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Abstract

Deep learning as represented by the artificial deep neural networks (DNNs) has achieved great 

success recently in many important areas that deal with text, images, videos, graphs, and so 

on. However, the black-box nature of DNNs has become one of the primary obstacles for their 

wide adoption in mission-critical applications such as medical diagnosis and therapy. Because of 

the huge potentials of deep learning, increasing the interpretability of deep neural networks has 

recently attracted much research attention. In this paper, we propose a simple but comprehensive 

taxonomy for interpretability, systematically review recent studies in improving interpretability of 

neural networks, describe applications of interpretability in medicine, and discuss possible future 

research directions of interpretability, such as in relation to fuzzy logic and brain science.

Index Terms—

Deep learning; neural networks; interpretability; survey

I. Introduction

Deep learning [71] has become the mainstream approach in many important domains 

targeting common objects such as text [40], images [182], videos [132], and graphs [88]. 

However, deep learning works as a black box model in the sense that, although deep learning 

performs quite well in practice, it is difficult to explain its underlying mechanism and 

behaviors. Questions are often asked such as how deep learning makes such a prediction, 

why some features are favored over others by a model, and what changes are needed to 

improve model performance, etc. Unfortunately, only modest success has been made to 

answer these questions.
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Interpretability of deep neural networks is essential to many fields, and to healthcare [67], 

[68], [174] in particular for the following reasons. First, model robustness is a vital issue 

in medical applications. Recent studies suggest that model interpretability and robustness 

are closely connected [131]. On the one hand, the improvements in model robustness 

prompt model interpretability. For example, a deep model trained via adversarial training, 

a training method that augments training data with adversarial examples, shows better 

interpretability (with more accurate saliency maps) than the same model trained without 

adversarial examples [131]. On the other hand, when we understand a model deeply, we can 

thoroughly examine its weaknesses because the interpretability can help identify potential 

vulnerabilities of a complicated model, thereby improving its accuracy and reliability. Also, 

interpretability plays an important role in ethic use of deep learning techniques [57]. To 

build patients’ trust in deep learning, interpretability is needed to hold a deep learning 

system accountable [57]. If a model builder can explain why a model makes a particular 

decision under certain conditions, users would know whether such a model contributes to an 

adverse event or not. It is then possible to establish standards and protocols to use the deep 

learning system optimally.

However, the lack of interpretability has become a main barrier of deep learning in its 

wide acceptance in mission-critical applications. For example, regulations were proposed 

by European Union in 2016 that individuals affected by algorithms have the right to obtain 

an explanation [61]. Despite great research efforts made on interpretability of deep learning 

and availability of several reviews on this topic, we believe that an up-to-date review is 

still needed, especially considering the rapid development of this area. The review of Q. 

Zhang and S. C. Zhu [202] is mainly on the visual interpretability. The representative 

publications from their review fall under the feature analysis, saliency, and proxy taxonomy 

in our review. The review of S. Chakraborty et al. [28] took opinions of [112] on levels of 

interpretability, and accordingly structured their review to provide in-depth perspectives but 

with limited scope. For example, only 49 references are cited there. The review of M. Du 

et al. [43] has a similar weakness, only covering 40 papers which are divided into post-hoc 

and ad-hoc explanations, as well as global and local interpretations. Their taxonomy is 

coarse-grained and neglects a number of important publications, such as publications on 

explaining-by-text, explaining-by-case, etc. In contrast, our review is much detailed and 

comprehensive, with the latest results included. While publications in L. H. Gilpin et al. 
[58] are classified into understanding the workflow of a neural network, understanding the 

representation of a neural network, and explanation producing, we cover all these aspects 

and also discuss the studies on how to protype an interpretable neural network. Reviews by 

R. Guidotti et al. [65] and A. Adadi and M. Berrada [2] cover existing black-box machine 

learning models instead of focusing on neural networks. As a result, several hallmark papers 

on explaining neural networks are missing in their survey, such as the interpretation from the 

perspective of mathematics and physics.

A. B. Arrieta et al. [10] provides an extensive review on explainable AI (XAI), where 

concepts and taxonomies are clarified, and challenges are identified. While that review 

covers interpretability of AI/ML in general, our review is specific to deep neural networks 

and offers unique perspectives and insights. Specifically, our review is novel in the following 

senses: 1) We treat post-hoc and ad-hoc interpretability separately, because the former 
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explains the existing models, while the latter constructs interpretable ones; 2) we include 

widely-studied generative models, advanced mathematical/physical methods that summarize 

advances in deep learning theory, and the applications of interpretability in medicine; 3) 

important methods are illustrated with customized examples and publicly available codes 

through GitHub; and 4) interpretability research is a rapidly evolving field, and many 

research articles are published every year. Hence, our review should be a valuable and 

up-to-date addition to the literature.

Before we start our survey, let us first state three essential questions regarding 

interpretability: What does interpretability mean? Why is interpretability difficult? And how 

to build a good interpretation method? The first question has been well addressed in [112], 

and we include their statements here for completeness. The second question was partially 

touched in [112], [146], and we incorporate those comments and complement them with our 

own views. We provide our own perspectives on the third question.

A. What Does Interpretability Mean?

Although the word “interpretability” is frequently used, people do not reach a consensus 

on the exact meanings of interpretability, which partially accounts for why current 

interpretation methods are so diverse. For example, some researchers explore post-hoc 

explanations for models, while some focus on the interplay mechanism between machineries 

of a model. Generally speaking, interpretability refers to the extent of human’s ability to 

understand and reason a model. Based on the categorization of [112], we summarize the 

implications of interpretability in different levels.

· Simulatability—Simulatability is considered as the understanding over the entire 

model. In a good sense, we can understand the mechanism of a model at the top level 

in a unified theoretical framework, one example is what was reported in [140]: a class of 

radial basis function (RBF) networks can be expressed by a solution to the interpolation 

problem with a regularization term, where a RBF network is an artificial neural network 

with RBFs as activation functions. In view of simulatability, the simpler the model is, the 

higher simulatability the model has. For example, a linear classifier or regressor is totally 

understandable. To enhance simulatability, we can change some facilities of models or use 

crafted regularization terms.

· Decomposability—Decomposability is to understand a model in terms of its 

components such as neurons, layers, blocks, and so on. Such a modularized analysis is 

quite popular in engineering fields. For instance, the inner working of a complicated system 

is factorized as a combination of functionalized modules. A myriad of engineering examples 

such as software development and optical system design have justified that a modularized 

analysis is effective. In machine learning, a decision tree is a kind of modularized methods, 

where each node has an explicit utility to judge if a discriminative condition is satisfied or 

not, each branch delivers an output of a judgement, and each leaf node represents the final 

decision after computing all attributes. Modularizing a neural network is advantageous to the 

optimization of the network design since we know the role of each and every component of 

the entire model.
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· Algorithmic Transparency—Algorithmic Transparency is to understand the training 

process and dynamics of a model. The landscape of the objective function of a neural 

network is highly non-convex. The fact that deep models do not have a unique solution 

hurts the model transparency. Nevertheless, it is intriguing that current stochastic gradient 

descent (SGD)-based learning algorithms still perform efficiently and effectively. If we can 

understand why learning algorithms work, deep learning research and applications will be 

accelerated.

B. Why Is Interpretability Difficult?

After we learn the meanings of interpretability, a question is what obstructs practitioners to 

obtain interpretability. This question was partially addressed in [146] in terms of commercial 
barrier and data wildness. Here, we complement their opinion with additional aspects on 

human limitation and algorithmic complexity. We believe that the hurdles to interpretable 

neural networks come from the following four aspects.

· Human Limitation: Expertise is often insufficient in many applications. Nowadays, 

deep learning has been extensively used in tackling intricate problems, which even 

professionals are unable to comprehend adequately. What’s worse is that these problems are 

not uncommon. For example, in a recent study [46], we proposed to use an artificial neural 

network to predict pseudo-random events Specifically, we fed 100, 000 binary sequential 

digits into the network to predict the 100, 001th digit in the sequence. In our prediction, the 

highly sophisticated hidden relationship was learned to beat a purely random guess with a 

3σ precision. Furthermore, it was conjectured that high sensitivity and efficiency of neural 

networks may help discriminate the fundamental differences between pseudo-randomness 

and real quantum randomness. In this case, it is no wonder that interpretability for neural 

networks will be missing, because even most talented physicists know little about the 

essence of this problem, let alone fully understand predictions of the neural network.

· Commercial Barrier: In the commercial world, there are strong motives for 

corporations to hide their models. First and foremost, companies profit from black-box 

models. It is not a common practice that a company makes capital out of totally 

transparent models [146]. Second, model opacity helps protect hard work from being reverse 

engineered. An effective black box is ideal in the sense that customers being served can 

obtain satisfactory results while competitors are not able to steal their intellectual properties 

easily [146]. Third, prototyping an interpretable model may cost too much in terms of 

financial, computational, and other resources. Existing open-sourced superior models are 

accessible to easily construct a well-performed algorithm for a specific task. However, 

generating reliable and consistent understanding to the behavior of the resultant model 

demands much more endeavors.

· Data Wildness: On the one hand, although it is a big data era, high quality data are 

often not accessible in many domains. For example, in the project of predicting electricity 

grid failure [146], the data base involves text documents, accounting data about electricity 

dating back to 1890s, and data from new manhole inspections. Highly heterogenous and 

inconsistent data hamper not only the accuracy of deep learning models but also the 
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construction of interpretability. On the other hand, real-world data have the character of 

high dimensionality, which suppresses reasoning. For example, given an MNIST image 

classification problem, the input image is of size 28 × 28 = 784. Hence the deep learning 

model tackling this problem has to learn an effective mapping of 784 variables to one of ten 

digits. If we consider the ImageNet dataset, the number of input variables goes up to 512 × 

512 × 3 = 768432.

