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Microbiome assembly predictably shapes diversity across a
range of disturbance frequencies in experimental microcosms
Ezequiel Santillan 1 and Stefan Wuertz 1,2✉

Diversity is often implied to have a positive effect on the functional stability of ecological communities. However, its relationship
with stochastic and deterministic assembly mechanisms remains largely unknown, particularly under fluctuating disturbances. Here,
we subjected complex bacterial communities in microcosms to different frequencies of alteration in substrate feeding scheme,
tracking temporal dynamics in their assembly, structure and function. Activated sludge bioreactors were subjected to six different
frequencies of double organic loading, either never (undisturbed), every 8, 6, 4, or 2 days (intermediately disturbed), or every day
(press disturbed), and operated in daily cycles for 42 days. Null modeling revealed a stronger role of stochastic assembly at
intermediate disturbance frequencies, with a peak in stochasticity that preceded the occurrence of a peak in α-diversity.
Communities at extreme ends of the disturbance range had the lowest α-diversity and highest within-treatment similarity in terms
of β-diversity, with stronger deterministic assembly. Increased carbon removal and microbial aggregate settleability (general
functions) correlated with stronger deterministic processes. In contrast, higher stochasticity correlated with higher nitrogen removal
(a specialized function) only during initial successional stages at intermediate disturbance frequencies. We show that changes in
assembly processes predictably precede changes in diversity under a gradient of disturbance frequencies, advancing our
understanding of the mechanisms behind disturbance–diversity–function relationships.
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INTRODUCTION
Microbes typically exist as diverse, complex and dynamic
communities1 and are involved in all biogeochemical cycles2.
These microbial communities or microbiomes provide crucial
functions for global climate regulation, human health, biotechnol-
ogy and bioremediation3. Microbial diversity is often related to
community function4 and the ability to withstand environmental
fluctuations that typically occur as disturbances5. Disturbance can
be defined as an event in time that disrupts the structure of a
community by changing resources, substrate availability, or the
physical environment6. When disturbance is continuous, it is
categorized as press disturbance5. While a disturbance may result
in inhibition, injury, or death for some individuals in a community,
it also creates opportunities for other individuals to grow or
reproduce7. Indeed, disturbance is considered a major factor
influencing species diversity6, but a clear understanding of the
underlying mechanisms is lacking8,9.
Given the growing human population and its impact on natural

and engineered ecosystems10, management and conservation
practices are faced with increasing frequencies and magnitudes of
various disturbances that occur on different scales. A concept of
ecology that can be used to explore possible outcomes is the
intermediate disturbance hypothesis (IDH), which predicts a
diversity peak at intermediate levels of disturbance due to
competition-colonization trade-offs faced by organisms11. The
IDH has been influential in ecology12 and ecosystem conserva-
tion13,14. However, it is not a coexistence mechanism as initially
thought, but rather a family of spatial and/or temporal processes
resulting in higher diversity under intermediate disturbances15.
Further, many studies have not found the diversity pattern
predicted by the IDH16,17 and its relevance as a prediction tool is
up for debate18,19. Therefore, studies are needed to address the

mechanisms behind the observed disturbance–diversity
relationships20.
Community assembly processes are believed to shape commu-

nity structure21, which also links them to ecosystem function.
These processes can be either deterministic, when communities
form due to selection imposed by abiotic or biotic factors22, or
stochastic, assuming that all taxa have a similar fitness and the
structure of the community is shaped by random events of
ecological drift (i.e., births and deaths)23. Both deterministic and
stochastic processes are known to simultaneously influence the
assembly of communities24–27. Although disturbance is believed
to be an important driver of community assembly processes28, its
effects on their relative importance are not well understood29.
Disturbance can elicit stochastic assembly mechanisms that lead
communities to different states of structure and function9,30,
despite using replicated experimental settings31. Further, while
recent studies have reported positive correlations of strength of
stochasticity with α-diversity in bacterial32 and fungal33 commu-
nities, the role of assembly processes behind diversity patterns
under fluctuating disturbances is still unclear.
Intermediate frequencies of exposure to a xenobiotic pollutant

(3-chloroaniline) in our recent replicated sludge bioreactor study
demonstrated higher α-diversity and relative influence of stochas-
tic assembly compared to other exposure levels, after a succession
period of 35 days9. We hypothesized that when intermediate
disturbance frequencies gave rise to unpredictable environments
for organisms rendering their specialized traits less advantageous,
stochastic equalization of competitive advantages across the
overall pool of organisms would lead to a higher α-diversity. In
contrast, either no disturbance or press disturbance conditions at
the extreme ends of a disturbance range would allow fewer
adapted organisms to dominate, thus lowering the α-diversity. We
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named this causal relationship the intermediate stochasticity
hypothesis (ISH)9, which could also be framed as an intermediate
disturbance-maximum stochasticity-and-diversity hypothesis.
Unlike the IDH, the ISH incorporates assembly mechanisms that
shape community structure (α- and β-diversity) across a dis-
turbance gradient. Further, it predicts not only a pattern in species
richness, as originally conceived in the IDH, but also in higher-
order α-diversity indices since variations in the underlying
assembly mechanisms would also affect the abundance distribu-
tions of taxa. The ISH further considers that the output of a
stochastic process is affected by some uncertainty, which in this
case means there are several possible paths for the evolution of
the structure and function of a community. In this regard,
stochasticity operating at intermediate levels of disturbance in
replicated systems could lead to similar high α-diversity (local, e.g.,
within a reactor), but not necessarily to similar β-diversity
(compositional variation across sites, e.g., between reactors) and
community function9. However, more research is needed to test
the broad validity of the ISH since disturbance is a multi-
dimensional phenomenon8, as it can be of different types and
have different frequencies, intensities, and extents34.
The objective of this work was to test the central tenet of the

ISH that intermediate disturbance frequencies promote stochastic
assembly processes, resulting in increased α-diversity and variable
β-diversity9. We used an experimental system comprised of
activated sludge sequencing batch reactors harboring complex
microbial communities collected from a full-scale wastewater
treatment plant. These were subjected to different frequencies of
alteration in the feeding scheme of the substrate by doubling the
organic carbon content in the feed and keeping the nitrogen
content constant. Such alteration represents a disturbance for
activated sludge systems due to changes in competition for
oxygen, substrate, and biofilm space. Indeed, organic loading
shocks were shown to affect relevant functions in activated sludge
systems, like carbon removal35, sludge settleability36, and

nitrification37, as well as the overall structure and assembly of
the microbial community27. In this study, the reactors had a
working volume of 25 mL, representing a microcosm scale38.
Replicates (n= 5) received double organic loading either never
(L0, undisturbed), every 8, 6, 4, or 2 days (L1-4, intermediately
disturbed), or every day (L5, press disturbed), for 42 days. We
tracked temporal dynamics of community assembly, structure and
function, without focusing on any particular taxa. Samples were
analyzed using 16S rRNA gene metabarcoding and effluent
chemical characterization. Patterns of α- and β-diversity were
employed to assess temporal dynamics of bacterial community
structure. Assembly mechanisms were quantified via null model
analysis of phylogenetic turnover for each bioreactor.

