice of the Digital Twin refresh rate;
all options are compatible with a wide variety of objectives and management strategies.

In conclusion, the Digital Twin represents a revolutionary step forward for efficient,
safe, and sustainable management of civil engineering assets. Furthermore, it was de-
termined that the potential of the Digital Twin can be entirely fulfilled by means of the
state-of-the-art monitoring tool, Distributed Sensing.
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