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Abstract

BACKGROUND: Automated segmentation using convolutional neural networks (CNNs) have 

been developed using 4D flow MRI. To broaden usability for congenital heart disease 

(CHD), training with multi-institution data is necessary. However, the performance impact of 

heterogeneous multi-site and multi-vendor data on CNNs is unclear.

PURPOSE: To investigate multi-site CNN segmentation of 4D flow MRI for pediatric blood flow 

measurement.

STUDY TYPE: Retrospective.

POPULATION: 174 subjects across two sites (female:46%; N=38 healthy controls, N=136 CHD 

patients). Participants from site 1 (N=100), site 2 (N=74) and both sites (N=174) were divided into 

subgroups to conduct 10-fold cross validation (10% for testing, 90% for training).

FIELD STRENGTH/SEQUENCE: 3T/1.5T; retrospectively gated gradient recalled echo-based 

4D flow MRI
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ASSESSMENT: Accuracy of the 3D CNN segmentations trained on data from single site (single-

site CNNs) and data across both sites (multi-site CNN) were evaluated by geometrical similarity 

(Dice score, human segmentation as ground truth) and net flow quantification at the ascending 

aorta (Qs), main pulmonary artery (Qp), and their balance (Qp/Qs), between human observers, 

single-site and multi-site CNNs.

STATISTICAL TESTS: Kruskal-Wallis test, Wilcoxon rank-sum test, and Bland-Altman 

analysis. A P-value <0.05 was considered statistically significant.

RESULTS: No difference existed between single-site and multi-site CNNs for geometrical 

similarity in the aorta by Dice score (site 1: 0.916 vs. 0.915, P=0.55; site 2: 0.906 vs. 0.904, 

P=0.69) and for the pulmonary arteries (site 1: 0.894 vs. 0.895, P=0.64; site 2: 0.870 vs. 0.869, 

P=0.96). Qs site-1 medians were 51.0–51.3ml/cycle (P=0.81) and site-2 medians were 66.7–

69.4ml/cycle (P=0.84). Qp site-1 medians were 46.8–48.0ml/cycle (P=0.97) and site-2 medians 

were 76.0–77.4ml/cycle (P=0.98). Qp/Qs site-1 medians were 0.87–0.88 (P=0.97) and site-2 

medians were 1.01–1.03 (P=0.43). Bland-Altman analysis for flow quantification found equivalent 

performance.

DATA CONCLUSION: Multi-site CNN-based segmentation and blood flow measurement are 

feasible for pediatric 4D flow MRI and maintain performance of single-site CNNs.

Keywords

deep learning; 4D flow; congenital heart diseases; pediatrics

INTRODUCTION

Pediatric time-resolved 3D phase-contrast MRI (4D flow MRI) is a promising tool to 

quantify complex flow hemodynamics in the presence of congenital heart disease (CHD) (1–

3). 4D flow MRI enables a comprehensive assessment of proximal cardiovascular function, 

with the flexibility to perform post-hoc hemodynamic analysis, even in the presence of 

abnormal CHD anatomy (4–7). While the approach has the potential to reduce time 

via simplified planning, accurate 4D flow measurements are dependent on careful vessel 

identification and segmentation during post-processing. Currently, most 3D segmentation 

approaches need human interaction to some extent and thus lengthy processing times to 

identify structures, to manually segment vessels of interest, and to quantify flow metrics (for 

the segmentation process, studies have reported at least 10 minutes for the aorta alone (8)). 

This is further complicated in pediatric patients with CHD, who can present with highly 

complex cardiac and great vessel anatomy (9). The added complexity further increases 

processing time and requires specialized knowledge of CHD (10).

A recent study utilizing a deep learning-based approach has enabled fully automated and 

fast segmentation of the aorta in adult 4D flow MRI exams with performance similar to 

human observers (8). However, this initial study, which employed a convolutional neural 

network (CNN), has been limited to a single site and single vendor platform, and was only 

capable of identifying a single label or vascular territory (i.e., the thoracic aorta). Given that 

CHDs involve multiple vascular territories and abnormal communication between systemic 

and pulmonary circulation, segmentation of both the aorta and pulmonary arteries (PAs) 
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is needed to assess the existence or contribution of shunt flow (which is quantified by 

pulmonary to systemic flow ratio) (4).

For CNNs to achieve high performance across a variety of CHD patients, training data 

with a wide range of pathologies such as Tetralogy of Fallot (TOF) and hypoplastic left 

heart syndrome (HLHS), including rare CHDs, is required. Combining datasets across 

institutions is thus necessary, especially in the pediatric setting. This need for multiple 

sites introduces additional complexities as 4D flow data will vary across institutions due to 

practice preferences, MRI vendors, standard acquisition parameters, field of view (FOV), 

and varying image quality and contrast.

The aim of this study was to investigate the segmentation performance of a multi-label U-net 

CNN trained using multi-institutional data obtained on two different vendor platforms. We 

hypothesized that the multi-site CNN will (1) achieve human-level segmentation accuracy, 

(2) segment the proximal pulmonary and systemic vasculature with equivalent performance 

to single site data, and (3) outperform the single-site CNN for cases with complex CHD.

MATERIALS AND METHODS

Study Cohort

This Health Insurance Portability and Accountability Act (HIPAA)–compliant study was 

approved by the institutional review boards at Children’s Hospital Colorado (Aurora, CO; 

site 1) and Ann & Robert H. Lurie Children’s Hospital of Chicago (Chicago, IL; site 2). All 

patients were retrospectively enrolled with waiver of consent. A total of 174 subjects across 

a wide range of ages (range: 0.3 – 56.3, median: 15.5 years) and pathologies who underwent 

4D flow MRI from 2014 to 2020 across two pediatric heart centers were retrospectively 

included in this study. A total of 136 patients underwent standard of care cardiothoracic 

MRI: 85 from site 1 and 51 from site 2. Additionally, 38 healthy controls who underwent 

research 4D flow scans or patients who received standard of care exams and deemed 

to have no evidence of cardiovascular disease by the radiologist at each institution were 

included as healthy controls at site 1 (N=15) and site 2 (N=23). All healthy research controls 

recruited for research-only exams provided written informed consent. Patient demographics 

and frequently seen abnormalities are summarized in Table 1 and Table S1, respectively.