· Algorithmic Complexity: Deep learning is a kind of large-scale, highly nonlinear 

algorithms. Convolution, pooling, non-linear activation, shortcuts, and so on contribute to 

variability of neural networks. The number of trainable parameters of a deep model can be 

on the order of hundreds million or even more. Despite that nonlinearity may not necessarily 

result in opacity (for example, a decision tree model is not linear but interpretable), deep 

learning’s series of nonlinear operations indeed prevent us from understanding its inner 

working. In addition, recursiveness is another source of difficulty. A typical example is the 

chaos behavior resultant from nonlinear recursiveness. It is well-known that even a simple 

recursive mathematical model can lead to intractable dynamics [107]. In [175], it was proved 

that there are chaotic behaviors such as bifurcations even in simple neural networks. In 

chaotic systems, tiny changes of initial inputs may lead to huge outcome differences, adding 

to the complexity of interpretation methods.

C. How to Build a Good Interpretation Method?

The third major issue is the criteria for assessing quality of a proposed interpretability 

method. Because existing evaluation methods are still premature, we propose five general 

and well-defined rules-of-thumb: exactness, consistency, completeness, universality, and 

reward. Our rules-of-thumb are fine-grained and focus on the characteristics of interpretation 

methods, compared to that described in [42]: application-grounded, human-grounded, and 

function-grounded.

· Exactness: Exactness means how accurate an interpretation method is. Is it just 

limited to a qualitive description or with a quantitative analysis? Generally, quantitative 

interpretation methods are more desirable than qualitative counterparts.

· Consistency: Consistency suggests that there is not any contradiction in an 

explanation. For multiple similar samples, a fair interpretation should produce consistent 

answers. In addition, an interpretation method should conform to the predictions of the 

authentic model. For example, the proxy-based methods are evaluated based on how closely 

they replicate the original golden model.

· Completeness: Mathematically, a neural network is to learn a mapping that best fits 

data. A good interpretation method should show effectiveness in support of the maximal 

number of data instances and data types.

· Universality: With the rapid development of deep learning, the deep learning armory 

has been substantially enriched. Such diverse deep learning models play important roles in 

a wide spectrum of applications. A driving question is whether we can develop a universal 
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interpreter that deciphers as many models as possible so as to save labor and time. But this is 

technically challenging due to the high variability among models.

· Reward: What are gains from the improved understanding of neural networks? In 

addition to the trust from practitioners and users, fruits of interpretability can be insights into 

network design, training, etc. Due to its black-box nature, using neural networks is largely a 

trial-and-error process with sometimes contradictive intuitions. A thorough understanding of 

deep learning will be instrumental to the research and applications of neural networks.

Briefly, our contributions in this review are three-folds: 1) We propose a comprehensive 

taxonomy for interpretability of neural networks and describe key methods with our insights; 

2) we systematically illustrate interpretability methods as educational aids, as shown in 

Figures 3, 5, 6, 7, 9, 10, 16, 17; and 3) we shed light on future directions of interpretability 

research in terms of the convergence of neural networks and rule systems, the synergy 

between neural networks and brain science, and interpretability in medicine.

II. A SURVEY ON INTERPRETATION METHODS

In this section, we first present our taxonomy and then review interpretability results under 

each category of our taxonomy. We enter the search terms “Deep Learning Interpretability”, 

“Neural Network Interpretability”, “Explainable Neural Network”, and “Explainable Deep 

Learning” into the Web of Science on Sep 22, 2020, with the time range from 2000 to 2019. 

The number of articles with respect to years is plotted in Figure 1, which clearly shows an 

exponential trend in this field. With the survey, our motive is to cover as many important 

papers as possible, and therefore we do not limit ourselves within Web of Science. We also 

search related articles using Google Scholar, PubMed, IEEE Xplore, and so on.

A. Taxonomy Definition

As shown in Figure 2, our taxonomy is based on our surveyed papers and existing 

taxonomies. We first classify the surveyed papers into post-hoc interpretability analysis 

and ad-hoc interpretable modeling. Post-hoc interpretability analysis explains existing 

models and can be further classified into feature analysis, model inspection, saliency, 

proxy, advanced mathematical/physical analysis, explaining-by-case, and explaining-by-
text, respectively. Ad-hoc interpretable modeling builds interpretable models and can 

be further categorized into interpretable representation and model renovation. In our 

proposed taxonomy, the class “advanced mathematical/physical analysis” is novel, but it 

is unfortunately missing in the previous reviews. We argue that this class is rather essential, 

because the incorporation of math/physics is critical in placing deep learning on a solid 

foundation for interpretability. In the following, we clarify the taxonomy definition and its 

illustration. We would like to underscore that one method may fall into different classes, 

depending on how one views it.

· Post-hoc Interpretability Analysis—Post-hoc interpretability is conducted after a 

model is well learned. A main advantage of post-hoc methods is that one does not 

need to compromise interpretability with the predictive performance since prediction and 

interpretation are two separate processes without mutual interference. However, a post-hoc 
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interpretation is usually not completely faithful to the original model. If an interpretation is 

100% accurate compared to the original model, it becomes the original model. Therefore, 

any interpretation method in this category is more or less inaccurate. What is worse is that 

we often do not know the nuance [146]. Such a nuance makes it hard for practitioners to 

have a full trust to an interpretation method, because the correctness of the interpretation 

method is not guaranteed.

Feature analysis—Feature analysis techniques are centered in comparing, analyzing, and 

visualizing features of neurons and layers. Through feature analysis, sensitive features and 

ways to process them are identified such that the rationale of the model can be explained to 

some extent.

Feature analysis techniques can be applied to any neural networks and provide qualitative 

insights on what kinds of features are learned by a network. However, these techniques lack 

an in-depth, rigorous, and unified understanding, and therefore cannot be used to revise a 

model towards a higher interpretability.

Model inspection—Model inspection methods use external algorithms to delve 

into neural networks by systematically extracting important structural and parametric 

information on inner working mechanisms of neural networks.

Methods in this class are more technically accountable than those in feature analysis 
because analytical tools such as statistics are directly involved in the performance analysis. 

Therefore, the information gained by a model inspection method is more trustworthy and 

rewarding. In an exemplary study [184], finding important data routing paths is used as a 

way to understand the model. With such data routing paths, the model can be faithfully 

compressed to a compact one. In other words, interpretability improves the trustworthiness 

of model compression.

Saliency—Saliency methods identify which attributes of input data are most relevant to 

a prediction or a latent representation of a model. In this category, human inspection is 

involved to decide if a saliency map is plausible. A saliency map is useful. For example, 

if a polar bear always appears in a picture coupled with snow or ice, the model may have 

misused the information of snow or ice to detect the polar bear rather than real features of 

polar bears for detection. With a saliency map, this issue can be found and hence avoided.

Saliency methods are popular in interpretability research, however, extensive random tests 

reported that some saliency methods can be model independent and data independent [3], 

i.e., saliency maps offered by some methods can be highly similar to results produced with 

edge detectors. This is problematic because it means that those saliency methods fail to find 

the true attributes of the input that account for the prediction of the model. Consequently, a 

model-relevant and data-relevant saliency method should be developed in these cases.

Proxy—Proxy methods construct a simpler and more interpretable proxy that closely 

resembles a trained, large, complex, and black-box deep learning model. Proxy methods can 

be either local in a partial space or global in a whole solution space. The exemplary proxy 
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models include decision trees, rule systems, and so on. The weakness of proxy methods is 

the extra cost needed to construct a proxy model.

Advanced mathematical/physical analysis—Advanced mathematical/physical 

analysis methods put a neural network into a theoretical mathematics/physics framework, 

in which the mechanism of a neural network is understood with advanced mathematics/

physics tools. This class covers theoretical advances of deep learning including non-convex 

optimization, representational power, and generalization ability.

A concern in this class is that, to establish a reasonable interpretation, unrealistic 

assumptions are sometimes made to facilitate a theoretical analysis, which may compromise 

the practical validity of the explanation.

Explaining-by-case—Explaining-by-case methods are along the line of case-based 

reasoning [90]. People favor examples. One may not be engaged by boring statistic numbers 

of a product but could be amazed while listening to other users’ experience of using 

such a product. This philosophy wins the heart of many practitioners and intrigues the case-

based interpretation for deep learning. Explaining-by-case methods provide representative 

examples that capture the essence of a model.

Methods in this class are interesting and inspiring. However, this practice is more like a 

sanity check instead of a general interpretation because not much information regarding the 

inner working of a neural network is understood from selected query cases.

Explaining-by-text—Explaining-by-text methods generate text descriptions in image-

language joint tasks that are conducive to understanding the behavior of a model. This 

class can also include methods that generate symbols for explanation.

Methods in this class are particularly useful in image-language joint tasks such as generating 

a diagnostic report from an X-ray radiograph. However, explaining-by-text is not a general 

technique for any deep learning model because it can only work when a language module 

exists in a model.

· Ad-hoc Interpretable Modeling—Ad-hoc interpretable modeling eliminates the 

biases from the post-hoc interpretability analysis. Although it is generally believed that 

there is a trade-off between interpretability and model expressibility [123], it is still possible 

to find a model that is both powerful and interpretable. One notable example is the work 

reported in [30], where an interpretable two-layer additive risk model has won the first place 

in FICO Recognition Contest.