RESULTS
Intermediate disturbance frequencies exhibit higher
taxonomic and phylogenetic α-diversity
Taxonomic α-diversity was evaluated using Hill diversity indices39

of orders zero (0D, taxa richness), one (1D) and two (2D), the latter
being a robust estimate of microbial diversity9. Phylogenetic
α-diversity was also considered through Faith’s phylogenetic
distance40, both unweighted (PD) and abundance-weighted
(PDW). There was a temporal decrease in α-diversity for all
disturbance frequency levels compared to the sludge inoculum for
both taxonomic and phylogenetic α-diversity indices (Fig. 1A and
Supplementary Fig. 1). This drop was more pronounced within the
first 14 days, when variability across same-level replicates was also
highest. A peak in α-diversity at intermediate frequencies of
disturbance was observed for all unweighted (0D, PD) and
abundance-weighted (1D, 2D, PDW) indices evaluated in this study
(Fig. 1A and Supplementary Figs. 2 and 3). Such a parabolic
pattern was significant from d21 onwards for 2D (Welch’s ANOVA
Padj ≤ 0.003); from d28 onwards for 1D (Welch’s ANOVA

Fig. 1 Community dynamics in α-diversity. A Community structure assessed via 2nd order Hill α-diversity (2D, upper panels) and community
assembly evaluated via the nearest taxon index (NTI, lower panels), from bacterial ASV data for different frequencies of organic loading
disturbance (n= 5). Disturbance frequency levels (L): 0 (undisturbed), 1–4 (intermediately disturbed), 5 (press disturbed). In: sludge inoculum
(day 0, n= 4). Each panel represents a sampling day, red diamonds display mean values. The box bounds the interquartile range (IQR) divided
by the median, and Tukey-style whiskers extend to a maximum of 1.5 times the IQR beyond the box. Characters above boxes display Games-
Howell post hoc grouping (Padj < 0.05). Welch’s ANOVA P-values adjusted at 5% FDR shown within panels. Correlations of B 2D and
C phylogenetic diversity (PD) vs. NTI from bacterial ASV data across all frequency levels and time points evaluated in this study (m= 184).
Kendall correlation τ- and adjusted P-values are indicated within the panel. Blue line represents locally estimated scatterplot smoothing
regression (loess) with confidence interval in dark-gray shading. Note the inverted y-axis for NTI, as values closer to zero indicate a higher
relative contribution of stochastic assembly. Shaded in gray is the zone of significant stochastic phylogenetic dispersion, |NTI | < 2.
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Padj= 0.002–0.01), PD (Welch’s ANOVA Padj= 0.003–0.037) and
PDW (Welch’s ANOVA Padj= 0.005–0.013); and from d35 onwards
for 0D (Welch’s ANOVA Padj= 0.03–0.035).

Community assembly temporal dynamics precede α-diversity
patterns across disturbance frequencies
Assembly processes were first evaluated by modeling the
phylogenetic dispersion of a given community against the null
expectation, through the nearest taxon index (NTI)41. We observed
higher stochasticity at the initial stages of the experiment (d0-14),
which decreased in relative intensity over time across disturbance
levels for both unweighted (ΝΤΙ) and abundance-weighted (ΝΤΙW)
indices (Fig. 1A and Supplementary Fig. 2). There was a stronger
role of stochastic assembly processes at intermediate disturbance
frequencies as shown by ΝΤΙ values closer to zero (i.e., lower | ΝΤΙ|
values); this was significant from d14 onward (ΝΤΙ Welch’s ANOVA
Padj= <0.001–0.037) but was reduced towards the end of the
study becoming non-significant on d42. Games-Howell post hoc
grouping indicated that the parabolic pattern of ΝΤΙ across
disturbance frequency levels preceded (d14-35) the formation of a
peak in α-diversity (d21–42) at intermediate levels of disturbance,
with two to three groups significantly differentiated (Fig. 1A).
Stochastic assembly processes were less prevalent when abun-
dance weighing was included in the calculation of the ΝΤΙ index
(ΝΤΙW). This meant that the phylogenetic dispersion of the
community, compared to that of the null expectation, was greater
when considering the abundance of taxa (i.e., individual organ-
isms) than when only the presence or absence of taxa was
considered. Nonetheless, there was a significant peak in ΝΤΙW

values at intermediate frequencies of disturbance on d7 and d14
(ΝΤΙW Welch’s ANOVA Padj= 0.001). This parabolic pattern of ΝΤΙW
was evident on d7, preceding that of ΝΤΙ, but disappeared on d21
and inverted from d28 onwards. Also, significant phylogenetic
signals were observed via mantel correlogram analysis (Supple-
mentary Fig. 5) mostly across relatively short phylogenetic
distances, justifying the use of phylogenetic null modeling to
evaluate community assembly processes in this study.
Stochastic assembly was higher when α-diversity was higher,

particularly for phylogenetic diversity. This was shown by
significant Kendall correlation τ values (−0.24 to −0.46, Padj <
0.001) between ΝΤΙ and α-diversity indices (Fig. 1B, C and
Supplementary Fig. 4). Kendall correlation τ values were also
negative (−0.20 to −0.26) and significant (Padj < 0.001) between
ΝΤΙW and phylogenetic α-diversity indices (PD, PDW) and
unweighted taxonomic α-diversity (0D), but not between ΝΤΙW
and abundance-weighted taxonomic α-diversity (1D, 2D) (Supple-
mentary Fig. 4). The estimation of all the aforementioned indices
over time using rarefied ASV sequencing data yielded the same
significant patterns via Welch’s ANOVA, with the exception of ΝΤΙW
on d21 and d42 (see Supplementary File).