MRI

All patients underwent clinical cardiothoracic MRI including a retrospective ECG-gated and 

gradient recalled echo 4D flow MRI with full volumetric coverage of the heart, thoracic 

aorta, and first branch of the PAs (sagittal-oblique 3D volume). A respiratory navigator 

beam was placed on the lung-liver interface to accept data weighted to the expiration 

phase. Site 1 involved Philips scanners (Ingenia and Ingenia Elition X, Philips Healthcare, 

Best, Netherlands) and site 2 used Siemens (Aera, Siemens Medical Systems, Erlangen, 

Germany). Specifically, scans were performed using either 1.5T (N = 18; Philips Ingenia / 

74; Siemens Aera), or 3T (N=82; Philips Ingenia and Ingenia Elition X). Individual site scan 

parameters are presented in Table 1. Of note, site 1 used an acceleration factor of SENSE = 

2 in the phase encoding direction, and 1.5 in the slice direction while site 2 used GRAPPA 
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= 2, leading to narrower FOV in site 2 for acceptable scan time. Data for all subjects were 

acquired during free-breathing with respiratory navigator gating placed on the lung-liver 

interface.

Data Analysis

The data preparation, training, validation, and testing steps are illustrated in Fig. 1. All 4D 

flow data were processed by in-house MATLAB (R2019b; Mathworks, Natick, MA, USA) 

scripts to remove eddy current effects, to mask noise, and to derive phase-contrast MRA 

(PC-MRA) (11) , computed from magnitude images and phase images using the following 

equation:

PCMRA = 1
T ∑

t = 1

T
Mt V x, t

2 + V y, t
2 + V z, t

2 2
, (1)

where T is total number of cardiac time frames of the dataset; V x, t,  V y, t,  and V z, t are the 

velocity components in x, y and z directions; Mt is magnitude data. Based on the PC-MRA, 

3D segmentations of both the aorta and PAs were manually created by observers (AB, 3 

years MS human anatomy; HB, 3 years MS Bioengineering) from each institution trained 

and overseen by practicing Radiologists specializing in CMR (LPB, 15 years; CR, 19 years. 

For 3D segmentation, site 1 used 3D slicer (http://www.slicer.org), while site 2 used Mimics 

(Materialise, Leuven Belgium). Prior to segmentation, a consensus approach was determined 

to maintain consistency across the sites for the segmentations, as is depicted in Fig. 2. 

Briefly, the aorta was segmented from the aortic valve plane to the furthest visible portion 

of the abdominal aorta in the FOV. The brachiocephalic trunk, right carotid artery, and 

left subclavian arteries were segmented from the aortic arch takeoff to approximately the 

distance of one ascending aortic diameter length downstream. PA segmentation included the 

right ventricular outflow tract, main pulmonary artery (MPA), and left and right pulmonary 

arteries (LPA and RPA). The right ventricular outflow tract was transected orthogonal to 

the outflow tract axis where the tangent of the axis was vertical in the sagittal orientation. 

The RPA was segmented to the edge of the FOV while the LPA was segmented as far 

as could be visualized without exceeding the length of the RPA. The first branches of the 

RPA and LPA were included when PC-MRA contrast was sufficient. In addition, due to 

the wide variability of CHDs, case-specific criteria treatment was required. For example, 

in the presence of signal void artifact caused by stents or artificial valves, the observers 

segmented the vessel shape by inference using the proximal and distal vessel wall adjacent 

to the artifact. Additionally, the PAs were not segmented for patients who underwent the 

Fontan procedure, due to absence of a functional MPA.

Convolutional Neural Network For Multi-label Segmentation

Manual segmentations of the aorta and PA were used as the ground truth to train a modified 

version of a previously reported 3D DenseNet U-net CNN (8). The U-net (12) was modified 

to extend the capability from a segmentation of the aorta alone to a segmentation of the aorta 

and PAs (i.e., “multi-label” segmentation). The input and output of the CNN were matrices 

of the 3D PC-MRAs (input) and the labeled segmentations (output) with ‘0’ indicating 
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background, ‘1’ indicating the aorta, and 2 indicating the PAs. To allow for uniform input to 

the CNN, and due to limited GPU capacity, the input images were center cropped or padded 

to have identical dimensions of 128×96×70. Dense blocks were included which consisted 

of convolution, dropout, batch normalization and the rectified linear unit (ReLU) functions. 

3D convolution was conducted with a 3×3×3 kernel, and the channel size was set to 12. 

In each dense block, all the prior feature maps were concatenated to all subsequent layers 

to strengthen feature propagation (13). Max pooling and transposed convolution were used 

for the down-sampling and up-sampling, respectively. The final layer conducted convolution 

with a 1×1×1 kernel and output 3 feature maps, followed by a softmax function that output 

the probability of each class. The class with the largest probability per voxel was considered 

as the final segmentation. A combination of softmax-cross entropy and Dice loss was used 

as a loss function during the training. Note that here the Dice loss excludes the background 

(‘0’) label. The network was coded with Python 3.6.10 (Python Software Foundation, 

Beaverton, OR) and run with GPU version of Tensorflow 1.8.0 (Google, Mountain View, 

CA). An Intel Corei7–6700 processor with Nvidia Quadro P2000 GPU was used for all the 

training and testing.

Three separate models were trained to understand if multi-site data improved performance: 

(1) the CNN was trained by data from site 1 (n=100, site-1 CNN), (2) the CNN was 

trained by site 2 (n=74, site-2 CNN), and (3) the CNN was trained by all data (n=174, 

multi-site CNN). A 10-fold cross validation was conducted for each training to determine 

the performance of the CNN on all patients from the single-site CNNs and the multi-site 

CNN. The hyperparameters were set as follows: epoch number=200, batch size=1, learning 

rate=0.0001, and drop-out rate = 0.1.

