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Abstract

Multi-city epidemiologic studies examining short-term (daily) differences in fine particulate 

matter (PM2.5) provide evidence of substantial spatial heterogeneity in city-specific mortality risk 

estimates across the United States. Because PM2.5 is a mixture of particles, both directly emitted 

from sources or formed through atmospheric reactions, some of this heterogeneity may be due 

to regional variations in PM2.5 toxicity. Using inverse variance weighted linear regression, we 

examined change in percent change in mortality in association with 24 “exposure” determinants 

representing three basic groupings based on potential explanations for differences in PM toxicity 

– size, source, and composition. Percent changes in mortality for the PM2.5-mortality association 

for 313 core-based statistical areas and their metropolitan divisions over 1999–2005 were used 

as the outcome. Several determinants were identified as potential contributors to heterogeneity: 

all mass fraction determinants, vehicle miles traveled (VMT) for diesel total, VMT gas per 

capita, PM2.5 ammonium, PM2.5 nitrate, and PM2.5 sulfate. In multivariable models, only daily 

correlation of PM2.5 with PM10 and long-term average PM2.5 mass concentration were retained, 

explaining approximately 10% of total variability. The results of this analysis contribute to the 

growing body of literature specifically focusing on assessing the underlying basis of the observed 

spatial heterogeneity in PM2.5-mortality effect estimates, continuing to demonstrate that this 

heterogeneity is multifactorial and not attributable to a single aspect of PM.
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1 Introduction

Fine particulate matter (PM2.5
i) is a mixture of particles, both directly emitted from sources 

or formed through atmospheric reactions, with aerodynamic diameters generally of 2.5 

micrometers or smaller. Multi-city population-based epidemiologic studies have provided 

some of the strongest evidence indicating a relationship between short-term (daily) PM2.5 

exposures and mortality (Baxter et al. 2017; Dai et al. 2014; Di et al. 2017a; Di et al. 2017b; 

Franklin et al. 2007; Franklin et al. 2008; Krall et al. 2013; Zanobetti and Schwartz 2009), 

and have heavily contributed to the overarching conclusion that there is a causal relationship 

between short-term PM2.5 exposure and mortality (U.S. EPA. 2009, 2019). While these 

nationally representative epidemiologic studies provide evidence of positive associations, 

there is evidence of city-to-city or regional heterogeneity in the magnitude of the PM2.5 

mortality effect estimates (Baxter et al. 2019; Di et al. 2017b; Dominici et al. 2006; Franklin 

et al. 2007). The inability to explain the city-to-city or regional heterogeneity in PM2.5 

mortality effect estimates observed in multi-city studies remains a key uncertainty in the 

examination of the relationship between short-term PM2.5 exposures and mortality.

The observed heterogeneity in PM2.5-mortality effect estimates has been hypothesized to 

be due to differences in source profiles and composition of PM2.5 across the United States 

(U.S.). As a result, numerous studies have examined the relationship between individual 

PM2.5 components and mortality to assess whether the observed heterogeneity can be 

attributed to some individual PM2.5 components being more toxic than others. However, 

no consistent components have been identified as being more strongly associated with 

mortality than others. For example, Atkinson et al. (2015) conducted a systematic review of 

the epidemiologic time-series literature of the relationship between particle components and 

mortality, finding that sulfate (SO4
2-), nitrate (NO3

−), elemental carbon (EC), and organic 

carbon (OC) were positively associated with increases in all-cause, cardiovascular, and 

respiratory mortality. Additional studies have demonstrated associations with various metal 

components and mortality, such as aluminum (Franklin et al. 2008), nickel (Franklin et al. 

2008; Ito et al. 2011), vanadium (Ito et al. 2011; Lippmann et al. 2013), copper (Lippmann 

et al. 2013; Ostro et al. 2007), and zinc (Ito et al. 2011; Ostro et al. 2007). The variability 

in results across these epidemiologic studies indicates that compositional differences in 

PM2.5 do not fully explain the heterogeneity in PM2.5 mortality effect estimates across 

the U.S. This variability is further reflected in an assessment of studies examining PM2.5 

components and mortality in the 2019 PM Integrated Science Assessment that contributed 

to the conclusion that, “the evidence does not indicate that any one source or component is 

consistently more strongly related to health effects than PM2.5 mass.” (U.S. EPA. 2019).