β-diversity patterns display similarity at low and high
disturbance frequencies and higher variability at intermediate
ones
Community structure in terms of β-diversity showed temporal
changes, which varied across disturbance levels for both Unifrac
phylogenetic distances (Fig. 2A) and Bray–Curtis taxonomic
distances (Fig. 2B). Unconstrained ordination displayed a

Fig. 2 Temporal dynamics of β-diversity community structure and assembly for bacterial ASV data across different frequencies of
organic loading disturbance (n= 5 bioreactors). A Unconstrained NMDS ordination (weighed Unifrac β-diversity, Hellinger transformed data)
for all 184 samples collected. Disturbance frequency levels (L): 0 (undisturbed), 1–4 (intermediately disturbed), 5 (press disturbed). I: Sludge
inoculum (day 0, n= 4). B Constrained canonical analysis of principal coordinates (CAP) ordinations (Bray–Curtis β-diversity, squared root
transformed data) on different sampling days, including ellipses of 60% group-average cluster similarity and PERMANOVA adjusted P-values.
C Misclassification errors at each disturbance frequency level, via the leave-one-out allocation of observations to groups from CAP at each
time point after d0 (n= 6 sampling days). Bray–Curtis β-diversity, squared root transformed data. Red diamonds display mean values. The box
bounds the IQR divided by the median, and Tukey-style whiskers extend to a maximum of 1.5 times the IQR beyond the box. D Beta nearest
taxon index (βNTI) at each disturbance frequency level, from pairwise comparisons across within-treatment replicates at each time point after
d0 (n= 60 comparisons). Red diamonds display mean values. Notches show the 95% confidence interval for the median. When notches do
not overlap, the medians can be judged to differ significantly. Shaded in gray is the zone where stochastic processes significantly dominate,
|βNTI| < 2. βNTI values closer to zero indicate a higher relative contribution of stochastic assembly.
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dispersion effect in overall community structure over time,
particularly after 7 days, with communities in each reactor
diverting from each other (Fig. 2A). To disentangle the effect of
disturbance from temporal dynamics in β-diversity, each time
point was evaluated separately using constrained ordination via
canonical analysis of principal coordinates (CAP) (Fig. 2B). Group-
average cluster similarity (60%) was included to detect formations
of clusters of community structure. Differences in β-diversity
across disturbance levels were statistically significant at all time
points evaluated (PERMANOVA Padj < 0.001), without significant
effects of heteroscedasticity (PERMDISP Padj > 0.14) (Supplemen-
tary Table 1). Replicate reactors at the undisturbed (L0) and press
disturbed level (L5) clustered separately from intermediate
disturbance levels on almost all sampling days, except d7 and
d21 for L0 (Fig. 2B), both levels having 0% misclassification error at
all time points assessed (Fig. 2C). Comparatively, reactors at
intermediate disturbance frequencies (L1-4) clustered together
and showed higher dispersion across replicates within the same
level, with CAP misclassification errors above zero (Fig. 2B, C).
Thus, replicate reactors were less similar to each other at
intermediate levels of disturbance, while replicates at low
(undisturbed) and high (press disturbed) disturbance frequencies
were more similar. Likewise, community assembly assessed via the
beta nearest taxon index (βNTI)42 showed a higher relative
contribution of stochasticity at intermediate levels of disturbance
(Fig. 2D), with βΝΤΙ values closer to zero, indicating that
phylogenetic turnover across within-treatment replicates was
closer to the null expectation. Similarly to what we observed

through the NTI, the relative importance of stochasticity
decreased with time in the experiment (i.e., higher | βΝΤΙ| values)
and when abundance weighing was included in the calculation of
the βΝΤΙ values (βΝΤΙW) (Supplementary Fig. 6). The observed
temporal changes in bacterial community structure at the ASV
level across disturbance frequencies were consistent with phylum-
and genus-level dynamics of relative abundances (Supplementary
Fig. 7), although the focus of this study was on overall community
dynamics and not on any particular group of taxa.

Community function dynamics and correlations with
community structure and assembly
Bacterial community function was assessed over time via influent
chemical oxygen demand (COD) removal, sludge volume index
(SVI), and influent total Kjeldahl nitrogen (TKN) removal, as
measure of carbon removal, sludge settleability and nitrogen
removal, respectively (Fig. 3A). Carbon removal and sludge
settleability, which are functions associated with a broad range
of taxa (i.e., general functions), improved over time during the
experiment. High-carbon removal (>0.97, fraction of total) was
achieved at all disturbance frequency levels from d21 onwards,
with no significant differences on days 35 and 42, after a period of
high variability for same-level replicates during the first 14 days.
Sludge settleability increased with disturbance frequency, with
undisturbed (L0) reactors showing the lowest settleability from
d21 onwards and intermediately disturbed levels reaching the
highest settleability on d42 (SVI Welch’s ANOVA Padj= 0.018). The
nitrogen removal function (TKN removal), which is related to

Fig. 3 Community function dynamics. A Community function assessed via influent chemical oxygen demand removal (carbon removal as
fraction of total, upper panels), sludge volume index (sludge settleability, middle panels), and influent total Kjeldahl nitrogen removal
(nitrogen removal as fraction of total, lower panels) for different frequencies of organic loading disturbance (n= 5). Disturbance frequency
levels (L): 0 (undisturbed), 1–4 (intermediately disturbed), 5 (press disturbed). In: sludge inoculum (day 0, n= 4). Each panel represents a
sampling day, red diamonds display mean values. The box bounds the IQR divided by the median, and Tukey-style whiskers extend to a
maximum of 1.5 times the IQR beyond the box. Characters above boxes display Games-Howell post hoc grouping (Padj < 0.05). Welch’s ANOVA
P-values adjusted at 5% FDR shown within panels. Correlations of B carbon removal, C sludge settleability, and D nitrogen removal, vs. NTI
from bacterial ASV data across all frequency levels and time points evaluated in this study (m= 184). Kendall correlation τ- and adjusted P-
values are indicated within the panels. Blue line represents locally estimated scatterplot smoothing regression (loess) with confidence interval
in dark-gray shading. Shaded in gray is the zone of significant stochastic phylogenetic dispersion, |NTI | < 2. Red ellipse and τ- and P-value in
panel D indicate data at initial stages of succession (d0 to d21). Note the inverted axis for sludge settleability, as it increases with decreasing
SVI values, and for NTI, since values closer to zero indicate a higher relative contribution of stochastic assembly.
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specialized bacteria (ammonia oxidizers), significantly differed
across disturbance frequencies (TKN removal Welch’s ANOVA Padj
< 0.001) with the highest nitrogen removal at intermediately
disturbed levels during the first 21 days. From d28 onwards, L0 to
L4 reactors had similarly high average nitrogen removal (>0.9,
fraction of total), and only the press disturbed reactors (L5)
continued to have lower nitrogen removal (<0.7, fraction of total)
than that of the initial sludge inoculum (0.8, fraction of total).
Effluent values of TKN, ammonia, nitrite and nitrate showed that
TKN removal occurred via nitrification (Supplementary Fig. 8).
Carbon removal had an overall significant positive Kendall