Performance Metrics

CNN vs manual segmentation results were evaluated by geometrical similarity and accuracy 

of flow measurements. Dice score (14) was used to evaluate geometrical similarity between 

the ground truth and output from the single-site CNNs, as well as between the ground truth 

and output from the multi-site CNN.

To assess the performance of flow hemodynamic measurements obtained from the CNN 

segmentations, we quantified net flow in the ascending aorta (Qs) and MPA (Qp). For this 

purpose, three planes were semiautomatically positioned at the mid-ascending aorta and 

MPA, and flow was averaged across these three planes (Fig. 2). The averaging of multiple 

planes was used to mitigate effects of noise or flow artifacts in the original 4D flow data 

(15).

The semiautomatic plane placement process was conducted on in-house MATLAB script 

and Geom3d tool (16). This process involved the following: 1) centerlines of the aorta 

and PA were skeletonized using the manual segmentations (Fig 2), 2) a point depicting 

the mid-ascending aorta position (level of the RPA) and a position slightly downstream 

from the pulmonary valve was manually defined on each centerline, 3) two points on the 

centerline were then automatically placed distal to the manual location with equal spacing. 

The measurement planes were created at these locations orthogonal to the centerline. The 
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spacing between planes was determined based on median diameter of the aorta using the 

following equation:

spacing = Lb
D

Dref
  cm   . (2)

Here Dref is reference diameter of normal children and adolescents and was set to 2cm (17). 

Lb is the baseline spacing and was set to 1cm. D is the median aortic diameter as calculated 

from the manual 3D segmentation. To do this, the aorta or PA segmentation was converted to 

a stereolithography mesh. The intersection points between normal vectors from all faces and 

the mesh itself were then derived. The distance between each face and the intersection point 

was computed and its median was considered as D. Variable plane spacing was implemented 

to avoid using excessively large spacing for younger patients with small aortic diameters.

The exact coordinates of the specified three planes from the semiautomatic measurements 

made on the manual segmentations were then used for plane placement and flow 

measurement of CNN auto-segmentations. Note that the difference in flow measurements 

between manual and auto-segmentation comes only from difference of segmentation masks, 

since identical velocity data and measurement plane locations were used. Custom MATLAB 

code was used for this step (MATLAB, Natick, MA).

Due to the small sizes of the great vessels in younger pediatric patients, the skeletonization 

process can fail, generating unrealistic centerlines. In such cases, manual centerlines were 

drawn, and measurement planes were placed with EnSight (Ansys Inc., Canonsburg, PA). 

Based on the measured Qp and Qs, the pulmonary to systemic flow ratio (Qp/Qs) were 

computed.

To understand how the CNNs performed in the presence of different types of CHD, five sub-

cohorts were selected based on the most prevalent anatomy: normal anatomy, TOF, bicuspid 

aortic valve (BAV), Fontan circulation, and transposition of the great arteries (TGA) (Table 

1). TOF and BAV were chosen due to their high incidence in the 4D flow data set. Because 

of the abnormal physiology and vascular anatomy, TGA and Fontan subgroups were chosen 

as examples of particularly difficult cases for the CNN models.

Human Interobserver Error And Comparison To Single Site And Multi-site CNNs

To assess CNN vs. human performance, 40 subjects (20 from each site) were selected 

from the study datasets to assess inter-observer variability. The 40 patients were randomly 

chosen to match age and pathological background between sites. For these selected patients, 

a second observer from the original segmenting institution, who has at least two years of 

experience in vessel segmentation, conducted a repeat segmentation of the aorta and PA as 

observer 2 (TF from site 1; MS from site 2). Human interobserver variability was quantified 

using Dice scores and compared to the three CNN models. Dice scores were compared 

between two humans (observer 1 vs. observer 2) and between a human and the various CNN 

models (observer 1 vs. single-site CNNs; observer 1 vs. multi-site CNN).
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Statistical Analysis

Dice scores and flow quantification results were reported as median [interquartile range]. 

The Dice scores between manual segmentation and single-site CNNs, and between manual 

segmentation and the multi-site CNN were tested by Wilcoxon rank-sum tests. Three-group 

comparison such as interobserver dice scores and quantified net flows using manual 

segmentation, single-site CNN, and multi-site CNN segmentations were evaluated by 

Kruskal-Wallis tests and post-hoc tests with Bonferroni correction. In addition, Bland-

Altman analysis was conducted for the net flow measurements, and limits of agreement, 

bias, and their 95% confidence intervals (95% CI) (18) were calculated for the site-1, site-2, 

and multi-site CNNs as well as for sub-cohorts at each site. Furthermore, a difference 

in the CNN Qp and Qs measurements larger than 10ml/cycle (approximately 20% error 

when compared to the mean of the Qp and Qs manual measurements) was defined as a 

CNN “segmentation failure” and root cause was investigated. These cases were summarized, 

visually inspected, and classified into two failure modes: i.e., misidentification of a region as 

the aorta or PA, or, as an unintentional omission of a vessel region. A P-value < 0.05 was 

considered statistically significant (MATLAB R2019b, Natick MA).

RESULTS

Study Cohort

The combined data set of 174 study subjects included 38 patients with TOF, 17 with BAV, 8 

with coarctation, 7 with TGA, and 6 with Fontan circulation (5 HLHS; 1 double outlet right 

ventricle with dextrocardia and heterotaxy). Note that Fontan patients were only included in 

the site 1 data while patients with TGA were available only for site 2.

The median processing time for segmentation was 1.01 seconds. Of the 100 subjects from 

site 1, the aorta was successfully segmented for all subjects while the PAs were identified 

in 94 subjects (6 patients were identified with Fontan circulation). Both the aorta and PAs 

were segmented for all patients from site 2. One patient from site 1 was excluded from the 

flow analysis due to insufficient FOV with incomplete coverage of the entire aorta and PA. 