More recently, studies have expanded the examination of the observed heterogeneity in 

PM2.5 mortality effect estimates in an attempt to address this question more broadly 

instead of narrowly focusing on individual PM2.5 components. Additional exploration of 

this uncertainty has led to examinations of whether the heterogeneity in PM2.5 mortality 

iAQS: Air quality system, CBSA: Core Based Statistical Area, CMAQ: Community Multiscale Air Quality modeling system, IQR: 
inter-quartile range, MD: Metropolitan Division, NCDC: National Climatic Data Center, NEI: Nation Emissions Inventory, PM: 
particulate matter, VMT Vehicle Miles Traveled
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effect estimates can be explained by unique differences in PM2.5 component mixtures 

between cities (Baxter et al. 2013), in the distribution of the population potentially at 

greatest risk of an air pollutant-related health effect (Levy et al. 2012), and in differences in 

city-specific exposures to PM2.5 (Baxter et al. 2019). While each of these studies provides 

information to explain some of the observed heterogeneity, together they indicate a complex 

and multifaceted issue.

Our analyses further examine the issue of spatial heterogeneity in PM2.5-mortality effect 

estimates by focusing specifically on the degree to which PM mass, sources, or composition 

explain this heterogeneity. Using PM2.5-mortality effect estimates from analyses of 312 

Core Based Statistical Areas (CBSAs) and Metropolitan Divisions (MD) across the U.S. 

from 1999–2005, in combination with determinants representing aspects of PM exposure 

and mass, sources, and components, we explore whether these determinants contribute 

to the observed spatial heterogeneity in mortality effect estimates using meta-regression 

techniques.

2 Methods

2.1 Outcome and study population

For this analysis, the study population consists of all residents of 312 core-based statistical 

areas (CBSA) across the U.S. for which associations (percent change) between daily counts 

of total non-accidental mortality and daily (24-hour average) ambient concentrations of 

PM2.5 were previously estimated (Figure 1) (Baxter et al. 2019). As detailed in Baxter 

et al. (2019), associations between daily PM2.5 from the EPA’s Air Quality System’s 

(AQS) Technology Transfer Network (U.S. EPA. 2020b) and individual level mortality data 

from the National Center for Health Statistics (http://www.cdc.gov/nchs/about.htm) were 

estimated at lag 1 for 1999 through 2005 using Poisson time series methods adjusting for 

time/season (natural spline with 7 degrees of freedom per year), day of week, and natural 

splines for current temperature, dew point temperature, and individual lagged temperature at 

lags 1–3 for each CBSA. We selected PM2.5 at lag 1 because the largest magnitude effect 

estimates for PM2.5 associated mortality occur within this window (Di et al. 2017a; Franklin 

et al. 2007; Krall et al. 2013; Ostro et al. 2007; Zanobetti and Schwartz 2009), and to be 

consistent with previous work (Baxter et al. 2019); in addition, we do not expect spatial 

determinants to differ between lags 0 and 1. Meteorological data for all U.S. cities were 

obtained from the U.S. Department of Commerce’s National Climatic Data Center (NCDC). 

The effect estimates for each CBSA are expressed as a percent change in nonaccidental 

mortality for a 10 μg/m3 increase in daily PM2.5 1 day before death and are used here as our 

outcome measure.

2.2 Spatial determinants

We explored 24 determinants representing three basic groupings based on potential 

explanations for differences in PM toxicity – aspects of exposure or mass fraction, source, 

and composition; all determinants, descriptions, and sources are listed in Table 1. These 

groups have been previously identified as potential contributors to PM toxicity and can 

affect delivered dose and mode of action (Kelly and Fussell 2012; Lippmann 2012). 
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Therefore, differences in spatial distributions of these determinants across CBSAs may help 

explain some of the observed heterogeneity in PM2.5-mortality associations.