correlation with α-diversity indices (τ= 0.21–0.25, Padj < 0.001),
whereas sludge settleability and nitrogen removal showed non-
significant correlations with α-diversity across the study (Supple-
mentary Fig. 9). Correlations between general functions of carbon
removal and sludge settleability and both ΝΤΙ and ΝΤΙW were
positive and significant across all time points and disturbance
frequencies of the study (Fig. 3B, C and Supplementary Fig. 9),
implying higher performance of these functions under stronger
deterministic assembly mechanisms. Nitrogen removal had
negative and significant correlations with ΝΤΙ and ΝΤΙW
when only the first 21 days of the study were considered (ΝΤΙ
τd0-21=−0.39, Padj < 0.001, Fig. 3D; ΝΤΙW τd0-21=−0.46, Padj <
0.001, Supplementary Fig. 10), suggesting a better performance of
this function under higher stochasticity at intermediate distur-
bance frequencies during the first three weeks of the study.

DISCUSSION
In this study, we found stochastic assembly processes to be more
important at intermediate disturbance frequencies where the
highest α-diversity was also observed, together with high
β-diversity dispersion across within-treatment replicates as
predicted by the ISH9. Furthermore, we showed that a peak in
the relative contribution of stochasticity preceded a peak in
α-diversity across a disturbance frequency range. These findings
highlight the utility of the ISH to gain a mechanistic understanding
of disturbance–diversity relationships by incorporating the role of
assembly mechanisms (Fig. 4). Moreover, we observed that carbon
removal and microbial aggregate settleability (general functions)
correlated with higher deterministic processes, while higher
stochasticity correlated with higher nitrogen removal (a specia-
lized function) only during initial successional stages at inter-
mediate disturbance frequencies. The function-assembly
correlations observed in this study suggest that the ISH could
also improve our understanding of disturbance–diversity–function
relationships, but more research is needed to confirm this.
In our earlier work the presence of 3-chloroaniline had served as

a disturbance9, since chlororanilines are toxic compounds known
to inhibit nitrification and carbon removal in sludge bioreactors43,
affecting both bacterial community structure and assembly26.
Here, we expanded on it by doubling the organic loading as a
different type of disturbance for a distinct microbial community
inoculum, a relevant scenario given the multidimensional nature
of disturbance8. Indeed, a doubling of organic loading was shown
to have a negative effect on nitrification37, while also affecting the

Fig. 4 Conceptual representation of the intermediate stochasticity hypothesis (ISH) to describe patterns of assembly and structure along
a disturbance frequency gradient, for communities in secondary succession (starting at time point t0). (1) Initially, stochastic assembly
mechanisms (e.g., priority effects, historical contingency and legacy effects) are favored at intermediate disturbance frequencies, promoting
re-colonization processes from the low-abundance fraction of the community or seed bank. (2) Subsequently, these are followed by changes
in the community structure that manifest as a peak of α-diversity at intermediate levels of disturbance. (3) Over time, three separated clusters
of β-diversity ordination may form comprising low, intermediate, and high levels of the disturbance range (in this schematic, n= 3).
Furthermore, stochasticity operating at intermediate disturbance levels may lead to variable within-treatment (4a) β-diversity, visualized as
partially overlapping cluster similarity (dashed ovals), and (4b) community function, displayed as wider confidence intervals (shaded area
between dashed lines). (5) The output of some functions (in this study, nitrogen removal) could be higher at intermediate disturbance
frequencies during initial successional stages due to higher stochastic assembly. Additionally, the overall relative contribution of stochasticity
decreases with succession time (see top row of subpanels).
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assembly and structure of bacterial communities in sludge
bioreactors27. Further, the use of taxonomic and phylogenetic
diversity metrics, in both unweighted and abundance-weighted
forms, allowed us to cover a broader aspect of α-diversity.
Taxonomic resolution was also improved by the use of amplicon
sequence variants (ASVs) compared to operational taxonomic unit
(OTU) clustering44 with about one to two orders of magnitude
fewer spurious units45, allowing for a better estimation of
unweighted α-diversity (i.e., taxa richness). We further verified
that the observed patterns occurred independently of data
rarefaction, given the lack of consensus about this practice46

and the fact that it is known to affect (mainly unweighted)
estimations of α-diversity47. Assembly processes were tracked over
time using a phylogenetic null modeling methodology, which has
been used in various types of microbial community studies25,42,48.
Additionally, general and specific functions were evaluated
against structure and assembly. All these enhancements allowed
us to test the ISH, while also gaining new insights into the role of
assembly processes behind disturbance-induced changes in
community structure and function over time.
Our experimental system produced a series of secondary

succession scenarios in which bacterial communities had to adapt
to various changes due to the transition from a full-scale system to
a bioreactor microcosm configuration, along with different
frequencies of disturbance. These changes included bioreactor
type (continuous to batch), feed type (natural to synthetic
wastewater), volume (full-scale to microcosm), cell residence time
(low to high), and immigration (open to closed system),
comparable to what we described in a prior study49. This shift
was an initial severe disturbance and explains the initial temporal
decrease in α-diversity at all disturbance frequency levels
compared to the sludge inoculum. However, time of succession
led to a significant hump-backed pattern of α-diversity for all
composition- and abundance-based indices employed in the
study, which occurred after 21 days for 2D, 28 days for 1D, PD and
PDW, and 35 days for 0D. Thus, the observed dynamics in
community structure were stronger in terms of relative abun-
dances than richness (2D, 1D vs. 0D), as well as at the phylogenetic
vs. taxonomic level (PD vs. 0D). The appearance of higher
phylogenetic α-diversity at intermediate levels of disturbance for
both unweighted (PD) and abundance-weighed (PDW) indices
suggests that considering evolutionary relationships among
organisms50 could also aid in assessing the effect of varying
disturbances on community structure under succession. In our
study, disturbance promoted the co-occurrence of organisms with
large phylogenetic distances, suggesting that additional niches
were created at intermediate disturbance frequencies that were
occupied by ecologically different species, thus reducing compe-
titive exclusion. Conversely, phylogenetic clustering at undis-
turbed and press disturbed levels can be interpreted as
communities structured by environmental filtering41. Additionally,
temporal analysis of community structure in terms of β-diversity
revealed three different clusters for undisturbed, press disturbed
and intermediately disturbed reactors. Further comparison of
replicates within the same disturbance frequency level showed
higher β-diversity variability at intermediate disturbance levels,
which was coherent with prior observations in freshwater ponds51