Interpretable representation—Interpretable representation methods employ 

regularization techniques to steer the optimization of a neural network towards a more 

interpretable representation. Properties such as decomposability, sparsity, and monotonicity 

can enhance interpretability. As a result, regularized features become a way to allow more 

interpretable models. Correspondingly, the loss function must contain a regularization term 
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for the purpose of interpretability, which restricts the original model to perform its full 

learning task.

Model renovation—Model renovation methods seek interpretability by the means of 

designing and deploying more interpretable machineries into a network. Those machineries 

include a neuron with purposely designed activation function, an inserted layer with a 

special functionality, a modularized architecture, and so on. The future direction is to use 

more and more explainable components that can at the same time achieve similar state-of-

the-art performance for diverse tasks.

B. Post-hoc Interpretability Analysis

· Feature Analysis—Inverting-based methods [41], [117], [164], [201] crack the 

representation of a neural network by inverting feature maps into a synthesized image. 

For example, A. Mahendran and A. Vedaldi [117] assumed that a representation of a 

neural network Ω0 for an input image x0 was modeled as Ω0 = Ω (x0), where Ω is 

the neural network mapping, usually not invertible. Then, the inverting problem was 

formulated as finding an image x* whose neural network representation best matches Ω0, 

i.e., arg min
x

∥ Ω(x) − Ω0 ∥2 + λR(x), where R(x) is a regularization term representing prior 

knowledge about the input image. The goal is to reveal the lost information by comparing 

differences between the inverted image and the original one. A. Dosovitskiy et al. [41] 

directly trained a new network with features generated by the model of interest as the input 

and images as the label, to invert features of intermediate layers to images. It was found 

that contours and colors could still be reconstructed even from deeper layer features. M. D. 

Zeiler et al. [201] designed a deconvolution network consisting of unpooling, rectification, 

deconvolution operations, to pair with the original convolutional network so that features 

could be inverted without training. In the deconvolution network, an unpooling layer is 

realized by using locations of maxima; rectification is realized by setting negative values to 

zero; and deconvolution layers use transposed filters.

Activation maximization methods [45], [128], [129], [169] devote to synthesizing images 

that maximize the output of a neural network or neurons of interest. The resulting images are 

referred as “deep dreams” as these can be regarded as dream images of a neural network or a 

neuron.

In [16], [85], [108], [197], [211], it was pointed out that information about a deep model 

could be extracted from each neuron. J. Yosinski et al. [197] straightforwardly inspected the 

activation values of neurons in each layer with respect to different images or videos. They 

found that live activation values that change for different inputs are helpful to understand 

how a model work. Y. Li et al. [108] contrasted features generated by different initializations 

to investigate if a neural network learns a similar representation when randomly initialized. 

The receptive field (RF) is a spatial extent over which a neuron connects with an input 

volume [111]. To investigate the size and shape of RF of a given input for a neuron, B. 

Zhou et al. [211] presented a network dissection method that first selected K images with 

high activation values for neurons of interest and then constructed 5,000 occluded images 

for each of K images, and then fed them into a neural network to observe the changes in 
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activation values for a given unit. A large discrepancy signals an important patch. Finally, 

the occluded images that have large discrepancy were re-centered and averaged to generate 

an RF. This network dissection method has been scaled to generative networks [17]. In 

addition, D. Bau et al. [16] scaled up a low-resolution activation map of a given layer to 

the same size as the input, thresholded the map into a binary activation map, and then 

computed the overlapping area between the binary activation map and the ground-truth 

binary segmentation map as an interpretability measure. A. Karpathy et al. [85] defined the 

gate in LSTM [73] to be either left or right saturated depending on its activation value being 

either less than 0.1 or more than 0.9. In this regard, neurons that are often right saturated 

are interesting because this means that these neurons can remember their values over a long 

period. Q. Zhang et al. [203] dissected feature relations in a network with the premise that 

the feature map of a filter in each layer can be activated by part patterns in the earlier layer. 

They mined part patterns layer by layer, discovered activation peaks of part patterns from 

the feature map of each layer, and constructed an explanatory graph to describe the relations 

of hierarchical features, with each node representing a part pattern and the edge between 

neighboring layers representing a co-activation relation.

· Model Inspection—The empirical influence function is to measure the dependence 

of an estimator on a sample [99]. P. W. Koh and P. Liang [89] applied the concept of the 

influence function to address the following question: Given a prediction for one sample, do 

other samples in the dataset have positive effects or negative effects on that prediction? This 

analysis could also help identify mis-annotated labels and outliers existing in the data. As 

Figure 3 shows, given a LeNet-5 like network, two harmful images for a given image are 

identified by the influence function.

A. Bansal et al. [12], H. Lakkaraju et al. [97], and Q. Zhang et al. [204] worked on the 

detection of failures or biases in a neural network. For example, A. Bansal et al. [12] 

developed a model-agnostic algorithm to identify which instances a neural network is likely 

to fail to provide any prediction for. In such a scenario, the model would instead give 

a warning like “Do not trust these predictions” as an alert. Specifically, they annotated 

all failed images with a collection of binary attributes and clustered these images in the 

attribute space. As a result, each cluster indicates a failure mode. To recognize those 

mislabeled instances with high predictive scores in the dataset efficiently, H. Lakkaraju et al. 
[97] introduced two basic speculations: The first is that mislabeling an instance with high 

confidence is due to the systematic biases instead of random perturbation, while the second 

is that each failed example is representative and informative enough. Then, they clustered 

the images into several groups and designed a multi-armed bandit search strategy by taking 

each group as a bandit that plans which group should be queried and sampled in each step. 

To discover representation biases, Q. Zhang et al. [204] utilized ground-truth relationships 

among attributes according to human’s common knowledge (fire-hot vs ice-cold) to examine 

if a mined attribute relationship by a neural network well fits the ground truth.

Y. Wang et al. [184] demystified a network by identifying critical data routes. Specifically, a 

gate control binary vector λk ∈ 0, 1 nk, where nk is the number of neurons in the kth layer, 
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was multiplied to the output of the kth layer, and the problem of finding control gate values 

is formulated as searching λ1, …, λK:

arg min
λ1, …, λK

 d fθ(x), fθ x; λ1, …, λK + γ∑k ∥ λk ∥1 ,

where fθ is the mapping represented by a neural network parameterized by θ, fθ (x; λ1, …, 

λK) is the mapping when control gates λ1, …, λK are enforced, d(·, ·) is a distance measure, 

γ is a constant controlling the trade-off between the loss and regularization, and ∥·∥1 is 

the l1 norm such that λk is sparse. The learned control gates could expose the important 

data processing paths of a model. B. Kim et al. [86] developed the concept activated vector 

(CAV) that can quantitively measure the sensitivity of the concept C with respect to any 

layer of a model. First, a binary linear classifier h was trained to distinguish between layer 

activations stimulated by two sets of samples: {fl (x) : x ∈ PC} and {fl (x) : x ∉ PC}, where 

fl (x) is the layer activation at the lth layer, and PC denotes data embodying the concept 

C. Then, the CAV was defined as the normal unit vector vC
l  to a hyperplane of the linear 

classifier that separated samples with and without the defined concept. Finally, vC
l  was used 

to calculate the sensitivity for a concept C in the lth layer as the directional derivatives:

SC, k, l = lim
ε 0

ℎl, k fl(x) + ϵvC
l − ℎl, k fl(x)
ϵ

= ∇ℎl, k fl(x) vC
l ,

where hl,k denotes the logits of the trained binary linear classifier for the output class 

k. J. You et al. [196] mapped a neural network into a relational graph, and then studied 

the relationship between the graph structures of neural networks and their predictive 

performance through massive experiments (transcribed a graph into a network and 

implemented the network on a dataset). They discovered that the predictive performance 

of a network was correlated with two graph measures: the clustering coefficient and the 

average path length.

· Saliency—There is a plethora of methods to obtain a saliency map. Partial dependence 

plot (PDP) and individual condition expectation (ICE) [53], [59], [74] are model-agnostic 

statistical tools to visualize the dependence between the responsible variables and the 

predictive variables. To compute the PDP, suppose there are p input dimensions and let 

S, C ⊆ {1, 2, ..p} be two complementary sets, where S is the set one will fix, and C is the 

set one will change. Then the PDP for xS is defined by fS = ∫ f xS, xC dxC, where f is the 

model. Compared with PDP, the definition of ICE is straightforward. The ICE curve at xS is 

obtained by fixing xC and varying xS. Figure 4 shows a simple example on how to compute 

PDP and ICE, respectively.

A simple approach is to study the change of prediction after removing one feature, also 

known as leave-one-out attribution [4], [83], [105], [143], [212]. For example, A. Kádár 

et al. [83] utilized this idea to define an omission score: 1 − cosine(h (S), h(S\i)), where 
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cosine(·, ·) is the cosine distance, h is the representation for a sentence, S is the full sentence, 

and S\i is the sentence without the ith word, and analyzed the importance of each word. P. 

Adler et al. [4] proposed to measure an indirect influence for correlated inputs. For example, 

in a house loan decision system, race should not be a factor for decision-making. However, 

solely removing the race factor is not sufficient to rule out the effect of race because some 

remaining factors such as “zipcode” are highly concerned with race.