Another patient from site 1 was excluded due to a failed 4D flow consisting of excessive 

noise of unknown origin, thereby resulting in unrealistic flow measurements, even with 

manual segmentation. Thus, Qs and Qp were quantified for 98 and 92 subjects from site 1 

and 74 subjects from site 2.

Interobserver Comparison

The human interobserver Dice scores and CNN comparisons are shown in Table 2. In 

site-1 data, segmentations by both single-site and multi-site CNN showed significantly better 

agreement with observer 1 (ground truth) than observer 2 for both aorta and PA while 

the multi-site CNN performance exhibited similar performance compared to the single-site 

CNN (P=1 for both aorta and PA in post-hoc analysis). On the other hand, site-2 CNN 

segmentations did not show any significant differences (P=0.06 for aorta, P=0.39 for PA in 

multi-group comparison). The combined results (n=40) showed no statistically significant 

differences (P=0.49 for aorta, P=0.35 for PA in multi-group comparison), Comparing across 

sites, site 2 exhibited significantly higher Dice scores between observer 1 and observer 2.
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Segmentation Performance Of The Single-site CNNs And Multi-site CNN

Dice scores comparing manual segmentation to single-site CNNs or multi-site CNN for all 

patients and patient subgroups are shown in Table 3. No statistical differences were found 

in overall Dice scores for the aorta (site 1: 0.916 vs. 0.915, P=0.55; site 2: 0.906 vs. 0.904, 

P=0.69) and the pulmonary arteries (site 1: 0.894 vs. 0.895, P=0.64; site 2: 0.870 vs. 0.869, 

P=0.96) (Table 3). Likewise, no clear difference or tendency was seen in Dice scores from 

subgroup analysis.

Performance of Flow Quantification

Table 4 shows the hemodynamic measurements using 3D segmentations from human 

observers, the single-site CNN, and multi-site CNN. Centerline detection by skeletonization 

was successful in all but 7 patients (manual centerline placement occurred in 6 patients from 

site 1, and 1 patient from site 2). Five patients had an abnormal pulmonary artery due to 

TOF or an obstructed right ventricular outflow tract while the other two had BAV and/or 

HLHS. No significant differences between manual segmentation and the CNN models 

were found for entire population (Qs site-1 medians 51.0–51.3ml/cycle (P=0.81) and site-2 

medians 66.7–69.4ml/cycle (P=0.84); Qp site-1 medians 46.8–48.0ml/cycle (P=0.97) and 

site-2 medians 76.0–77.4ml/cycle (P=0.98); Qp/Qs site-1 medians 0.87–0.88 (P=0.97) and 

site-2 medians 1.01–1.03 (P=0.43)) (Table 4). Similarly, no significant differences were 

found for all sub-cohorts. The results of Bland-Altman analysis are shown in Table 5 (bias 

and limits of agreement) and Table 6 (95% CI of bias). Biases and/or limits of agreement 

showed the multi-site CNN exhibited a similar performance to the single-site CNN for all 

the sub-cohorts except for Qp for the BAV patients at site 1, where the bias was found to be 

significantly larger than zero by the 95% CI (Table 6, [0.49 – 2.15]). In the entire cohort at 

each site, significant biases were found for Qs in both single-site and multi-site CNNs at site 

1 (95% CI: [0.9–3.8] for single-site CNN, [0.5–3.3] for multi-site CNN) and site 2 (95% CI: 

[0.3–4.6] for single-site CNN, [0.5–3.4] for multi-site CNN) (Table 6).

Multi-site vs Single-site CNN Flow Quantification

Figure 3 shows Bland-Altman plots of flow measurement results for the single-site CNNs 

and multi-site CNN. For the single-site CNNs, 7 and 13 subjects with Qp and Qs differences 

>10ml/cycle were found, respectively. The segmentation ‘failures’ consisted of patients with 

TOF (5 cases), BAV (3 cases), Fontan (3 cases), ASD (2 cases), Marfan (2 case), TGA (1 

case), double outlet right ventricle (1 cases), dilated aorta (1 case), and a healthy control. 

Application of the multi-site CNN reduced the number of failures to 6 for Qp and 9 for 

Qs (5 TOF, 2 ASD, 1 TGA, 1 Marfan, 1 Fontan, 1 BAV, and 1 dilated aorta patients), 

contributing to smaller biases and limits of agreement. Qp/Qs also showed a tendency 

toward smaller biases and limits of agreement, particularly for site 1 (see Table 5). However, 

even with the multi-site CNN, patients less than 10 years old (N=44) still had a relatively 

larger median error of 4.8% for Qs and 4.0% for Qp compared to those larger than 10 years 

old (1.5% for Qs and 2.1% for Qp).

The failure modes for the single-site CNNs were: misidentification of unintended region as 

the aorta or PA (14 subjects), or the omission of vessel regions (10 subjects). Four subjects 

were classified to both mode 1 and 2 due to coexistence of the two error modes. Figure 
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4 shows examples of the segmentations of both successful (i.e., differences < 10ml/cycle) 

and failed (differences > 10ml/cycle) flow quantification in single-site CNNs. While the 

successful cases exhibited visually equivalent segmentations, failures by the single-site CNN 

can be seen in parts of the ascending aorta of patients with BAV, TOF and DORV. Here 

segmentation can be seen to omit or misrecognize the PA (Fig. 4b,c,f). On the other hand, 

the PA was misrecognized as the aorta in one of the TOF patients (Fig. 4i). In another case, 

a recirculation zone downstream the pulmonary valve in a patient with TOF is missing in the 

single site CNN segmentation due to low signal (Fig.4h). These problems were partly (c, i, 

h) or completely (b, f) resolved by the multi-site CNN. However, in the other cases (e, k, l), 

the segmentation performance worsened rather than improved.