and sludge bioreactors9 where β-diversity increased with stochas-
tic assembly. Our findings are relevant for understanding
disturbance–diversity relationships, since few studies have
reported parabolic α-diversity patterns using abundance-based
indices12. Furthermore, variations in β-diversity among ecological
communities that are subject to large and fluctuating disturbances
are believed to provide insights about the mechanisms driving
changes in α-diversity and function52.
We observed similar trends of phylogenetic dispersion within a

single community (NTI) and the phylogenetic turnover between
communities of the same treatment level (βNTI), compared to the

null expectation. Stochasticity was more important during initial
successional stages of the study, with initial NTI and βNTI values
closer to zero (i.e., closer to the null expectation of the model).
Relatively, the overall strength of deterministic processes
increased with time, with higher |NTI | and | βNTI | values. Similarly,
late succession stages were shown to be governed by determi-
nistic processes in plant forest53 and microbial groundwater
communities54. Furthermore, α-diversity-based temporal assembly
dynamics revealed a parabolic pattern in ΝΤΙ and ΝΤΙW, through
the disturbance frequency gradient, which was evident after 14
and 7 days of the study, respectively, before the appearance of
similar parabolic patterns across various α-diversity indices. This
preceding pattern is considered here as a strong indicator of
assembly mechanisms operating to shape community structure. It
is, therefore, plausible that stochastic assembly mechanisms were
first favored at intermediate disturbance frequencies, prompting
subsequent changes of community structure that resulted in the
observed higher α-diversity as the ISH proposes9.
Our observations are also coherent with the idea that secondary

succession is community assembly in action55. The disturbance
range in this study produced different secondary succession
scenarios, with communities in the sludge of each bioreactor likely
experiencing different re-colonization processes from their
bacterial seed bank (i.e., low-abundance or rare taxa), via
stochastic processes such as priority effects29 followed by
historical contingency56 and legacy effects3. Importantly, external
dispersal processes57 (i.e., bacterial immigration) could not
influence community assembly since bioreactors in this study
were operated as closed systems. Indeed, microbial seed banks
are thought to contribute to the maintenance of microbial
diversity58 and have been described as essential for under-
standing temporal community changes59. Further, stochastic
assembly processes were shown to be more preponderant within
the rare fraction of the microbial community27. Nonetheless, other
processes might also be promoting stochastic assembly at
intermediate disturbance frequencies, like ecological drift48 and
feedback mechanisms linked to density dependence and species
interactions60. Hence, a disturbance frequency gradient can not
only result in nonlinearities for growth rates that would affect the
outcome of competition8,18, it could also alter the relative
contribution of stochastic and deterministic mechanisms of
community assembly that underlie changes in community
structure9. Furthermore, our results showed that, over a range of
disturbance frequencies, assessing temporal community assembly
patterns during succession can act as a sentinel of upcoming
patterns of diversity.
Stochasticity was positively correlated with better nitrogen (as

TKN) removal via nitrification at intermediate disturbance
frequencies during the initial successional stages where stochastic
processes were also generally prevalent. Nitrification functions are
carried out by specific taxa (i.e., nitrifiers), which are slow growers,
nutritionally inflexible, sensitive to inhibitors and less phylogen-
etically diverse than many other key functional guilds61. Yet, the
recruitment of nitrifying organisms from the microbial seed bank
was important for the recovery of nitrification, following the
removal of a long-term disturbance of altering food-to-biomass
and carbon-to-nitrogen ratios in sludge bioreactors, although
resilience varied across identically treated replicates37. Also, partial
recovery of nitrification in sludge bioreactors was observed at
intermediate frequencies of 3-chloroaniline disturbance, where
stochastic assembly processes and within-treatment variability
were also higher9. Conversely, general functions of carbon
removal and settleability performed better when deterministic
processes were stronger (higher | NTI | values). Carbon removal
was better when α-diversity was lower, similarly to what was
reported previously using a different xenobiotic disturbance in
bioreactors9. Hence, a more diverse community does not
necessarily translate into better ecosystem functions9,62. Our data
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suggest that general functions thrive during stronger determinis-
tic processes, while specialized functions might be favored by
stochasticity at initial successional stages. A limitation of this study
was the use of only one specialized and two general functions.
Future studies assessing the effect of fluctuating disturbances on
community diversity and function should also consider the type of
function (e.g., specific or general), the stage of succession after the
disturbance, and the underlying assembly mechanisms.
The observed patterns in community assembly, structure and

function were time dependent. The ISH successional pattern
appears to be transient, as assembly mechanisms across
disturbance frequency levels were not significantly different
towards the end of the study on d42, while α-diversity continued
to display a significant parabolic pattern. If the gradient of
disturbance frequencies is maintained over time, then the peak in
α-diversity at intermediate levels might continue during the late
successional stages, but this remains to be investigated. None-
theless, most relevant bacteria in activated sludge have genera-
tion times of less than 24 h. Hence, the 42-day length of this study
represented around tens to hundreds of generations of many
different taxa, allowing the detection of significant patterns in
assembly and structure.
Further research in a variety of ecosystems is needed to validate

the broad applicability of the ISH, particularly considering that
disturbance can vary in type, frequency, intensity, driver and
impact8,34. A diversity disturbance relationship can be affected by
the interaction between disturbance frequency and intensity8.
This was shown in microcosm studies involving genetically distinct
morphotypes of Pseudomonas fluorescens cultures63, freshwater
bacterial communities64, and soil-derived bacterial communities in
chemostats65, using biomass removal63,64 and dilution64,65 as
disturbances. Although none of these studies quantified commu-
nity assembly mechanisms, a higher variability of bacterial
community structure at intermediate disturbance treatments
was reported for the case of freshwater microcosms64, suggesting
that this could be related to a transition to stochastic community
assembly, in accordance with the ISH. For activated sludge
microcosms, the effect of different intensities (i.e., concentrations)
of 3-chloroaniline9 or double organic loading addition (this study)
to the bioreactors under a gradient of feeding frequencies remains
to be investigated. Moreover, the definition of a given disturbance
range is arbitrary, yet non-trivial20, and could obscure the pattern
predicted by the ISH.
Studies on different scales are also necessary since ecological

patterns can vary across spatial, temporal and phylogenetic
scales3, while the effect of dispersal processes could also be
evaluated within open systems. Although a similar study on
communities of larger organisms would require considerably
larger scales of space and time, some modeling approaches
suggest that ISH-like patterns (Fig. 4) could emerge in community
assembly and structure under varying disturbances. For example,
forest fire modeling showed that intermediate lightning strike
frequencies yielded higher species diversity, but also resulted in a
greater role for stochasticity in driving the system on diverse
trajectories66. Likewise, a conceptual model developed for plants
and animals suggested that high variation in resource abundance
and location in space and time, which could be caused by
disturbance, would favor diversity via adaptation through novelty
and innovation (i.e., stochasticity) generation67.
The predictions of the ISH could help to identify cases when

disturbance-induced stochastic assembly promotes alternative
states of community structure that compromise or enhance
ecosystem function, to design mitigation or intensification
strategies. Furthermore, it could be used to promote community
resistance and resilience to future disturbances via increased
α-diversity and functional-gene diversity. Alternatively, this
theoretical framework could help in the design of functionally
resilient communities that do not occur naturally, through the

stochastic mechanisms that are initially elicited at intermediate
frequencies of disturbance and provide an advantage to rare or
low-abundance taxa. Therefore, we posit that the ISH may provide
a general understanding of disturbance-induced changes in
community structure and function during succession, by integrat-
ing the influence of the underlying assembly processes over time.