The first group includes determinants representing aspects of PM related to exposure and 

mass fractions: long-term average PM2.5, correlation between daily PM2.5 and daily PM10, 

etc. This group was chosen in an attempt to elucidate the impacts of overall mass-based 

exposure metrics, as when the balance of mass is shifted towards larger or smaller particles 

different associations with health might be observed; though there is extensive evidence 

indicating health effects attributed to multiple size fractions (U.S. EPA. 2019). Long-term 

average PM2.5 might reflect underlying particle distribution, but may also affect responses 

to short-term exposures through increased susceptibility (Kunzli et al. 2001; Shi et al. 

2016). The ratio of PM2.5
/PM10 should reflect the proportion of PM10 that is comprised 

of PM2.5, while the daily PM2.5-PM10 correlation may capture days with higher degrees 

of shared sources between PM2.5 and PM10. For these determinants, concentrations of 

PM were obtained from the EPA’s AQS (U.S. EPA. 2020b) within each CBSA and a 

county-population weighted daily average was created when there were multiple monitors.

The second group consists of determinants representing emissions and sources: PM2.5 

emissions from wildland fires, diesel and gas emissions vehicle miles traveled, etc. These 

determinants may represent potential mixtures of chemicals particular to certain sources, 

some of which may produce biological responses (for example, traffic related) while others 

may not (for example., soil related) (Kelly and Fussell 2012). This information was sourced 

from the EPA’s National Emissions Inventory (NEI) (U.S. EPA 2015; U.S. EPA. 2020a), and 

county-level population-weighted averages were created when there were multiple counties 

within a CBSA.

The final group of determinants consists of specific PM2.5 components: ammonium, sulfates, 

nitrates, elemental carbon, and organic carbons. Component concentrations are known 

to vary spatially and have been identified and investigated as a source of heterogeneity 

previously (Kelly and Fussell 2012; U.S. EPA. 2019). For the components group, annual 

average PM2.5 component concentrations were estimated between 1990 and 2010 on a 

36×36 km grid using the Community Multiscale Air Quality (CMAQ v 5.0.2) framework 

(Gan et al. 2015). Estimated concentrations were calibrated against observed concentrations 

from air quality networks and performed well (correlation coefficients above 0.8 for 

all component estimates) (Gan et al. 2015). Then, thin-plate smoothing, by means of 

the R software package “fields” (Nychka et al. 2018), was used to interpolate monthly 

average concentrations to population centroids of U.S. census tracts, and population-

weighted averages were calculated across census tracts and months to obtain annual 

PM2.5 concentrations for each county and year, these were then averaged from 1998–2006 

(Peterson et al. 2020).

All exposure determinants are mean-centered and scaled to their respective inter-quartile 

range (IQR).
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2.3 Statistical analysis

Exposure determinants (continuous) were first examined in univariate, inverse variance 

weighted regression models with percent change in mortality for a 10 μg/m3 increment 

in PM2.5 as the outcome (i.e., a meta-regression) using the gam package in R (Hastie 

2019; R Core Team 2013). Number of CBSAs in each model was allowed to vary with 

available exposure data. Each beta can be interpreted as the change in PM2.5 associated 

mean percent change in nonaccidental mortality for an IQR increase of the specific 

determinant, in other words a shift in the percent change in mortality associated with 

daily PM2.5 exposure. Models using natural cubic spline smoothing were also used to 

check for non-linearity (Fasiolo et al. 2020; Wood 2011), and weighted correlations were 

also examined. Following bivariable analysis, a final multivariable model was built using 

a backwards selection approach with the following inclusion criteria: 1) determinants 

where the univariate models were improvements over the null model, as indicated by a 

lower BIC; 2) determinants that were roughly linear as determined by spline models; 

and 3) determinants that were not highly co-linear (correlation coefficient <0.7). For co-

linear determinants, the determinant with the higher F-statistic was included (Baxter et al. 

2019). In these cases, the selected determinant may be representing the impact of both 

co-linear determinants. The multivariable model was run iteratively with the least significant 

determinant dropped at each iteration of the model, until all covariates were significant at the 

chosen critical level (p < 0.05).