Furthermore, Shapley value from cooperative game theory was used in [6], [27], [39], [113], 

[115]. Mathematically, Shapley value of a set function f  with respect to the feature i is 

defined as

Shapleyi(f) = ∑S ⊆ P ∖ i
(N − S − 1)! S !

N ! (f(S ∪ i ) − f(S)),

where | · | is the size of a set, P is a total player set of N players, and the set function f
maps each subset S ⊆ P to a real number. Furthermore, the definition of Shapley value can 

be twisted to the neural network function f by replacing the features in the input that are not 

in S with the zero value. Motivated by reducing the prohibitive computational cost incurred 

by combinatorial explosion, M. Ancona et al. [6] proposed a novel and polynomial-time 

approximation for Shapley values, which basically computed the expectation of a random 

coalition rather than enumerated each and every coalition. Figure 5 shows a simple example 

of how Shapley values can be computed for a fully connected layer network trained on 

California Housing dataset which includes eight attributes such as house age and room 

number as the inputs and the house price as the label.

Instead of removing one or more features, researchers also resort to gradients. K. Simonyan 

et al. [157], D. Smilkov et al. [161], M. Sundararajan et al. [168] and S. Singla et al. [160] 

utilized the idea of gradients to probe the saliency of an input. K. Simonyan et al. [157] 

calculated the first-order Taylor expansion of the class score with respect to image pixels, 

by which the first-order coefficients produce a saliency map for a class. D. Smilkov et al. 
[161] demonstrated that gradients as a saliency map show a correlation between attributes 

and labels, however, typically gradients are rather noisy. To remove noise, they proposed 

“SmoothGrad” that adds noise into the input image multiple times and averages the resultant 

gradient maps: Mc(x) = 1
N ∑n = 1

N Mc
(n) x + N 0, σ2 , where Mc

(n) is a gradient map for a class 

c, and N(0, σ2) is the Gaussian noise with σ as the standard variance. Basically, Mc(x) is 

a smoothened version of a salient map. M. Sundararajan et al. [168] set two fundamental 

requirements for saliency methods: (sensitivity) if only one feature is different between the 

input and the baseline, and the outputs of the input and the baseline are different, then this 

very feature should be credited by a non-zero attribution; (implementation invariance) the 

attributions for the same feature in two functionally equivalent networks should be identical. 

Noticing that earlier gradient-based saliency methods fail the above two requirements, they 

put forth integrated gradients, which is formulated as xi − xi′ ∫0
1 ∂F x′ + α x − x′

∂xi
dα, where F 

(·) is a neural network mapping, x = (x1, x2, …, xN) is an input, and x′ = x1′ , x2′ , …, xN′  is 
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the baseline satisfying ∂
∂x F (x) x = x′ = 0. In practice, the integral can be transformed into 

a discrete summation 
xi − xi′

M × ∑m = 1
M ∂F x′ + m

M x − x′
∂xi

, where M is the number of steps 

in the approximation of the integral. S. Singla et al. [160] proposed to use second-order 

approximations of a Taylor expansion to produce a saliency map so as to consider feature 

dependencies.

S. Bach et al. [11] proposed layer-wise relevance propagation (LRP) to compute the 

relevance of one attribute to a prediction by assuming that a model representation f (x) 

can be expressed as the sum of pixel-wise relevance Rp
l , where x is an input image, l is 

the index of the layer, and p is the index of the pixel of x. Thus, f(x) = ∑pRp
L, where L 

is the final layer and Rp
L =

wpxpL − 1

∑pwpxpL − 1f(x), where wp is the weight between pixel p of the 

(L − 1)th layer and the final layer. Given a feed-forward neural network, the pixel-wise 

relevance score Rp
1 of an input is derived by calculating Rp

l = ∑j
zpj

∑p′ zp′j
Rj

l + 1 backwards 

with zpj = xpl wpj
(l, l + 1), where wpj

(l, l + 1) is the weight between the pixel p of layer l and the 

pixel j of the (l + 1)th layer. Furthermore, L. Arras et al. [9] extended LRP to recurrent neural 

networks (RNNs) for sentiment analysis. G. Montavon et al. [125] employed the whole first-

order term of deep Taylor decomposition to produce a saliency map instead of just gradients. 

Suppose x is a well-chosen root for the function by a model f(x):f(x) = 0, because f (x) can 

be decomposed as f(x) = f(x) + ∂f
∂x x = x

T
⋅ (x − x) + ϵ = 0 + ∑i

∂f
∂xi x = x

xi − xi + ϵ, where 

ϵ is high-order terms, the pixel relevance for the pixel i is expressed as Ri = ∂f
∂xi x = x

xi − xi . 

Inspired by the fact that even though a neuron is not fired, it is still likely to reveal 

useful information, A. Shrikumar et al. [156] proposed DeepLIFT to compute the difference 

between the activation of each neuron and its reference, where the reference is the 

activation of that neuron when the network is provided a reference input, and then 

backpropagate the difference to the image space layer by layer as LRP does. C. Singh 

et al. [159] introduced contextual decomposition whose layer propagation formula is 

βi = W βi − 1 +
W βi − 1

W βi − 1 + W γi − 1
⋅ b and γi = W γi − 1 +

W γi − 1
W βi − 1 + W γi − 1

⋅ b, where W is the 

weight matrix between the ith and (i − 1)th layers and b is the bias vector. The restricting 

condition is gi (x) = βi (x) + γi (x), where gi (x) is the output of ith layer. βi (x) is considered 

as the contextual contribution of the input and γi (x) implies contribution of the input to gi 

(x) that is not included in βi (x).

Figure 6 showcases the evaluation of raw gradients, SmoothGrad, IntegratedGrad, and Deep 

Taylor methods with a LeNet-5-like network. Among them, IntegratedGrad and Deep Taylor 

methods perform superbly on five digits.

Mutual-information measure to quantify the association between inputs and latent 

representations of a deep model can also similarly work as the saliency [63], [149], [194]. 
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In addition, there are other methods to obtain saliency maps as well. A. S. Ross et al. [145] 

defined a new loss term ∑i Ai
∂

∂xi
∑k = 1

K log  yk
2
 for training, where i is an index of a pixel, 

Ai is the binary mask to be optimized, yk is the kth digit of the label, and K is the number 

of class. This loss is to penalize the sharpness of gradients towards a clearer interpretation 

boundary. R. C. Fong and A. Vedaldi [52] explored to learn the smallest region to delete, 

which is to find the optimal m*:

m* = arg min
m ∈ [0, 1]n

λ ∥ 1 − m ∥1 + fc x0; m ,

where m is the soft mask, fc(x0; m) represents the loss of the network for an image x0 

with the soft mask, and n is the number of pixels. T. Lei et al. [102] utilized a generator 

to specify segments of an original text as so-called rationales, which fulfill two conditions: 

1) rationales should be sufficient as a replacement for the initial text; 2) rationales should 

be short and coherent. Deriving rationales is actually equivalent to deriving a binary mask, 

which can be regarded as a saliency map. Based on the above two constraints, the penalty 

term for a mask is formulated as:

Ω(z) = λ1 ∥ z ∥1 + λ2∑t zt − zt − 1 ,

where z = [z1, z2, …] is a mask, the first term penalizes the number of rationales, and the 

second term is for smoothness.

The class activation map method (CAM [210]) and its variant [151] utilized global average 

pooling before a fully connected layer to derive the discriminative area. Specifically, let 

fk(x, y) represent the kth feature map, for a given class c, the input to the softmax layer 

is ∑kwk
c ∑x, yfk(x, y), where wk

c is the weight vector connecting the kth feature map and 

the class c. The discriminative area is obtained as ∑kwk
cfk(x, y), which directly implies the 

importance of the pixel at (x, y) for class c. What’s more, some weakly supervised learning 

methods such as M. Oquab et al. [135] can obtain discriminative areas as well. Specifically, 

they trained a network only with object labels, however, when they rescaled the feature maps 

produced by the max-pooling layer, it was surprisingly found that these feature maps were 

consistent with the locations of objects in the input.

· Proxy—There are about three ways to prototype a proxy. The first one is direct 

extraction. The gist of direct extraction is to construct a new interpretable model such as 

a decision tree [92], [192] or a rule-based system directly from the trained model. As far as 

the rule extraction is concerned, both decompositional [152] and pedagogical methods [147], 

[173] can be used. Pedagogical approaches extract rules that enjoy a similar input-output 

relationship with that of a neural network. These rules do not correspond to the weights and 

structure of the network. For example, the Validity Interval Analysis (VIA) [118] extracts 

rules in the following form:

IF (input ∈ a hypercube), THEN class is Cj.

Fan et al. Page 14

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



R. Setiono and H. Liu [152] clustered hidden unit activation values based on the proximity 

of activation values. Then, the activation values of each cluster were denoted by their 

average activation values, at the same time kept the accuracy of the neural network as intact 

as possible. Next, the input data with the same average hidden unit activation value were 

clustered together to obtain a complete set of rules. In Figure 7, we illustrate obtained rules 

from a one-hidden-layer network using R. Setiono and H. Liu’s method over the Iris dataset. 

In a neural network for a binary classification problem, the decision boundaries divide 

the input space into two parts, corresponding to two classes respectively. The explanation 

system HYPINV developed in E. W. Saad et al. [147] computes for each and every decision 

boundary hyperplane a tangent vector. The sign of an inner product between an input 

instance and a tangent vector will imply the position of the input instance relative to the 

decision boundary. Based on such a fact, a rule system can be established.