MATERIALS AND METHODS
Experimental design and function analyses
We employed 30 sequencing batch bioreactors at a microcosm scale (25-
mL working volume), inoculated with activated sludge from a full-scale
wastewater treatment plant in Singapore and operated for 42 days at 30 °C
in an incubator shaker. The daily complex synthetic feeding regime
included double organic loading at varying disturbance frequencies. Six
levels of disturbance were set in quintuplicate independent reactors
(n= 5), which received double organic loading either never (undisturbed),
every 8, 6, 4, or 2 days (intermediately disturbed), or every day (press
disturbed) (Supplementary Fig. 11). Level numbers were assigned from 0 to
5 (0 for no disturbance, 1 to 5 for low to high disturbance frequency).
Disturbance frequency was further calculated from the rate of high organic
loading at each disturbance level resulting in values of 0,1/8,1/6,1/4,1/2, and
1. The number of double organic loading events at each disturbance
frequency level (i.e., disturbance incidence) during the 42 days of the study
was 0, 6, 8, 11, 22, and 42 (Supplementary Fig. 11). Ecosystem function, in
the form of process performance parameters at the end of a cycle, was
measured weekly in accordance with Standard Methods68 where appro-
priate, and targeted the removal of soluble COD and TKN from the mixed
liquor after feeding. COD (Standard Methods 5220 D) and nitrogen species
(ammonium, nitrite, and nitrate ions) were measured using spectro-
photometric tests (Hach) and ion chromatography (Standard Methods
4500-NH3 for ammonium; 4110 B for nitrate and nitrite). The COD
measured was adjusted by subtracting the contribution of nitrite on the
basis of 1.1 g COD/g NO2

−-N to correct for nitrite interference. Total
nitrogen (TN) was measured using a TOC-L analyser (Shimadzu) and used
to estimate TKN content (TKN= TN –NO2

−-N - NO3
−-N). Effluent samples

were filtered through a 0.2-μm pore size filter and the filtrate was stored at
4 °C for less than 1 week prior to chemical analyses. Sludge settling
capacity was measured via the SVI (mL/g), considering 30min of settling
time. Concentrations in the mixed liquor of the bioreactors after feeding
(i.e., beginning of a new cycle) were regularly 305.8 (±7.4) mg COD/L and
45.6 (±0.8) mg TKN/L, or 594.7 (±18.6) mg COD/L and 46.1 (±0.2) mg TKN/L
when double organic loading occurred. A food-to-biomass ratio (F:M)
control approach was used as in Santillan et al.37, for which biomass was
measured weekly as total suspended solids (TSS) after which sludge
wastage was done to target a TSS of 1500mg/L. The latter resulted in
average solids residence time (SRT) values of 30, 26, 23, 22, 19, and 15 d, for
disturbance levels from 0 to 5, respectively. Note that these SRT values are
well above the doubling times of relevant bacteria in activated sludge69.

Sludge inoculum collection and experiment setup
Sludge inoculum was collected from one of the activated sludge tanks
of a water reclamation plant in Singapore, with a Modified Ludzack-Ettinger
(MLE) process configuration. Operation parameters were: Q≈ 200,000m3/day,
T≈ 30 °C, pH ≈ 6.7, total suspended solids (TSS) ≈ 1500mg/L, hydraulic
residence time (HRT) ≈ 8–12 h, and solids residence time (SRT) ≈ 5–6 day.
Typical influent concentrations were: total Kjeldahl nitrogen (TKN) ≈ 49mg/L
and total chemical oxygen demand (COD) ≈ 320mg/L. The plant receives a
mix of residential, commercial and industrial wastewater as its influent,
operating continuously at C:N≈ 6.5mg COD/mg TKN and F:M≈ 0.2–0.3mg
COD/mgTSS/day. It had a removal efficiency of around 80% for N and 90% for
COD. On the day the sludge inoculum was collected, the average (±s.d.m. for
n= 4) soluble influent concentrations to the secondary treatment were (in
units of mg/L): COD= 220.7 ± 2.9, NH4

+-N= 37.4 ± 0.8, TKN= 44.6 ± 0.4,
NO2

−-N= 0.00 ± 0.00, NO3
−-N= 0.03 ± 0.00, PO4

3−-P= 4.81 ± 0.02. Likewise,
the soluble effluent concentrations from the secondary treatment were (in
units of mg/L): COD= 34.3 ± 2.1, NH4

+-N= 6.4 ± 0.1, TKN= 8.8 ± 0.1,
NO2

−-N= 0.01 ± 0.00, NO3
−-N= 0.03 ± 0.00, PO4

3−-P= 0.25 ± 0.04. With
these values we estimated an influent COD removal of 0.84 ± 0.01 and an
influent TKN removal of 0.80 ± 0.00. Activated sludge was collected in a 20-L
container and immediately transported to the lab. The SVI of the inoculum
sludge was 108.9 ± 2.2mL/g, considering 30min of settling time. The
suspension was manually mixed by shaking the closed container thoroughly
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before transferring half of it to a 10-L vessel that was stirred using a magnetic
stir plate to ensure homogeneity. Samples of 25mL were transferred to thirty
50-mL tubes (Eppendorf), which served as sequencing batch reactors (SBR) in
a microcosm setup. Tubes were numbered from 1 to 30 and the experimental
units were randomly assigned. About 30min of settling time was allowed and
12.5mL of supernatant was removed and replaced with 12.5mL of synthetic
wastewater with or without double organic loading as described below. On
the first day a mix of synthetic wastewater with double organic loading was
added to reactors for levels 1 to 5, while level 0 reactors received regular
synthetic wastewater. All reactors were capped and incubated until the
following day in an incubator shaker at 30 °C, the prevailing water
temperature for wastewater treatment plants in Singapore. After each cycle
(24 h) all the tubes were removed from the incubator and allowed to settle for
30min, after which 12.5mL of “effluent” supernatant liquid was removed and
replaced aseptically with 12.5mL of fresh synthetic medium, resulting in a 48-
h HRT.