3 Results

Distributions of CBSA/metropolitan division-specific health effect estimates and inverse 

variance weights are displayed on the maps in Figures 1 and 2 (supporting numbers in 

Supplemental Table S.1); the overall percent change in nonaccidental mortality for a 10 

μg/m3 increase in daily PM2.5 1 day before death was 1.05%, with an IQR of 2.67. More 

populous areas have larger inverse-variance weights (Figure 2).

Descriptive statistics for spatial determinants are presented in Table 2, with correlations 

between determinants presented in Supplemental Table S.2. While all included counties 

(n=312) had values for most PM2.5, sources/emissions determinants, and modeled 

component concentrations, fewer counties had data on PM10 concentration, PM2.5-PM10 

daily correlation values, and PM2.5 dust construction emissions. Variation across CBSAs 

was generally low for mass fraction and component determinants, and higher for sources/

emissions determinants. Most determinants had moderate to low correlations (|r| < 0.7); 

however, some were highly correlated (e.g., component determinants: ammonium, sulfate, 

and nitrate) and so were not included together in multi-determinant models.

3.1 Meta-regression results

Within the single determinant meta-regression, several determinants had some level of 

predictive ability for percent change in nonaccidental mortality for a 10 μg/m3 increase in 

daily PM2.5 1 day before death (Table 3). These included all mass fraction determinants, 

VMT diesel total and VMT gas per capita from sources/emissions determinants, and 

ammonium, nitrate, and sulfate from PM component determinants. For example, the overall 
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percent change in mortality is 1.05% (which corresponds to a mortality rate ratio of 

1.0105). Therefore, a beta of 0.34, as with the correlation between daily PM2.5 and PM10 

concentrations, can be roughly interpreted as such: a correlation increase from 40% to 58% 

(IQR increase) would increase the average mortality association from 1.05% to 1.39%. A 

negative beta would be a decrease in the average mortality association, for example, a 2.72 

μg/m3 increase in long-term PM2.5 average would decrease the average mortality association 

to 0.75% (beta of −0.30).

The amount of variability in the PM2.5-mortality effect estimates explained by any 

individual determinant was generally low, with the highest adjusted r-squared value being 

8.19% for the correlation between daily PM2.5 and PM10 concentrations. Following that, 

long-term average PM2.5 mass concentration explained 7.86% of the total variation in 

mortality. All other determinants with some predictive ability explained less than 5% of 

the total variability in PM2.5 associated percent change in mortality, with the PM2.5/10 ratio 

explaining the lowest at 0.69%.

Determinants considered for a multivariable meta-regression model were long-term PM10 

average, long-term PM2.5 average, daily PM2.5-PM10 correlation, daily PM2.5/10 ratio, 

VMT diesel total, VMT gas per capita, PM2.5 ammonium, PM2.5 nitrate, and PM2.5 

sulfate. Of these, PM2.5 nitrate was non-linear (see supplemental materials, spline figures). 

PM2.5 ammonium, PM2.5 nitrate, and PM2.5 sulfate were highly correlated; as PM2.5 

ammonium had the highest F-statistic it was retained for the multivariable model. The 

initial multivariable model included long-term PM10 average, long-term PM2.5 average, 

PM2.5-PM10 correlation, PM2.5/10 ratio, VMT diesel total, VMT gas per capita, and PM2.5 

ammonium. Backwards selection was performed until all included determinants were 

significant at the <0.05 level, leaving a final model that included only two determinants, 

daily correlation of PM2.5 with PM10 and long-term average PM2.5 mass concentration. 

Confounding between the two determinants was determined to be meaningful using a 10% 

change in estimate.

In the ultimate multivariable model, the adjusted percent change in nonaccidental mortality 

for correlation between daily PM2.5 and PM10 concentrations was 0.22 (0.06, 0.39), and for 

long-term average PM2.5 mass concentration was −0.17 (−0.31, −0.04). Adjusted r-squared 

for the final multi-determinant model was 10.38%.