Lastly, some specialized networks such as ANFIS [80] and RBF networks [126], 

straightforwardly correspond to fuzzy logic systems. For example, an RBF network is 

equivalent to a Takagi-Sugeno rule system [172] that comprises rules such as “if x ∈ set A 
and y ∈ set B, then z = f (x, y)” [136]. Fuzzy logic interpretation in [48] considers each 

neuron/filter in a network as a generalized fuzzy logic gate. In this view, a neural network 

is nothing but a deep fuzzy logic system. Specifically, they analyzed a new type of neural 

networks, called quadratic networks, in which all the neurons are quadratic neurons that 

replace the inner product with the quadratic operation [47]. Their interpretation generalized 

fuzzy logic gates implemented by quadratic neurons, and then computed the entropy based 

on spectral information of fuzzy operations in a network. It was suggested that such an 

entropy could have deep connections with properties of minima and the complexity of neural 

networks.

The second one is called knowledge distillation [23] as Figure 8 shows. Although knowledge 

distillation techniques are mostly used for model compression, their principles can also be 

used for interpretability. The motif of knowledge distillation is that cumbersome models can 

generate relatively accurate predictions, assigning probabilities to all the possible classes, 

known as soft labels, that are more informative than one-hot labels. For example, a horse 

is more likely to be classified as a dog instead of a mountain. But with one-hot labeling, 

both the dog class and mountain class have zero probability. It was shown in [23] that, 

by the means of matching the logits of the original model, the generalization ability of 

the original cumbersome model could be transferred into a simpler model. Along this 

direction, an interpretable proxy model such as a decision tree [38], [186], a decision 

set [98], a global additive model [171], and a simpler network [75] were developed. For 

example, S. Tan et al. [171] used soft labels to train a global additive model in the form 

ℎ0 + ∑iℎi xi + ∑i ≠ jℎij xi, xj + ∑i ≠ j ∑j ≠ kℎijk xi, xj, xk + ⋯, where {hi}i≥1 could work 

as a feature saliency directly.

The last one is to provide a local explainer as a proxy. Local explainer methods locally 

mimic the predictive behaviors of neural networks. The basic rationale is that when a neural 

network is inspected globally, it looks complex. However, if we tackle it locally, the picture 

becomes clearer.
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One typical local explainer is Local Interpretable Model-agnostic Explanation (LIME) 

[141], which synthesizes a number of neighbor instances by randomly setting elements 

of that sample to zero and computing the corresponding outcomes. Then, a linear regressor 

is used to fit synthesized instances, where the coefficients of the linear model signify the 

contributions of features. As Figure 9 shows, the LIME method is applied to a breast cancer 

classification model to identify which attributes are contributing forces for the model’s 

benign or malignant prediction.

Y. Zhang et al. [207] pointed out the lack of robustness in the LIME explanation, which 

originates from sampling variance, sensitivity to the choice of parameters, and variation 

across different data points. Anchor [142] is an improved extension of LIME, which is to 

find the most important segments of an input such that the variability of the rest segments 

does not matter. Mathematically, Anchor searches a set: A = {z| f (z) = f (x), z ∈ x}, where 

f (·) is a black-box model, x is the input, and z is the part of x. Another proposal LOcal 

Rule-based Explanation (LORE) was from [64]. The LORE takes advantage of the genetic 

algorithm to generate the balanced neighbors instead of random neighbors, thereby yielding 

high-quality training data that alleviates sampling variance of LIME.

· Advanced Mathematical/Physical Analysis—Y. Lu et al. [114] showed that many 

residual networks can be explained as discretized numerical solutions of ordinary differential 

equations, i.e., the inner-working of a residual block in ResNet [69] can be modeled as un+1 

= un + f (un), where un is the output of the nth block, and f (un) is the block operation. It was 

noticed that un+1 = un + f (un) is a one-step finite difference approximation of an ordinary 

differential equation du
dt = f(u). This idea inspired the invention of ODE-Net [32]. As Figure 

10 shows, the starting point and the dynamics are tuned by an ODE-Net to fit a spiral.

N. Lei et al. [101] constructed an elegant connection between the Wasserstein generative 

adversarial network (WGAN [8]) and optimal transportation theory. They concluded that 

with low dimensionality hypothesis and the intentionally designed distance function, a 

generator and a discriminator can exactly represent each other in a closed form. Therefore, 

the competition between a discriminator and a generator in WGAN in the training is 

unnecessary.

In [154], it was proposed that the learning of a neural network is to extract the most relevant 

information in the input random variable X that pertains to an output random variable Y. 

Naively, for a feedforward neural network, the following inequality of mutual information 

holds:

I(Y ; X) ≥ I Y ; ℎj ≥ I Y ; ℎi ≥ I(Y ; Y ),

where I(·; ·) denotes mutual information, hi, hj are outputs of hidden layers (i > j means that 

the ith layer is deeper), and Y  is a final prediction. Furthermore, S. Yu and J. C. Principe 

[198] employed an information bottleneck theory to gauge the mutual information states of 

symmetric layers in a stacked autoencoder as shown in Figure 11:
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I X; X′ ≥ I T1; T1′ ≥ … ≥ I TK; TK′ .

However, it is tricky to estimate the mutual information since the probabilistic distribution of 

data is usually unknown as a priori.

S. Kolouri et al. [91] built an integral geometric explanation for neural networks with a 

generalized Radon transform. Let X be a random variable for the input, which conforms 

to the distribution pX, then we can derive a probability distribution function for the output 

of a neural network fθ (X) parametrized with θ: pfθ(z) = ∫XpX(x)δ z − fθ(x) dx, which is the 

generalized Radon transform, and the hypersurface is H (t, θ) = {x ∈ X| fθ (x) = t}. In 

this regard, the transform by a neural network is characterized by the twisted hypersurfaces. 

H. Huang [77] used the mean-field theory to characterize the mechanism of dimensionality 

reduction by a deep network that assumes weights in each layer and input data following 

a Gaussian distribution. In his study, the self-covariance matrix of the output of the lth 

layer was computed as Cl, then the intrinsic dimensionality was defined as D =
∑i = 1

N λi
2

∑i = 1
N λi2

, 

where λi is the eigenvalue of Cl, and N is the number of eigenvalues. The quantity D/N 
was investigated across layers to analyze how compact representation are learned across 

layers. J. C. Ye et al. [193] utilized a framelet theory and low-rank Hankel matrix to 

represent signals in terms of their local and non-local bases, corresponding to convolution 

and generalized pooling operations. However, in their study the network structure was 

simplified in concatenating two ReLU units into a linear unit such that the nonlinearity 

from ReLU units could be circumvented. As far as advanced physic models are concerned, 

P. Mehta and D. C. Schwab [121] built an exact mapping from the Kadanoff variational 

renormalized group [82] to the restricted Boltzmann Machine (RBM) [148]. This mapping is 

independent of forms of the energy functions and can be scaled to any RBM.

Theoretical neural network studies are essential to interpretability as well. Currently, 

theoretical foundations of deep learning are primarily from three perspectives: 

representation, optimization, and generalization.

Representation:  Let us include two examples here. The first example is to explain why 

deep networks is superior to shallow ones. Recognizing success of deep networks, L. 

Szymanski and B. McCane [170], D. Rolnick and M. Tegmark [144], N. Cohen et al. [37], 

H. N. Mhaskar and T. Poggio [124], R. Eldan and O. Shamir [44], and S. Liang and R. 

Srikant [109] justified that a deep network is more expressive than a shallow one. The basic 

idea is to construct a special class of functions that can be efficiently represented by a deep 

network but hard to be approximated by a shallow one. The second example is to understand 

utilities of shortcut connections of deep networks. A. Veit et al. [178] showed that residual 

connections can render a neural network to manifest an ensemble-like behavior. Along this 

direction, it was reported in [110] that with shortcuts, a network can be super slim to allow 

for universal approximation.
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Optimization:  Generally, optimizing a deep network is a NP-hard non-convex problem. 

The pervasive existence of saddle points [56] leads to that even finding a local minimum 

is also NP-hard [5]. Of particular interest to us is why an over-parametrized network can 

still be optimized well because a deep network is a kind of over-parametrized networks. 

The character of an over-parameterized network is that the number of parameters in a 

network exceeds the number of data instances. M. Soltanolkotabi et al. [163] showed that 

when data are Gaussian distributed and activation functions of neurons are quadratic, the 

landscape of an over-parameterized one-hidden-layer network allows global optimum to be 

searched efficiently. Q. Nguyen and M. Hein [130] demonstrated that with respect to linearly 

separable data, under assumptions on the rank of weight matrices of a feedforward neural 

network, every critical point of a loss function is a global minimum. Furthermore, A. Jacot 

et al. [78] showed that when the number of neurons in each layer of a neural network goes 

infinitely large, the training only renders small changes for the network function. As a result, 

the training of the network turns into the kernel ridge regression.

Generalization:  Conventional generalization theory is incompetent to explain why a deep 

network can generalize well despite that the number of parameters of a deep network is 

many more than the number of samples. Recently proposed generalization bounds [127] that 

rely on the norm of weight matrices partially solved this problem. However, these bounds 

have an abnormal dependence on data that more data lead to a larger generalization bound, 

which apparently contradicts the common sense. We prospect that more efforts are needed to 

resolve the generalization puzzle satisfactorily [18], [122].

· Explaining-by-Case—Basically, case-based explanations present a case that is 

believed by a neural network to be most similar to the query case needing an explanation. 