Bioreactor feeding and complex synthetic wastewater
preparation
The composition of the regular synthetic wastewater in the bioreactor feed
was adapted from Santillan et al.37. It contained the following compounds,
expressed in mg/L in mixed liquor in each reactor right after feeding: yeast
extract (19.8), soy peptone (18.4), meat peptone (26.3), casein peptone
(27.7), sodium acetate anhydrous (119.9), dextrose anhydrous (95.9), urea
(37.7), ammonium bicarbonate (33.9), ammonium chloride (63.7), sodium
dihydrogen phosphate monohydrate (27.3), sodium phosphate dibasic
dihydrate (4.9), calcium chloride dihydrate (50.0), magnesium sulfate
heptahydrate (112.5), and sodium bicarbonate (180), which was added to
replace the alkalinity consumed during nitrification. The medium also
contained 0.25mL/L of a trace element stock, which contained (g/L) citric
acid monohydrate (5), EDTA acid disodium salt dihydrate (1.2), hippuric
acid (4), sodium molybdate dihydrate (0.24), potassium iodide (0.24),
sodium tungstate dihydrate (0.24), boric acid (1), cobalt(II) chloride
hexahydrate (0.24), copper(II) sulfate pentahydrate (0.48), manganese(II)
chloride tetrahydrate (0.96), nickel(II) chloride hexahydrate (0.24), nitrilo-
triacetic acid trisodium salt monohydrate (2.88), iron(III) chloride hexahy-
drate (12), zinc sulfate heptahydrate (1.2).
The above values were used to prepare batches of 2-L bottles of sterile

media, a total of six to be used as regular bioreactor feed and three for
double organic loading feeding. Average feed concentrations of 305.8
(±7.4) mg COD/L and 45.6 (±0.8) mg TKN/L in the mixed liquor after
feeding (i.e., beginning of a new cycle) for reactors. Reactors under double
organic loading received double the amount of yeast extract (39.5), soy
peptone (36.9), meat peptone (52.7), casein peptone (55.3), sodium acetate
anhydrous (239.7), and dextrose anhydrous (191.8), as well as less urea
(27.5), ammonium bicarbonate (24.7), and ammonium chloride (46.5) to
compensate for the increase in organic TKN. This resulted in average feed
concentrations of 594.7 (±18.6) mg COD/L and 46.1 (±0.2) mg TKN/L in the
mixed liquor after feeding, when applying double organic loading.
Phosphate addition targeted a concentration in mixed liquor of 7.45
(±0.8) mg P/L to obtain a N:P of around 6. The synthetic medium to be
used for the whole study was prepared on the same day and filtered
through a 0.2-μm pore size filter to avoid contamination. The filtrate was
stored at 4 °C for the duration of the study and handled in aseptic
conditions.

DNA extractions
Sludge samples of 2 mL were collected on the initial day of the study (four
samples, taken at random from the inoculum mix) and weekly from each
reactor afterwards (180 samples), and stored at −80 °C for DNA extraction.
Genomic DNA was extracted from about 500 μL of sludge using the
FastDNA Spin Kit for Soil and the FastPrep Instrument (MP Biomedicals)
with modifications to the manufacturer’s protocol to increase DNA yield49.
The first modification involved performing four lysis cycles in the FastPrep
instrument instead of one, with two min of rest in between each cycle,
during which the samples were placed on ice. The second modification
involved eluting DNA from the spin column using nuclease-free water that
had been pre-heated to 55 °C, followed by incubation of the columns in
elution water at 55 °C for 5 min before the final centrifugation. Extracted
DNA was quantified using both NanoDrop 2000c and Qubit 3.0
fluorometer (both ThermoFisher Scientific), and purified using the
Genomic DNA Clean & Concentrator kit (Zymo Research) following the
protocol from the manufacturer.

16S rRNA gene metabarcoding and reads processing
Bacterial 16S rRNA metabarcoding was done in two steps37. For the first
PCR stage, each reaction (25 μL) contained 12.5 μL of HiFi Hotstart
Readymix (Kapa Biosystems), 9.5 μL of nuclease-free water, 0.5 μL (each)
of forward and reverse primers (10 μM) and 2 μL of DNA template (6 ng/
μL). Primer set 341f/785r targeted the V3-V4 variable regions of the 16S
rRNA gene70. Thermocycler settings were: Initial denaturation at 95 °C for
2 min, 30 cycles of 95 °C for 30 s, 58 °C for 15 s, 72 °C for 30 s, and final
elongation at 72 °C for 2 min. PCR reactions were all run in duplicate and
pooled subsequently. Amplicon libraries were purified using the Agencourt
AMpure XP bead protocol (Beckmann Coulter). Library concentration was
measured with Qubit 3.0 fluorometer (Thermo Fisher Scientific) and quality
validated with a Tapestation 2200 (Agilent). The second stage PCR
(Indexing PCR) was performed according to the recommendations in
Illumina’s ‘16S Metagenomic Sequencing Library Preparation’ application
note. This step uses a limited 8-cycle PCR to complete the Illumina
sequencing adapters and add dual-index barcodes to the amplicon target.
Five microliters of the intermediate PCR product from the first stage were
used as template for the indexing PCR and samples were amplified with 8
PCR cycles. Nextera XT v2 indices were used for dual-index barcoding to
allow pooling of the amplicon targets for sequencing. Finished amplicon
libraries were quantitated using QuantiFluor dsDNA assay (Promega) and
the average library size was determined on a Tapestation 4200 (Agilent).
Library concentrations were then normalized to 4 nM and validated by
qPCR on a QuantStudio-3 system (Applied Biosystems), using the Kapa
library quantification kit for Illumina platforms (Kapa Biosystems). The
libraries were then pooled at equimolar concentrations and sequenced on
an Illumina MiSeq platform (v.3) with 20% PhiX spike-in and at a read-
length of 300 bp paired-end read-length. Sequencing was done in-house
at SCELSE’s core sequencing facility.
Sequenced sample libraries were processed with the dada2 (v.1.3.3)

R-package45, allowing inference of ASVs44. Illumina adaptors and PCR
primers were trimmed prior to quality filtering. Sequences were truncated
after 280 and 255 nucleotides for forward and reverse reads, respectively.
After truncation, reads with expected error rates higher than 3 and 5 for
forward and reverse reads, respectively, were removed. After filtering, error
rate learning, ASV inference and denoising, reads were merged with a
minimum overlap of 20 bp. Chimeric sequences (0.17% on average) were
identified and removed. For a total of 184 samples, an average of 18,086
reads were kept per sample after processing, representing 47% of the
average forward input reads. Taxonomy was assigned using the SILVA
database (v.132)71. Diversity and assembly analyses were carried on both
unrarefied and rarefied datasets. To generate the rarefied dataset, samples
were rarefied to the lowest number of reads (5089) in a sample after
processing (Supplementary Fig. 12).