4 Discussion

The goal of this meta-regression analysis was to explore if any of the available determinants 

related to size, source, or composition explained observed heterogeneity in the association 

between daily PM2.5 exposure and mortality. We identified several individual determinants 

that accounted for some heterogeneity, though the total variability explained for each was 

relatively low.

Higher long-term average PM10 and PM2.5 concentrations were associated with lower 

daily PM2.5-mortality effect estimates, which follows previous work showing greater health 
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benefit of reductions (steeper relative slope) in PM2.5 in those counties achieving attainment 

compared to those that did not (Corrigan et al. 2018).

Higher correlation between daily PM2.5 and PM10 was associated with higher daily PM2.5-

mortality effect estimates. In a study in Spain examining different size fractions, Perez et 

al. (2009) reported that the coarse fraction (PM10-2.5) was moderately associated with the 

intramodal fraction (PM2.5–1) and almost uncorrelated with PM1. While these relationships 

are likely to differ in different locales, it may suggest that when the daily PM2.5-PM10 

correlation is higher PM2.5 may be made up of more intramodal particles than when 

the correlation is low. Sources and conditions that might contribute to high PM2.5-PM10 

correlation include arid locales (windblown dust/dust generation), seasonality, and relative 

humidity conditions among others (Claiborn et al. 2000; Kegler et al. 2001; Kozákovác et al. 

2018). Dosimetric studies have also shown that larger particles do not penetrate and deposit 

in the lower respiratory tract (U.S. EPA. 2019). The PM2.5/10 ratio was also identified as 

accounting for some heterogeneity, however the amount explained in this case was small 

(0.7% of total variability).

Emissions related to gas and diesel vehicle miles traveled were both inversely associated 

with daily PM2.5-mortality effect estimates; this might be explained by higher travel being 

an indicator for poorer exposure capture/measurement error, as the homogeneity across the 

MSAs may not accurately reflect intra-urban variability in PM2.5 concentrations (Dionisio 

et al. 2014; Dionisio et al. 2016). The PM2.5 components of ammonium, nitrate, and sulfate 

were all positively associated with percent change in PM2.5 related mortality. Some of 

these components have previously been identified as possible contributors to increase the 

magnitude of the PM2.5-mortality relationship (Franklin et al. 2008; Lippmann et al. 2013; 

U.S. EPA. 2019), and may be associated with specific source profiles for individual cities. 

However, estimated concentrations of these components were all highly correlated, and they 

can all be potentially high contributors to PM2.5 mass complicating the interpretation of 

these results.

Of these individual determinants, two were retained in the final multivariable model, 

correlation between daily PM2.5 and PM10, and long-term average PM2.5. This may be 

a function of the level of analysis at the CBSA, where PM2.5 mass is more spatially 

homogenous compared to individual components. It may also be because of measurement 

in general, as during the time period of this study there was limited data available for 

components, and emissions may not reflect direct concentrations in the same CBSA due to 

chemical transport.

Previous studies have investigated potential sources of heterogeneity in the PM2.5-mortality 

association, often focusing on PM2.5 components, sources, or related determinants; however, 

these studies were typically performed in fewer cities than this analysis. Several studies 

identified season or season-related determinants as a potential source of modification (Dai 

et al. 2014; Franklin et al. 2008; Lippmann et al. 2013; Zanobetti et al. 2014), suggesting 

that differences in sources or atmospheric chemistry across time of year are influential on 

the PM2.5-mortality association. Interestingly, a study performed across similar years and in 

a smaller number of cities did not observe seasonal differences (Krall et al. 2013). Lippmann 
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et al. (2013) also identified sulfate and carbon monoxide (likely a traffic source indicator), 

among others, as having consistent associations with mortality in multi-city analyses.

Franklin et al. (2008) also examined the PM2.5 component to PM2.5 mass proportions as 

potential modifiers, finding sulfate as well as some metal components to be associated 

with higher PM2.5 related mortality. Some studies have examined regional patterns and city 

source profiles as a way to tease out potential sources of heterogeneity. Davis et al. (2011) 

found north-south differences wherein the northern U.S. cities had higher concentrations 

of sulfate and nitrate but noted that between city heterogeneity remained within regions. 