Finding a similar case for explanation and selecting a representative case from data as the 

prototype [19] are basically the same thing and just use different metrics for similarity. 

While prototype selection is to find a minimal subset of instances that can represent the 

whole dataset, case-based explanations use the similarity metric based on the closeness of 

representations of a neural network, thereby exposing the hidden representation information 

of the neural network. In this light, case-based explanations are also related to deep metric 

learning [150].

As shown in Figure 12, E. Wallace et al. [181] employed the k-nearest neighbor algorithm 

to obtain the most similar cases for the query case in the feature space and then computed 

the percentage of the nearest neighbors belonging to the expected class as a measure for 

interpretability, suggesting how much a prediction is supported by data. C. Chen et al. [31] 

constructed a model that could dissect images by finding prototypical parts. Specifically, the 

pipeline of the model splits into multiple channels after convolutional layers, in which the 

function of each channel is expected to learn a prototypical part of the input such as the head 

or body of a bird. The decision for an input image is made based on the similarity of features 

of channels.

S. Wachter et al. [180] offered a novel case-based explanation method by providing 

a counterfactual case, which is an imaginary case that is close to the query but has 

a different output from that of the query. Counterfactual explanation provides the so-
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called “closest possible case” or the smallest change to yield a different outcome. For 

example, counterfactual explanations may produce the following statement: “If you have 

a good striker, your team would have won this soccer game.” Coincidently, techniques to 

generate a counterfactual explanation have been developed for the purpose of “adversarial 

perturbation”, i.e., structural attack [191]. Essentially, finding a closest possible case x′ to 

the input x is equivalent to finding the smallest perturbation to x such that the classification 

result changes. For example, the following optimization can be built:

arg min 
x′

λ  f x′ − y′ 2 + d x, x′ ,

where λ is a constant, y′ is a different label, and d(·, ·) is chosen to be the Manhattan 

distance in hope that the input be minimally perturbed. Y. Goyal et al. [62] explored an 

alternative way to derive a counterfactual visual explanation. Given an image I with a label 

c, since the counterfactual visual explanation represents the change for the input that can 

force the model to yield a different prediction class c′, they selected an image I′ with a label 

c′ and managed to recognize the spatial region in I and I′ such that the replacement of the 

recognized region would alter the model prediction from c to c′.

· Explaining-by-Text—Neural image captioning uses a neural network to produce a 

natural language description for an image. Despite that neural image captioning is initially 

not for network interpretability, descriptive language about images can tell the information 

about how a neural network analyzes an image. One representative method is from [84] that 

combines a convolutional neural network and a bidirectional recurrent neural network to 

obtain a bimodal embedding. Due to the hypothesis that the two embeddings representing 

similar semantics across two modalities should share the nearby locations of two spaces, the 

objective function is defined as

SIT = ∑
t ∈ gT

max 
t ∈ gT

viT  st,

where vi is the ith image fragment in the set gI, and st is the tth word in a sentence gT. 

Another representative method is the attention mechanism [137], [179], [189], [190], where 

deep features are to align the corresponding text descriptions by a recursive neural network 

such as LSTM [73]. An explanation for deep features is provided by the corresponding 

words in the text and attention maps, which reflect which parts of an image attract the 

attention of the neural network.

As shown in Figure 13, in the kth attention module that takes y0, y1, …, yn as input, suppose 

its output is tk = ∑iyiski ⋅ sk0, sk1, …, skn together form an attention map for tk with respect to 

the associated word. However, S. Jain and B. C. Wallace [79] argued that an attention map is 

not qualified to work as an explanation because they observed that the attention map was not 

correlated with other importance measures of features such as gradient-based measures, and 

the change of attention weights yielded no changes in prediction.

Fan et al. Page 19

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C. Ad-hoc Interpretable Modeling

· Interpretable Representation—Traditionally, regularization techniques for deep 

learning are primarily designed to avoid overfitting. However, it is also feasible to 

devise regularization techniques to enhance an interpretable representation in terms of 

decomposability [33], [165], [182], [205], monotonicity [195], non-negativity [34], sparsity 

[167], human-in-the-loop prior [96], and so on.

For example, X. Chen et al. [33] invented InfoGAN which is a simple but effective way to 

learn an interpretable representation. Traditionally, a generative adversarial network (GAN) 

[60] imposes no restrictions on how a generator utilizes the noise. In contrast, InfoGAN 

maximizes the mutual information between the latent codes and observations, forcing each 

dimension of noise to encode a semantic concept. Particularly, the latent codes are made 

of discrete categorical codes and continuous style codes. As shown in Figure 14, two style 

codes control the localized part and the digit rotation respectively.

Incorporating monotonicity constraints [195] is also useful to enhance interpretability. A 

monotonical relationship means when the value of a specified attribute increases, the 

predictive value of a model either increases or decreases. Such a simplicity promotes 

interpretability as well. J. Chorowski and J. M. Zurada [34] imposed non-negativity to 

weights of neural networks and argued that it could improve interpretability because it 

eliminated the cancellation and aliasing effects among neurons. A. Subramanian et al. [167] 

employed a k-sparse autoencoder for word embedding to promote sparsity in the embedding 

and claimed that this enhanced interpretability because a sparse embedding reduced the 

overlap between words. I. Lage et al. [96] proposed a novel human-in-the-loop evaluation 

in selecting a model. Specifically, a diverse set of models were trained and sent to users for 

evaluation. Users were asked to predict what the label of a data point would be assigned by 

a model M. The shorter the response time was, the better a user understanded the model. 

Then, the model with the lowest response time was chosen.

· Model Renovation—L. Chu et al. [35] proposed to use piecewise linear functions as 

activations for a neural network (PLNN), thereby the decision boundaries of PLNN could 

be explicitly defined and further a closed-form solution could be derived for predictions of 

a network. As Figure 15 shown, F. Fan et al. [49] proposed Soft-Autoencoder (Soft-AE) 

by using adaptable soft-thresholding units in encoding layers and linear units in decoding 

layers. Consequently, Soft-AE can be interpreted as a learned cascaded wavelet adaptation 

system.

L. Fan [50] explained a neural network as a generalized Hamming network, whose neurons 

compute the generalized Hamming distance: ℎ(x, w) = ∑l = 1
L wl + ∑l = 1

L xl − 2x ⋅ w for an 

input x = (x1, …, xL) and a weight vector w = (w1, …, wL). The bias term in each neuron 

is specified as b = − 1
2 ∑l = 1

L wl + ∑l = 1
L xl  so that each neuron is a generalized Hamming 

neuron. In this regard, the function of the batch normalization is demystified as making 

the bias suitable for computation of the generalized Hamming distance. C. C. J. Kuo et al. 
[95] proposed a transparent design for constructing a feedforward convolutional network 

without the need of backpropagation. Specifically, filters in convolutional layers were built 
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by selecting principal components of PCA for outputs of earlier pooling layers. A fully 

connected layer was constructed by treating it as a linear-squared regressor.

D. A. Melis and T. Jaakkola [123] claimed that a neural network model f is interpretable 

if it has the form that f (x) = g (θ1 (x) h1 (x), …, θk (x) hk (x)), where hi (x) is 

the prototypical concept from the input x and θi (x) is the relevance associated with 

that concept, g is monotonic and completely additively separable. Such a model can 

learn interpretable basis concepts and facilitate saliency analysis. Similarly, J. Vaughan 

et al. [177] designed a network structure to compatibly learn the function formulated 

as f(x) = μ + γ1ℎ1 β1
Tx + γ2ℎ2 β2

Tx + … + γKℎK βK
T x , where βk is the projection, hk (·) 

represents the nonlinear transformation, μ is the bias, and γk is the weighting factor. Such a 

model is more interpretable than a general network, because the function of this model has 

simpler partial derivatives that can simplify saliency analysis, statistical analysis, and so on.

C. Li et al. [104] proposed deep supervision by using prior hierarchical tasks on features of 

intermediate layers. Specifically, we have a dataset {(x, y1, …, ym)}, where labels y1, …, ym 

are hierarchical that yj, j < i is a strict necessary condition for the existence of yi, i > 1. Such 

a scheme introduces a modularized idea that through supervision of a specific task for an 

intermediate layer, the learning of that layer is steered towards the pre-specified task, thereby 

gaining interpretability.

T. Wang [183] proposed to use an interpretable and insertable substitute on a subset of 

data which the complex black-box model overkills. In their work, a rule set was built as an 

interpretable model to make a decision on the input data first. Those inputs which a rule set 

was handicapped to classify were passed into the black-box model for decision making. The 

logic of this hybrid predictive system is that an interpretable model for regular cases without 

compromising accuracy, a complex black-box model for complicated cases.

C. Jiang et al. [81] proposed finite automata-recurrent neural network (FA-RNN) that can 

be directly transformed into the regular expressions such that a good interpretability is 

extracted. The roadmap is that the constructed FA-RNN can be approximated into finite 

automata, and further transformed into regular expressions because finite automata and a 

regular expression are mutually convertible. In analogy, a regular expression can also be 

decoded into an FA-RNN as an initialization. FA-RNN is a good example to manifest the 

synergy between a rule system and a neural network.

III. INTERPRETABILITY IN MEDICINE

These days, reports are often seen in the news that deep learning-based algorithms 

outperform experts or classic algorithms in the field of medicine [153]. Indeed, given an 

adequate computational power and well-curated datasets, a properly designed model can 

deliver competitive performance in most well-defined pattern recognition tasks. However, 

due to the high stakes of medicine-concerned applications, it is not sufficient to have a deep 

learning model that produces correct answers without an explanation. In this section, we 

focus on several exemplary papers concerning applications of interpretability methods in 
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medicine, and we organize the articles of relevance in accordance with the aforementioned 

taxonomy.