DISCUSSION

This study has three main findings: 1) a CNN trained on multi-site 4D flow data performed 

multi-label vessel segmentation as accurately as human observers, (2) the multi-site CNN 

segmented the proximal pulmonary and systemic vasculature with equivalent performance 

compared to single site data, and (3) the multi-site CNN showed equivalent performance for 

patients with complex CHD. The most important outcome of this effort was the ability to 

segment complex 4D flow datasets in the setting of CHD from data acquired on different 

vendor MRI systems and different sites around 1 second – with performance equivalent to 

human observers.

It is important to note that segmentation performance was strongly degraded when data from 

site 1 was input into the site 2 CNN (median Dice score for aorta and PAs are 0.83 and 

0.78), or vice versa (median Dice score for aorta and PAs are 0.72 and 0.58). This was due 

to vendor-related differences in image signal intensities, contrast, and noise, as well as site 

related protocol differences (e.g., FOV) as demonstrated and suggested in previous multi-site 

studies (19–21). Thus, the multi-site CNN increased the potential for broader use of this 

approach across institutions and vendors and may have the potential to improve Dice scores 

and flow quantification for complex CHD cases with the addition of multisite patient data. 

This is especially important as it will allow to increase the number of datasets for rarer 

diseases and has the potential to be less reliant on expert availability for time-consuming 

segmentation.

We found the quality of the CNN-based approach was equivalent to human segmentation 

for both the aorta and PA. For flow quantification, failed cases did occur in which flow 

quantification for the multi-site CNN showed differences from human segmentation by more 

than 10ml per cycle. This represents 15 out of 338 measurements that were outside of our 

acceptance limits (approximately 4% of the measurements). Considering that the dataset was 

from two separate vendors and consisted of a large variation in cardiovascular physiology, 

ages, and body habitus, we hypothesize that larger training datasets could improve the 

performance of this pilot effort and future efforts will investigate larger datasets. It should 

be noted that these failed cases were all manually analyzable for clinical reporting purposes. 

Thus, in cases where the CNN was deemed to fail, the clinical workflow could take longer, 

but would not be impeded.
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Although the single-site CNNs performed well for segmentation of data from their 

respective sites, marked segmentation errors were seen, contributing to flow measurement 

errors, such as for Qp/Qs of the TOF subgroup from site 1. Errors in the single-site CNNs 

were likely due to abnormal geometry or insufficient contrast of the target vessels in the PC-

MRA images. The errors seen in the visual comparisons are possibly because of abnormal 

shape such as enlargement or mirrored ascending aorta or low signal due to recirculation 

zone downstream the pulmonary valve . Geometry and flow at these specific abnormalities 

are of particular interest, highlighting the potential added value of a large ‘N’ multi-site 

CNN.

The flexibility to use multi-site data improves the chances that sufficient data can be 

collected to train future CNN’s to identify the variety of CHD abnormalities found in the 

pediatric setting. The fact that the overall performance was not degraded by the variability 

in quality, planning, and FOV of the 4D flow data suggests datasets across institutions or 

vendors can be used for this purpose. While a trend toward improved performance was 

seen with our multi-site CNN model, we acknowledge that additional improvement for this 

relatively small patient cohort (n<200) is necessary for clinical adaptation, particularly for 

younger patients, which presented larger error in the net flow quantification. Nonetheless, 

we postulate that increasing the number of patients may further improve CNN performance.

Recent work has also achieved fully automated segmentation of the aorta in with alternative 

approaches. Gamechi et al. established fully automated segmentation for CT images 

combining an atlas-based approach (22), centerline extraction, and an optimal surface 

segmentation. Fantazzini et al. applied multiple 2D U-net to multi-planar CT images and 

combined the outputs to obtain 3D segmentation (23). Although these novel approaches 

also do not require human interaction, their framework was validated in adult cohorts and 

only the aorta was segmented without the additional added-value of the 4D flow MRI 

velocity data. A 4D flow MRI atlas-based approach was also proposed for fully-automated 

segmentation of great vessels and its performance was compared in terms of geometrical 

similarity and measured net flow (24). Although the aorta and PAs were successfully 

segmented over the cardiac cycle, it may be difficult to apply to a wide variety of CHDs as 

the atlas was created based on healthy subjects and from a single site. In contrast, our work 

confirmed the proposed multi-label segmentation algorithm can be applied to a younger 

patient cohort, across a wide variety of ages and CHD status.

Compared to previous work using the same CNN architecture presented here (8), the median 

Dice score in this study for the aorta was decreased (0.95 vs. 0.90). Likewise, larger bias and 

wider limits of agreement were observed in ascending aortic net flow quantification (0.1±5.3 

vs. 1.9±13.2 ml/cycle). As mentioned, this could be the result of the smaller number of 

training datasets, multiple vendor differences in signal and contrast, as well as the greater 

number of pediatric and complex CHD cases in this study. The previous study used 499 

training datasets on a single vendor platform, at a single site, and did not have patients 

with complicated geometry such as Fontan or TGA. With these considerations in mind, 

our study confirmed good agreement between human and automated segmentation in flow 

quantification for most cases on two scanner platforms acquired at two separate pediatric 

hospitals.
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Limitations

There were only a limited number of complex CHD cases (particularly, Fontan and 

TGA, n=13); we anticipate that additional complex cases will further improve the CNN 

performance. Our results are limited to a Dense U-net CNN architecture. A previous 

study trained different variants of CNNs (SegNet, U-net, and pix2pix) using single- and 

multi-site datasets and compared their performance on 2D prostate zonal segmentation 

(25). The authors reported U-net showed better performance when trained by multi-site 

datasets. Although our CNN was based on a U-net approach, additional investigations 

are needed to determine the optimal network choice for multi-site training. The use of 

a static segmentation is also a limitation. Neglecting cyclic vessel motion may affect 

the Qp/Qs calculation, which is more sensitive to measurement errors than single Qp or 

Qs measurement. Future efforts will focus on time-resolved segmentation. Nonetheless, 

realistic Qp/Qs ratios were obtained in healthy controls both with manual and automated 

segmentations. Therefore, we considered static segmentation sufficient for the flow metrics 

measured in this preliminary study. The larger bias (~0.1) found in Qp/Qs quantification 

for the healthy controls from site 1 could result from separate factors. One possible factor 

for worse bias performance could be larger acceleration factor (3x) used in site 1 which 

may degrade SNR. Evidence of poorer performance by Dice scores is also seen between 

observer 1 and 2 for the site 1 data, which could also be due to lower SNR caused by 

higher acceleration factors. We intend to investigate this finding further and note that it is 

the semiautomated approach here that enabled this large cohort study, which led to unique 

insight to site and/or vendor specific features.