Baxter et al. (2013) examined differences in PM components and source profiles using 

paired cities within regions but did not identify any specific component or sources that could 

explain heterogeneity in mortality associations between city pairs. Across these studies, 

heterogeneity in effect estimates seems driven by complex interactions from a variety of 

determinants and no one component or source was more strongly associated with mortality 

than others.

This analysis adds to the existing body of literature by including more cities/CBSAs than 

have previously been included, and by having estimated PM component concentrations for 

each of these cities. However, potential limitations remain. Temporal variation for cities is 

likely well captured by central site monitors that are used for daily PM2.5 measurement, 

however these may not capture spatial variability in the sources and components within 

cities. Similarly, a 36 km2 model output was used for estimating component concentrations, 

which involved interpolating to census tracts and then aggregating to MSAs. There is likely 

uncertainty in estimations of component concentrations as well as in emissions sourced 

concentrations; low coefficients of variation may indicate a lack of power to detect effects 

rather than a true absence of effect due to specific components. Relatedly, we were unable 

to examine metal components which some have identified as potential contributors to PM 

toxicity, such as nickel or vanadium, as we lacked data on these components. We recognize 

that the data used in this analysis is older, as those were the data used for the initial mortality 

effect estimate estimation, and that there have been changes in source contributions to 

PM2.5 over time. For example, the growth in the number of wildfires over time has led 

to an increase in the proportion of PM2.5 emissions from wildfires (U.S. EPA. 2020a). 

Additionally, over the last 15 years there has been a dramatic change in the contribution 

of sulfate to overall PM2.5 concentrations, specifically in the eastern U.S. which can be 

attributed to the almost 65% reduction in SO2 concentrations that have occurred over this 

time period (U.S. EPA. 2019); from 2003–2005, sulfate accounted for close to 50% of 

overall PM2.5 mass, whereas from 2013–2015 it accounted for about a quarter to a third of 

mass (U.S. EPA. 2019). In CMAQ analyses, sulfate was the component with the largest total 

and percent decrease between 1990 and 2010 (−42%) (Peterson et al. 2020). Epidemiologic 

studies using more recent years of air quality data indicate that this change in the PM2.5 

mixture does not impact the PM2.5-mortality association by demonstrating mortality risk 

estimates of similar magnitude compared to previous studies. While it is unlikely that this 

change will contribute to differences in PM2.5 effect estimates, it is important to recognize 

there have been changes in overall PM2.5 component concentrations over time. The fairly 

dramatic change in sulfate contributions to PM2.5 mass in the eastern U.S. and the continued 

relationship between short-term PM2.5 exposure and mortality provides evidence supporting 
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that PM2.5 mass remains a good indicator of exposure, and suggests the potential that it 

is the mixture of PM2.5 itself that impacts health rather than an individual component. 

Numerous studies have shown that many PM2.5 components are associated with many health 

outcomes, including mortality, but no individual component has been shown to be more 

consistently associated with mortality than PM2.5 mass (U.S. EPA. 2019).

5 Conclusions

This study adds to the growing body of evidence indicating that the heterogeneity in 

PM2.5-mortality associations is multifactorial. Whereas the previous hypothesis around the 

observed heterogeneity was often attributed to variability in the composition of PM2.5 

across locations, often with a focus on these differences being driven by an individual 

component, we did not observe such in this analysis. While some components did explain 

some of the heterogeneity, determinants related to overall PM2.5 mass were the strongest 

predictors. The determinants identified from this analysis can be combined with work done 

to explore other sources of heterogeneity, such as infiltration determinants and underlying 

population characteristics, to more fully explain the observed heterogeneity in PM2.5 

mortality associations across the U. S.
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Figure 1: 
Area-specific distribution of associations of total non-accidental mortality and fine 

particulate matter (PM2.5) at lag 1: 312 U.S. core-based statistical areas and their 

metropolitan divisions (Supplemental Table S.1)
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Figure 2: 
Area-specific distributions of inverse variance weights for associations of total non-

accidental mortality and fine particulate matter (PM2.5) at lag 1: 312 U.S. core-based 

statistical areas and their metropolitan divisions (Supplemental Table S.1)
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Table 1:

Descriptions of determinants used to explore spatial heterogeneity in the CBSA-level effect estimates between 

daily PM2.5 and all-cause mortality

Exposure determinant Group Description Source for 
raw data Years

Long-term PM10 average Mass fraction 6-year average of daily PM10 values at the CBSA level AQS 1999 – 2005

Long-term PM2.5 average Mass fraction 6-year average of daily PM5 values at the CBSA level AQS 1999 – 2005

PM2.5 - PM10 correlation Mass fraction
Correlation between daily PM2.5 and daily PM10 at the 

CBSA level
AQS 1999 – 2005

PM ratio 2.5/10 Mass fraction Ratio of average PM2.5 to PM10 concentrations AQS 1999 – 2005

PM2.5 dust construction Sources/emissions
PM2.5 emitted from construction as dust (tons) (NEI 

technical documentation section 3.7)
NEI 2011

PM2.5 dust paved road Sources/emissions
PM2.5 emitted from paved roads as dust (tons) (NEI 

technical documentation section 3.8)
NEI 2011

PM2.5 dust unpaved road Sources/emissions
PM2.5 emitted from unpaved roads as dust (tons) (NEI 

technical documentation section 3.9)
NEI 2011

PM2.5 fires wild Sources/emissions
PM2.5 emitted from wildfires (tons) (NEI technical 

documentation section 5.1)
NEI 2011

PM2.5 fires prescribed Sources/emissions
PM2.5 emitted from prescribed burning (tons) (NEI 

technical documentation section 5.1)
NEI 2011

PM2.5 fires agriculture field 
burning

Sources/emissions
PM2.5 emitted from agricultural field burning (tons) (NEI 

technical documentation section 5.2)
NEI 2011

PM2.5 fires all Sources/emissions Summed emissions from fires (tons) NEI 2011

PM2.5 dust all Sources/emissions Summed emissions from dust(tons) NEI 2011

PM2.5 dust all and ag crops/
livestock

Sources/emissions Summed emissions from fires, dust, and agricultural 
practices in tons NEI 2011

PM2.5 agriculture crops 
livestock

Sources/emissions
PM2.5 emitted from agricultural tilling (tons) (NEI 

technical documentation section 3.2)
NEI 2011

VMT diesel total Sources/emissions Emissions related to vehicle miles traveled, vehicles 
designed to use diesel fuel, in tons NEI 2011

VMT diesel per capita Sources/emissions Emissions related to vehicle miles traveled, vehicles 
designed to use diesel fuel, divided by population, in tons NEI 2011

VMT gas total Sources/emissions
Emissions related to vehicle miles traveled, vehicles 

designed to use gasoline fuel, divided by population, in 
tons

NEI 2011

VMT gas per capita Sources/emissions Emissions related to vehicle miles traveled, vehicles 
designed to use gasoline fuel per capita, in tons NEI 2011

PM2.5 ammonium Components
Estimated PM2.5 ammonium concentration averaged 

across 9 years
CMAQ 1998 – 2006

PM2.5 nitrate Components
Estimated PM2.5 nitrate concentration averaged across 9 

years
CMAQ 1998 – 2006

PM2.5 sulfate Components
Estimated PM2.5 sulfate concentration averaged across 9 

years
CMAQ 1998 – 2006

PM2.5 elemental carbon Components
Estimated PM2.5 elemental carbon concentration averaged 

across 9 years
CMAQ 1998 – 2006

PM2.5 organic carbon Components
Estimated PM2.5 organic carbon concentration averaged 

across 9 years
CMAQ 1998 – 2006

AQS: EPA’s Air Quality System (https://www.epa.gov/aqs)
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CBSA: Core-based Statistical Area

CMAQ: Community Multiscale Air Quality Modeling System (https://www.epa.gov/cmaq)

NEI: EPA’s National Emissions Inventory (https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei)

VMT: vehicle miles traveled, these emission estimates are derived by first estimating the VMT and then multiplying by a fixed emission constant.
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