· Post-hoc Interpretability Analysis

Feature analysis—P. Van Molle et al. [176] visualized convolutional neural networks 

to assist decision-making for skin lesion classification. In their work, feature activations 

generated from the last two convolutional layers were rescaled to the size of an input image 

as the activation maps. Where a map has high activations were inspected. The activation 

strengths across different border types, skin colors, skin types, etc. were compared. 

The activation map exposed a risk that some unexpected regions had uncommonly high 

activations.

D. Bychkov et al. [24] utilized a model that combines a VGG-16 network [158] and an 

LSTM network [73] to predict five-year survival of colorectal cancer based on digitized 

tumor tissue samples. In their work, an RGB pathological image was split into many tiles. 

A VGG-16 network extracted a high-dimensional feature vector from each tile, which was 

then fed into an LSTM network to predict five-year survival. They used t-SNE [116] to map 

features learned by VGG-16 into a two-dimensional space for visualization and found that 

different classes of features of VGG-16 were well separated.

Saliency—I. Sturm et al. [166] applied a deep network with LRP [11] for the single-trial 

EEG [22] classification. The network entails two linear mean pooling layers before being 

activated or normalized. The feature importance score is assigned by LRP (S. Bach et al., 
2015).

J. R. Zech et al. [200] developed a deep learning model for chest radiography to classify 

patients into having pneumonia or not. Through interpretability analysis by CAM [210], they 

reported the risk that a deep learning model could make an incorrect decision by capturing 

features irrelevant to diseases, such as metal tokens.

O. Oktay et al. [134] combined attention gates with the decoder part of U-Net to cope 

with interpatient variation in organs’ shapes and sizes. The proposed model can improve 

model sensitivity and accuracy by inhibiting representations of irrelevant regions. Aided 

by attention gates, they found that the model gradually shifted its attention to regions of 

interest.

D. Ardila et al. [7] proposed a deep learning algorithm that considers a patient’s current and 

previous CT volumes to predict the risk of lung cancer. They used the integrated gradient 

method [168] to derive saliency maps and invited experienced radiologists to examine the 

fidelity of these maps. It turned out that in all cases, the readers strongly agreed that the 

model indeed focused on the nodules.

H. Lee et al. [100] reported an attention-assisted deep learning system for detection and 

classification of acute intracranial haemorrhage, where an attention map identified a region 

relevant to the disease. They evaluated the localization accuracy of the attention maps by 
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computing the proportion of bleeding points overlapping with the attention maps. Overall, it 

was found that 78.1% bleeding points were detected in the attention maps.

W. Caicedo-Torres and J. Gutierrez [25] proposed a multi-scale deep convolutional neural 

network for the mortality prediction based on the measurement of 22 different items in 

ICU such as the sodium index, urine output, etc. In their work, three temporal scales were 

represented by stacking convolutional kernels of dimensions 3 × 1, 6 × 1, and 12 × 1. The 

saliency map by DeepLIFT [156] was utilized for interpretability.

H. Guo et al. [66] introduced an effective dual-stream network that conjugates extracted 

features from ResNet [69] and clinical prior knowledge to predict the mortality risk of 

patients based on low-dose CT images. To further testify the effectiveness of the proposed 

model, they utilized t-SNE [116] to reduce the dimensionality of feature maps of malignant 

and benign samples and found that malignant and benign features were well separated. Also, 

they applied CAM [210] to reveal that the deceased subjects correctly classified by the 

model were prone to have strong activations.

Proxy—Z. Che et al. (2016) applied knowledge distillation into a deep model to learn a 

gradient boosting tree [106] (GBT), that provides not only robust prediction performance but 

also a good interpretability in the context of electronic health record prediction. Specifically, 

they trained three deep models respectively, and then used predictions of deep models as 

labels to train a GBT model. Experiments on a Pediatric ICU dataset were reported that the 

GBT model maintained the prediction performance of deep models in terms of mortality and 

ventilator-free days.

S. Pereira et al. [138] combined global and local interpretation efforts for brain tumor 

segmentation and penumbra estimation in stroke lesions, where the global interpretability 

was derived from mutual information to sense the dependence between an input sample and 

the prediction, while the local interpretability was cast by a variant of LIME [141].

Explaining-by-Case—N. C. F. Codella et al. [36] employed saliency and explaining-by-

case methods to explain a dermoscopic image analysis network which was jointly trained 

by disease labels with a triple-let loss. Specifically, the interpretability was gained by the 

discovered neighbors and localized regions that were most relevant to the distance from 

queries and neighbors.

Explaining-by-Text—Z. Zhang et al. [208] proposed an all-in-one network that read 

pathology bladder cancer images, generated diagnostic reports, retrieved images according 

to symptomatic descriptions, and visualized attention maps. They designed an auxiliary 

attention sharpening module to improve the discriminability of attention maps. Pathologists’ 

feedbacks suggested that the explanatory maps tended to highlight regions that concern with 

carcinoma-informative regions.

· Ad-hoc Interpretable Modeling

Interpretable Representation—X. Fang and P. Yan [51] devised the Pyramid Input 

Pyramid Output Feature Abstraction Network (PIPO-FAN) with multiple arms for multi-
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organ segmentation. Each of the arm handles the information on one scale. The total loss is 

obtained by adding the segmentation loss to each of these arms such that segmentation-wise 

features are generated in each arm. Visualization analysis suggested that features from 

different arms have hierarchical semantical meanings, i.e., some are blurry but contain 

global class-wise information, while the others contain local boundary information. As 

shown in Figure 16, the segmentation loss creates semantically meaningful features, where 

low-scale arms produce more details and high-scale arms find global morphologies.

Model Renovation—W. Gale et al. [55] combined a DenseNet (G. Huang et al., 
2017) model with an LSTM model [73] for detection of hip features from pelvic X-ray 

radiographs. A radiologist hand-labelled standard descriptive terms to construct a semantic 

dataset for these radiographs. Their model consistently generated informative sentences 

favored by doctors over saliency maps. Also, they demonstrated that the combination of 

visualization and text interpretation give an interpretation superior to either of them alone.

C. Biffi et al. [20] employed a variational autoencoder [87] (VAE)-based model for 

classification of cardiac diseases as well as structurally remodeling based on cardiovascular 

images. In their scheme, registered left ventricular (LV) segmentations at end-diastolic (ED) 

and end-systolic (ES) phases were encoded in a low-dimensional latent space by VAE. 

The learned latent low dimensional manifold was connected to a multilayer perceptron 

(MLP) for disease classification. The interpretation was given by an activation maximization 

technique. The “deep dream” of MLP was derived and inverted to the image space for 

visualization.

S. Shen et al. [155] built an interpretable deep hierarchical semantic convolutional neural 

network (HSCNN) to predict the malignancy of pulmonary nodules in CT images. HSCNN 

consists of three modules: a general feature learning module, a low-level task module that 

predicts semantic characteristics such as sphericity, margin, subtlety, and so on, and a 

high-level task module absorbs information from both general features and low-level task 

predictions to produce an overall lung nodule malignancy. Due to the semantic meaning 

contained in the low-level task, HSCNN has boosted interpretability.

Z. Zhang et al. [209] developed a deep convolutional network to automate the whole-slide 

reading of pathology images for tumors and the diagnosis process of pathologists. Specially, 

the network can generate a clinical pathology report along with attention-assisted features.

Y. Lei et al. [103] observed that CAM [210] and Grad-CAM [151] are for interpreting 

localization tasks and tend to ignore fine-grained structures. Consequently, they proposed 

a shape-and-margin-aware soft activation map (SAM) that could probe subtle but critical 

features in a lung nodule classification task. The comprehensive experimental comparisons 

showed that compared to CAM and Grad-CAM, SAM can reveal relatively discrete and 

irregular features around nodules.

IV. PERSPECTIVE

In this section, we suggest a few directions, in hope to advance the understanding and 

practice of artificial neural networks.
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· Synergy of Fuzzy Logic and Deep Learning

Fuzzy logic [199] was a buzz phrase in the last nighties. It extends the Boolean logic from 

0–1 judgement to imprecise inference with fuzziness in the interval [0, 1]. Fuzzy theory can 

be divided into two branches: fuzzy set theory and fuzzy logic theory. The latter, with an 

emphasis on “IF-THEN” rules, has demonstrated effectiveness in dealing with a plethora 

of complicated system modeling and control problems. Nevertheless, a fuzzy rule-based 

system is restricted by the acquisition of a large number of fuzzy rules, a process that is 

tedious and computationally expensive. While a neural network is a data-driven method that 

extracts knowledge from data through training, with the knowledge represented by neurons 

in a distributed manner. However, a neural network falls short of delivering a satisfactory 

result in the context of small data and suffers from the lack of interpretability. In contrast, 

a fuzzy logic system employs experts’ knowledge and represents a system in the form of IF-

THEN rules. Although a fuzzy logic system merits interpretability and accountability, it is 

incompetent in efficient and effective knowledge acquisition. It seems that a neural network 

and a fuzzy logic system are complementary to each other. Therefore, it is instrumental to 

combine the best of two worlds towards an enhanced interpretability. In fact, this roadmap 

is not totally new. There have been several combinations along this direction: ANFIS model 

[80], generic fuzzy perceptron [126], RBF networks [21], and so on.