Conclusions

The use of a multi-site, multi-label CNN performed comparable to manual human 

measurements and single site CNN’s. A statistically significant improvement in complex 

CHD cases was not observed in this limited number of datasets. However, the results 

demonstrate the availability of a dense U-net CNN trained by 4D flow data of pediatric 

patients with a variety of congenital heart diseases from multiple institutions and vendors. 

The multi-site CNN provides the flexibility to train and analyze patient data acquired across 

multiple sites.
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Fig. 1. 
Flowchart for CNN training. 4D flow data were processed to derive a phase-contrast 

MRA (PC-MRA), and the ground truth segmentation was performed manually. The CNN 

parameters were tuned based on the PC-MRA and ground truth to automatically segment 

the test data. Geometrical similarity (Dice score) and net flows using manual and CNN 

segmentations were then compared.
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Fig. 2. 
Criteria for segmentation and subsequent flow quantification. The aorta was transected 

at the aortic valve and the abdominal aorta (include full field of view). The branches 

were truncated at one ascending aortic (AsAo) diameter downstream the bifurcation. The 

pulmonary artery was cut perpendicular to the main pulmonary artery (MPA) centerline at 

the level of the pulmonary valve (when present), where the tangent of the MPA centerline 

was approximately vertical. The right pulmonary artery (RPA) was included for the full field 

of view and the left pulmonary artery (LPA) was included to approximately the same length. 

Only the first branches were included for the branch PAs. A plane (a solid green line) was 

positioned manually on each centerline, and the other two planes (dotted green lines) were 

automatically placed distal to the manual plane with equal spacing to quantify net flows at 

the ascending aorta and MPA.
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Fig. 3. 
Bland-Altman plots of Qs (upper), Qp (middle), and Qp/Qs (lower) for the site-1 CNN 

(right), site-2 CNN (middle), and multi-site CNN (left). Site 1 data and site 2 data are shown 

by open and filled plots. Biases (mean) and limits of agreement (LOA) are shown by red 

and green lines with 95% confidence intervals (area shaded by red and green). The vertical 

dotted lines (Qp/Qs=1) represent a standard Qp/Qs value, which is seen in subjects without 

cardiovascular shunt flow. Example segmentations of the aorta and pulmonary arteries for 

selected successful and failed cases are marked by letters and shown in Fig. 4.
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Fig. 4. 
Example segmentations for selected successful, and failed flow quantifications with single-

site CNN segmentations, as identified in Fig 3. Successes and failures for Qs are shown in 

upper rows while those for Qp are in the lower rows. The aorta and pulmonary arteries 

are colored red and blue, respectively, and their Dice scores are presented below the 

segmentations. Failed cases can be classified into two modes: mode 1: misidentification, 

mode 2: omission of vessel. Failed parts and its modes are marked by asterisks (+ for mode 

1, ♦ for mode 2). TOF, Tetralogy of Fallot; DORV, double outlet right ventricle; TGA, 
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transposition of the great arteries; PS, pulmonary stenosis; PR, pulmonary regurgitation; 

TAPVC, total anomalous pulmonary venous connection; ASD, atrial septal defect.
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Table 1

Patient demographics and scan parameters.

Site 1 Site 2 P value

Patients

 N (m/f) 100 (51/49) 74 (43/31) -

  Controls (%) 15 (15) 23 (31) -

  Patients (%) 85 (85) 51 (69) -

  TOF 25 (25) 13 (18) -

  BAV 10 (10) 7 ( 9) -

  TGA 0 ( 0) 7 ( 9) -

  Fontan 6 ( 6) 0 ( 0) -

 Age [y] 15.2 [0.3– 51.7] 15.9 [ 1.8– 56.3] 0.83

 Weight [kg] 52.0 [ 6– 110.0] 57.2 [10.2–114.8] 0.09

 Height [cm] 159.0 [ 61– 202.0] 164.0 [16.5–186.0] 0.18

 BSA [m2] 1.5 [0.3– 2.4] 1.65 [ 0.4– 2.4] 0.17

Scan parameters

 Echo time [ms] 2.0–3.6 2.1–3.0 0.65

 Repetition time [ms] 3.8–5.9 4.7–5.7 <0.001

 Flip angle [deg] 6–10 7–25 <0.001

 Voxel size [mm] 1.3×1.3×2.5 – 2.7×2.7×2.8 1.4×1.3×1.3 – 2.8×2.4×2.4 <0.001

 Velocity encoding [cm/s] 120–400 80–350 0.002

 Temporal resolution [ms] 19.8–75.1 37.8–45.6 <0.001

 Acquisition matrix 64×64×35 – 224×224×104 160×70×26 – 160×140×96 <0.001

 Field of view [mm3] 150×150×72 – 500×500×100 200×150×101 – 380×295×160 0.26

 Acceleration factor 3x SENSE (2x (phase),1.5x (slice)) 2x GRAPPA -

P<0.05 is shown by bold numbers. Age, weight, height, and body surface area (BSA) are shown as median [range]. Scan parameters are shown as 
min-max. TOF, Tetralogy of Fallot; BAV, bicuspid aortic valve; TGA, transposition of the great arteries.
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Table 2

Dice scores for interobserver analysis on the selected 40 subjects (median [IQR]).