Bacterial community structure analyses and statistics
All reported P-values for statistical tests in this study were corrected for
multiple comparisons using a false-discovery rate (FDR) of 5%. Hill diversity
indices39 were used to quantify taxonomic α-diversity as described
elsewhere9. Phylogenetic α-diversity was assessed through Faith’s phylo-
genetic distance40 (PD) including its abundance-weighted version (PDW).
Community structure in terms of taxonomic β-diversity was evaluated
through: (i) canonical analysis of principal coordinates (CAP) ordination
including ellipses of 60% group-average cluster similarity; (ii) misclassifica-
tion error analysis for each disturbance frequency level over the six time
points sampled, via the leave-one-out allocation of observations to groups
from CAP; and (iii) multivariate tests of permutational analysis of variance
(PERMANOVA) and permutational analysis of dispersion (PERMDISP); all
from Bray–Curtis dissimilarity matrixes at each time point sampled (30
bioreactors, n= 5), constructed from square-root transformed abundance
data using PRIMER (v.7)72. Phylogenetic β-diversity was assessed via non-
metric multidimensional (NMDS) ordination of a weighted Unifrac distance
matrix, constructed from Hellinger transformed abundance data of all
184 samples using the phyloseq73 R-package (v.1.30.0) in R. The ggplot2
package (v.3.3.2) in R74 was used for local polynomial regression fitting via
the loess function (including 95% confidence intervals) and box plots
construction (using Tukey-style whiskers). The ggdist R-package (v.2.4.1)
was used to make the βNTI raincloud plot. Univariate testing through
Welch’s analysis of variance (ANOVA) with Games-Howell post hoc
grouping was done using the rstatix75 (v.0.6.0) R-package. Kendall
correlations were done using the ggpubr76 package (v.0.4.0) in R. Heat
maps for bacterial phyla relative abundances were constructed using the
ampvis277 package (v.2.6.2) in R.
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Bacterial community assembly analyses and statistics
The effect of underlying assembly mechanisms was assessed using
phylogenetic-based null modeling approaches on both α- and β-diversity.
First, the nearest taxon index (NTI)41 was calculated for each community to
assess whether α-diversity was more or less structured than would be
expected by random chance. The model uses the mean nearest taxon
distance (MNTD)41, which quantifies the phylogenetic distance between
each ASV in one community, as a measure of the clustering of closely
related ASVs. Phylogenetic relatedness of ASVs was characterized by
multiple-alignment of ASV sequences using decipher (v.2.14.0) R-package78.
The phylogenetic tree was then constructed and a GTR+ G+ I maximum
likelihood tree was fitted using the phangorn (v.2.5.5) R-package79. To
quantify the degree to which MNTD deviates from a null model
expectation, ASVs and abundances were shuffled across the tips of the
phylogenetic tree. After shuffling, MNTD was recalculated to obtain a null
value, and repeating the shuffling 1000 times provided a null distribution.
Then, NTI was calculated as the difference between the mean of the null
distribution and the observed MNTD in units of standard deviation41. The
closer to zero a NTI value is, the closer to the null expectation (i.e., higher
stochasticity) is the phylogenetic dispersion of a given community. Positive
NTI values suggest phylogenetic clustering while negative values indicate
phylogenetic overdispersion. Second, β-diversity null modeling via the
β-nearest taxon index (βNTI) was done to investigate if the phylogenetic
turnover across two samples was significantly more or less similar than
would be expected by just random chance42. The model uses the β-mean
nearest taxon distance (βMNTD), which quantifies the phylogenetic
distance between pairs of ASVs drawn from two distinct communities.
To quantify the degree to which βMNTD deviates from a null model
expectation, ASVs and abundances were shuffled across the tips of the
phylogenetic tree. After shuffling, βMNTD was recalculated to obtain a null
value, and repeating the shuffling 1,000 times provided a null distribution.
Then, βNTI was calculated as the difference between the mean of the null
distribution and the observed βMNTD in units of standard deviation42. The
closer to zero a βNTI value is, the closer to the null expectation (i.e., higher
stochasticity) is the phylogenetic turnover between two communities. By
convention, a value of | βNTI | > 2 indicates that the observed turnover is
significantly deterministic, while | βNTI | < 2 indicates dominance of sto-
chastic assembly processes25. Similarly, here we consider that |NTI | < 2
indicates dominance of stochastic phylogenetic clustering. Both
unweighted and abundance-weighted NTI and βNTI values were
calculated. These analyses were done using the metagMisc80 (v.0.0.4) and
picante81 (v.1.8.2) R-packages. To test for a phylogenetic signal across
phylogenetic distances, Mantel correlograms were constructed using the
vegan82 (v.2.5.6) R-package, relating between-ASV niche differences to
between-ASV phylogenetic distances across a given phylogenetic distance,
following the methodology by Dini-Andreote et al.25. Environmental niches
were constructed from bioreactor effluent process data (COD removal, TKN
removal and SVI). Values for each bioreactor effluent process variable were
normalized as standard normal deviates. For each ASV we calculated its
relative-abundance-weighted mean value for each bioreactor effluent
process variable. The resulting values estimate the magnitude of each
bioreactor effluent process variable at which a given ASV is most
abundant, which is interpreted as a proxy for the level of each bioreactor
effluent process variable at which a given ASV has its highest fitness25,42

(i.e., the ASV’s environmental niche with respect to a given bioreactor
effluent process variable). After estimating environmental niches for all
ASVs with respect to all bioreactor effluent process variables considered, a
matrix containing these estimates was generated with ASVs as rows and
bioreactor effluent process variables as columns. Subsequently, among-
ASV differences in environmental optima were then quantified as
Euclidean distances simultaneously using all bioreactor effluent process
axes. Thus, the Mantel correlogram involved two distance matrices having
ASVs as both rows and columns, one matrix containing between-ASV
differences in environmental niches, and the other matrix containing
between-ASV phylogenetic distances. Phylogenetic distances were then
quantified for 50 phylogenetic distance bins, while the significance of
Pearson correlations was assessed using 1000 permutations and FDR (5%)
correction.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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