One suggestion is to build a deep RBF network. Given the input vector x = [x1, x2, …, xn], 

an RBF network is expressed as f(x) = ∑i
nwiϕi x − ci , where ϕi(x − ci) is usually selected 

as exp −
∥ x − ci ∥ ∧ 2

2σ2 , where ci is the cluster center of the ith neuron. It was proved the 

functional equivalence between an RBF network and a fuzzy inference system under mild 

conditions [21]. Also, an RBF network is shown to be a universal approximator [136]. 

Hence, an RBF network is a potentially sound vehicle that can encode fuzzy rules into its 

adaptive representation without loss of accuracy. Reciprocally, rule generation and fuzzy 

rule representation in an adaptable RBF network are more straightforward compared to a 

multilayer perceptron. Although current RBF networks are of one-hidden-layer structures, it 

is feasible to develop deep RBF networks, which can be viewed as a deep fuzzy rule system. 

A greedy layer-wise training algorithm was developed in [71], which successfully solved the 

training problem for deep networks. It is possible to translate such success into the training 

of deep RBF networks. Then, the correspondence between a deep RBF network and a deep 

fuzzy logic system will be applied to obtain a deep fuzzy rule system. We believe that efforts 

should be made to synergize fuzzy logic and deep learning techniques aided by big data 

along this direction.

· Convergence of Neuroscience and Deep Learning

Up to date, truly intelligent systems are still only human. The artificial neural networks 

in their earlier forms were clearly inspired by biological neural networks [120]. However 

subsequent developments of neural networks were, to a much less degree, pushed by 

neurological and biological insights. As far as interpretability is concerned, since biological 

and artificial neural networks are deeply connected, advances in neuroscience should be 

relevant and even instrumental to the development and interpretation of deep learning 
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techniques. We believe that the neuroscience promises a bright future of deep learning 

interpretability in the following aspects.

Cost function.—The effective use of cost functions is a key driving force for the 

development of deep networks in the past years; for example, the adversarial loss used 

in GANs [60]. In previous sections, we have highlighted cases which demonstrate that an 

appropriate cost function will enable a model to learn an interpretable representation, such 

as enhance feature disentanglement. Along this direction, a myriad of cost functions can 

be built to reflect biologically plausible rationales. Indeed, our brain can be modeled as an 

optimization machine [119], which has a powerful credit assignment mechanism to form a 

cost function.

Optimization algorithm.—Despite the huge success achieved by backpropagation, it is 

far from ideal in the view of neuroscience. Truly in many senses, backpropagation fails 

to manifest the true behaviors of how a human neural system tunes the synapses of a 

neuron. For example, in a biological neural system, synapses are updated in a local manner 

[94] and only depend on the activities of presynaptic and postsynaptic neurons. However, 

connections in deep networks are tuned through non-local backpropagation. Figure 17 shows 

a bio-plausible learning algorithm for a two-layer network on CIFAR-100 [93]. Additionally, 

a neuromodulator is missing in deep networks in contrast to the inner-working of a human 

brain, where the state of one neuron can exhibit different input-output patterns controlled 

by a global neuromodulator like dopamine, serotonin, and so on [162]. Neuromodulators 

are believed to be critical due to their ability to selectively control on and off states of one 

neuron which is equivalently switching the involved cost function [13].

Considering that there are quite few studies discussing the interpretability of training 

algorithms, powerful and interpretable training algorithms will be highly desirable. Just like 

for classic optimization methods, we wish that future non-convex optimization algorithms 

will have some kinds of uniqueness, stability, and continuous dependency on data, etc.

Bio-Plausible Architectural Design.—In the past decades, neural networks were 

designed in diverse architectures from simple feedforward networks to deep convolutional 

networks and other highly sophisticated networks. The structure determines functionality, 

i.e., a specific network architecture regulates the information flow with distinct 

characteristics. Therefore, specialized architectures are useful as effective solutions for 

intended problems. Currently, the structural differences between deep learning and 

biological systems are eminent. A typical network is used and tuned for most tasks based 

on big data, while a biological system learns from a small number of data and generalizes 

very well. Clearly, a huge amount of knowledge needs to be learned from biological neural 

networks so that a more desirable and explainable neural network architectures can be 

designed.

· Interpretability in Medicine

A majority of interpretability research efforts in medicine are only for classification tasks, 

but radiological practices cover a large variety of tasks such as image segmentation, 
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registration, reconstruction, and so on. Clearly, interpretability is also closely relevant to 

these areas, and therefore it is in need to promote interpretability research in these domains. 

On the one hand, more efforts should be made to extend the existing interpretation methods 

to other tasks that have not been explored. On the other hand, practitioners can design 

task-specific interpretation methods with their expertise and insights. For example, in image 

segmentation, explaining why a voxel receives a class label in image segmentation is much 

harder than explaining which area in the input image is responsible for a prediction in 

image classification. Similarly, for image reconstruction, interpretability could be quite 

complicated. In this regard, our recently proposed ACID framework allows a synergistic 

integration of data-driven priors and compressed sensing (CS)-modeled priors, enforcing 

both of which iteratively via physics-based analytic mapping [188]. By doing so, modern CS 

and state-of-the-art deep networks are united to overcome the vulnerabilities of existing deep 

reconstruction networks, at the same time transferring the interpretability of the model-based 

methods to the hybrid deep neural networks.

In addition to the above referenced publications, gaining interpretability ultimately also 

relies on medical doctors, who have invaluable professional training despite some biases 

and errors. As a result, active collaboration among medical doctors, technical experts, and 

theoretical researchers to design effective, efficient, and reproducible ways to assess and 

apply interpretability methods will be an important avenue for future development of deep 

learning methods.

V. CONCLUSION

In conclusion, we have reviewed key ideas, implications, limitations of existing 

interpretability studies, and illustrated some typical interpretation methods through 

examples. In doing so, we have depicted a holistic landscape of interpretability research 

using the proposed taxonomy and introduced applications of interpretability in medicine 

particularly. Figures 3, 5, 6, 7, 9, 10, 16, 17 are visualization results from our own 

implementation of chosen interpretation methods. We have open-sourced relevant codes 

in the GitHub (https://github.com/FengleiFan/IndependentEvaluation). There is no doubt 

that a unified and accountable interpretation framework is critical to elevate interpretability 

research into a new phase. In the future, more efforts are needed to reveal the essence of 

deep learning. Because this field is still highly interdisciplinary and rapidly evolving, there 

are great opportunities ahead that will be both academically and practically rewarding.
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Fig. 1. 
Exponential growth of the number of articles on interpretability.
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Fig. 2. 
Taxonomy used for this interpretability review.
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Fig. 3. 
Based on the influence function, two harmful images that have the same label as the test 

image are identified.
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Fig. 4. 
Toy examples illustrating the definitions of PDP and ICE, respectively. On the left, to 

measure the impact of the brand on the price with the PDP method, we fix the brand 

and compute the average of prices as other factors change, obtaining that the PDP of 

“Huawei” is 2500 and the PDP of “Apple” is 4000. On the right, ICE scores regarding 

brands “Huawei”, “Vivo” and “Apple” are computed by varying brands and fixing other 

factors.
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Fig. 5. 
Positive Shapley value indicates a positive impact on the model output, and vice versa. 

Shapley value analysis shows that the model is biased because the house age has the positive 

Shapley value on the house price, which goes against with our real experience.
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Fig. 6. 
Interpreting a LeNet-5-like network by raw gradient, SmoothGrad, Integrated Gradient, and 

Deep Taylor methods, respectively. It is seen that Integrated Gradient and Deep Taylor 

methods have sharper and less noisy saliency map.
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Fig. 7. 
Rule extraction process as proposed by R. Setiono and H. Liu [152]. (a) A one-hidden-layer 

network with three hidden neurons is constructed to classify the Iris dataset. (b) Rules are 

extracted via discretizing activation values of hidden units and clustering of inputs, where 

Petal length and Petal width are dominating attributes for classification of Iris samples. 

The extracted rules have the same classification performance as that of the original neural 

network.
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Fig. 8. 
Knowledge distillation is to construct an interpretable proxy by the soft labels from the 

original complex models.
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Fig. 9. 
A breast cancer classification task model dissected by LIME. In this case, the sample 

is classified as benign where worst concave point, mean concave point and so on are 

contributing forces, while the worst perimeter is the contributing force to drive the model to 

predict “malignant”.
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Fig. 10. 
ODE-Net optimizes the start point and the dynamics to fit the spiral shape.
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Fig. 11. 
An application of information bottleneck theory to compare mutual information between 

symmetric layers in an autoencoder.
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Fig. 12. 
Explaining-by-case presents the nearest neighbors in response to a query.
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Fig. 13. 
Image captioning with attention modules provides an explanation to the features mined by a 

deep convolutional network.
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Fig. 14. 
In an InfoGAN, two latent codes control the localized parts and rotation parts respectively.
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Fig. 15. 
Soft-autoencoder with soft-thresholding functions as activation functions in the encoding 

layers and the linear function as activations in the decoding layers, thereby admitting a direct 

correspondence to the wavelet adaptation system.
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Fig. 16. 
Visualization of feature maps of different arms in PIPO-FAN, where low-scale sub-networks 

produce local structural details and high-scale sub-networks target global morphological 

information.
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Fig. 17. 
Visualization of weights of a network learned by a bio-plausible algorithm, where prototypes 

of training image are captured [94].
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