Observer 1 vs. Post-hoc tests (P value)

Observer 2 Single-site CNN Multi-site CNN P value Observer 2 vs. 
single

Observer 2 vs. 
multi

Single vs. 
multi

Site 1 (n=20)

 Aorta 0.875 [0.859–0.904] 0.918 [0.907–
0.928]

0.919 [0.912–
0.931] <0.001 <0.001 <0.001 1

 PA 0.868 [0.802–0.885] 0.898 [0.856–
0.910]

0.897 [0.886–
0.919] 0.002 0.01 0.003 1

Site 2 (n=20)

 Aorta 0.931 [0.909–0.953] 0.915 [0.877–
0.945]

0.905 [0.868–
0.937] 0.06 - - -

 PA 0.887 [0.857–0.919] 0.884 [0.859–
0.906]

0.869 [0.801–
0.913] 0.39 - - -

All (n=40)

 Aorta 0.908 [0.869–0.935] 0.924 [0.896–
0.938]

0.922 [0.902–
0.937] 0.49 - - -

 PA 0.879 [0.842–0.908] 0.893 [0.868–
0.912]

0.898 [0.857–
0.914] 0.35 - - -

P<0.05 is shown by bold numbers. PA, pulmonary arteries; CNN, convolutional neural network.
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Table 3

Dice scores of single-site and multi-site CNN for all patients and disease sub-cohorts (median [IQR]).

Single-site vs. manual Multi-site vs. manual P value

Site 1 (n=98 for aorta, n=92 for PA)

All

 Aorta 0.916 [0.883–0.930] 0.915 [0.885–0.934] 0.55

 PA 0.894 [0.857–0.912] 0.895 [0.856–0.915] 0.64

Control (n=15)

 Aorta 0.924 [0.912–0.929] 0.922 [0.910–0.937] 0.52

 PA 0.891 [0.866–0.907] 0.885 [0.865–0.912] 0.76

TOF (n=25)

 Aorta 0.897 [0.820–0.914] 0.897 [0.864–0.914] 0.86

 PA 0.864 [0.823–0.902] 0.874 [0.816–0.896] 0.85

BAV (n=10)

 Aorta 0.927 [0.910–0.933] 0.929 [0.924–0.940] 0.68

 PA 0.902 [0.896–0.915] 0.901 [0.892–0.910] 0.82

Fontan (n=6)

 Aorta 0.735 [0.676–0.790] 0.797 [0.762–0.824] 0.33

Site 2 (n=74)

All

 Aorta 0.906 [0.877–0.939] 0.904 [0.873–0.936] 0.69

 PA 0.870 [0.815–0.905] 0.869 [0.826–0.909] 0.96

Control (n=23)

 Aorta 0.942 [0.911–0.950] 0.932 [0.906–0.949] 0.51

 PA 0.905 [0.890–0.926] 0.911 [0.882–0.930] 0.91

TOF (n=13)

 Aorta 0.872 [0.791–0.892] 0.866 [0.832–0.881] 0.86

 PA 0.804 [0.776–0.842] 0.833 [0.792–0.867] 0.76

BAV (n=7)

 Aorta 0.863 [0.828–0.898] 0.890 [0.854–0.925] 0.43

 PA 0.823 [0.719–0.882] 0.870 [0.793–0.871] 1.00

TGA (n=7)

 Aorta 0.887 [0.870–0.911] 0.876 [0.858–0.899] 0.46

 PA 0.796 [0.723–0.828] 0.832 [0.765–0.847] 0.54

TOF, Tetralogy of Fallot; BAV, bicuspid aortic valve; TGA, transposition of the great arteries; PA, pulmonary artery.
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Table 4

Net flow for all patients and disease sub-cohorts (median [IQR]).

Manual Single-site Multi-site P value

Site 1 (n=98 for aorta, n=92 for PA)

All

 Qs [ml/cycle] 51.3 [32.6– 73.3] 51.1 [26.9– 71.4] 51.0 [27.5– 71.8] 0.81

 Qp [ml/cycle] 46.8 [31.9– 65.9] 48.0 [31.4– 65.2] 47.2 [31.7– 65.2] 0.97

 Qp/Qs [ - ] 0.87 [0.77– 0.98] 0.88 [0.78– 1.00] 0.88 [0.77– 0.98] 0.97

Control (n=15)

 Qs [ml/cycle] 63.9 [45.2– 81.3] 62.3 [46.4– 79.6] 65.4 [46.1– 80.5] 1.00

 Qp [ml/cycle] 55.7 [43.2– 73.4] 52.2 [43.8– 72.8] 54.2 [43.9– 72.5] 0.99

 Qp/Qs [ - ] 0.90 [0.86– 0.97] 0.89 [0.85– 1.00] 0.90 [0.85– 0.99] 0.92

TOF (n=25)

 Qs [ml/cycle] 38.0 [24.6– 59.8] 31.6 [22.2– 55.3] 31.2 [21.8– 54.5] 0.81

 Qp [ml/cycle] 32.4 [16.4– 52.1] 32.3 [16.8– 54.1] 32.1 [17.3– 54.3] 0.99

 Qp/Qs [ - ] 0.82 [0.60– 0.90] 0.83 [0.68– 1.09] 0.82 [0.69– 0.90] 0.76

BAV (n=10)

 Qs [ml/cycle] 70.8 [46.4– 87.7] 65.2 [47.4– 87.7] 65.4 [47.4– 82.0] 0.89

 Qp [ml/cycle] 60.4 [51.3– 78.6] 58.1 [49.3– 78.2] 59.1 [50.3– 78.4] 0.88

 Qp/Qs [ - ] 0.91 [0.83– 1.08] 0.92 [0.82– 1.04] 0.96 [0.82– 1.10] 0.92

Fontan (n=6)

 Qs [ml/cycle] 17.6 [11.3– 27.5] 10.1 [ 5.6– 11.9] 12.4 [ 6.5– 18.0] 0.34

Site 2 (n=74)

All

 Qs [ml/cycle] 69.4 [55.8– 90.9] 66.7 [54.9– 90.6] 69.0 [55.1– 89.2] 0.84

 Qp [ml/cycle] 76.0 [54.6– 97.9] 77.4 [55.3–100.9] 76.2 [55.4– 97.5] 0.98

 Qp/Qs [ - ] 1.01 [0.94– 1.10] 1.03 [0.97– 1.23] 1.03 [0.96– 1.15] 0.43

Control (n=23)

 Qs [ml/cycle] 66.2 [57.1– 81.3] 65.3 [57.2– 81.0] 66.2 [55.4– 80.4] 0.97

 Qp [ml/cycle] 75.1 [59.0– 79.8] 75.5 [59.5– 80.1] 75.8 [59.6– 79.5] 0.99

 Qp/Qs [ - ] 1.00 [0.96– 1.05] 1.01 [0.98– 1.04] 1.02 [0.98– 1.07] 0.69

TOF (n=13)

 Qs [ml/cycle] 69.0 [59.3– 86.9] 70.4 [55.6– 89.5] 70.8 [57.7– 86.3] 0.99

 Qp [ml/cycle] 76.4 [68.0– 96.3] 75.8 [68.6– 90.7] 76.1 [67.7– 93.8] 0.97

 Qp/Qs [ - ] 1.09 [1.02– 1.40] 1.13 [0.98– 1.56] 1.12 [1.00– 1.34] 0.99

BAV (n=7)

 Qs [ml/cycle] 65.0 [50.5–104.7] 54.8 [40.3– 80.1] 65.1 [46.7– 98.2] 0.74

 Qp [ml/cycle] 71.5 [42.8– 97.4] 74.9 [43.2–101.2] 71.3 [43.4–100.5] 0.90

 Qp/Qs [ - ] 0.97 [0.88– 0.99] 1.14 [0.99– 1.33] 1.04 [0.96– 1.10] 0.14

TGA (n=7)

 Qs [ml/cycle] 55.7 [38.3– 63.1] 56.3 [37.5– 63.7] 56.5 [38.7– 61.6] 0.96

 Qp [ml/cycle] 47.4 [43.2– 73.3] 48.3 [43.8– 86.1] 49.3 [46.2– 85.2] 0.91
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Manual Single-site Multi-site P value

 Qp/Qs [ - ] 1.03 [0.96– 1.20] 1.17 [0.93– 1.26] 1.15 [0.91– 1.25] 0.87

TOF, Tetralogy of Fallot; BAV, bicuspid aortic valve; TGA, transposition of the great arteries; Qs, net flow at the ascending aorta; Qp, net flow at 
the main pulmonary artery; Qp/Qs, pulmonary-systemic flow ratio.
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Table 5

Bland-Altman analysis for flow quantification (mean bias ± limits of agreement).

Site 1 All Control (n=15) TOF (n=25) BAV (n=10) Fontan (n=6)

Manual vs. single-site CNN

 Qs [ml/cycle] 2.4±14.2 1.12±7.51 2.67±14.63 1.50±5.72 14.41±36.61

 Qp [ml/cycle] 0.6±10.6 0.60±5.10 −1.25±18.29 1.32±2.28 -

 Qp/Qs [ - ] −0.2± 3.1 −0.05±0.49 −0.64± 5.84 −0.00±0.11 -

Manual vs. multi-site CNN

 Qs [ml/cycle] 1.9±14.1 0.16±2.66 2.71±17.25 2.28±7.33 4.92±23.95

 Qp [ml/cycle] 0.3± 6.1 0.57±3.87 −0.89± 9.44 0.18±3.99 -

 Qp/Qs [ - ] −0.1± 0.7 0.00±0.11 −0.15± 0.99 −0.03±0.10 -

Site 2 All Control (n=23) TOF (n=13) BAV (n=7) TGA (n=7)

Manual vs. single-site CNN

 Qs [ml/cycle] 2.4±18.2 −0.04±2.08 0.13±21.32 12.90± 37.16 0.61± 3.85

 Qp [ml/cycle] −0.9±10.1 −0.40±3.62 2.38±16.63 −1.91± 4.24 −3.87±13.02

 Qp/Qs [ - ] −0.1± 0.9 −0.01±0.04 0.12± 1.34 −0.28± 0.82 −0.07± 0.24

Manual vs. multi-site CNN

 Qs [ml/cycle] 2.0±12.0 0.44±3.62 0.22± 9.11 4.20± 9.44 0.76± 4.62

 Qp [ml/cycle] −0.9± 9.4 −0.53±3.01 1.50± 7.08 −1.89± 5.44 −6.45±18.43

 Qp/Qs [ - ] −0.1± 0.5 −0.01±0.05 −0.01± 0.22 −0.09± 0.22 −0.08± 0.33

TOF, Tetralogy of Fallot; BAV, bicuspid aortic valve; TGA, transposition of the great arteries Qs, net flow at the ascending aorta; Qp, net flow at the 
main pulmonary artery; Qp/Qs, pulmonary-systemic flow ratio; CNN, convolutional neural network.
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Table 6

Bland-Altman analysis for flow quantification (95% confidence intervals for bias).

Site 1 All Control (n=15) TOF (n=25) BAV (n=10) Fontan (n=6)

Manual vs. single-site CNN

 Qs [ml/cycle] 0.9 – 3.8 −1.00 – 3.25 −0.41 – 5.76 −0.58 – 3.59 −5.19 – 34.01

 Qp [ml/cycle] −0.5 – 1.7 −0.84 – 2.04 −5.10 – 2.60 0.49 – 2.15 -

 Qp/Qs [ - ] −0.5 – 0.1 −0.18 – 0.09 −1.87 – 0.59 −0.04 – 0.04 -

Manual vs. multi-site CNN

 Qs [ml/cycle] 0.5 – 3.3 −0.59 – 0.91 −0.93 – 6.34 −0.40 – 4.95 −7.90 – 17.74

 Qp [ml/cycle] −0.3 – 1.0 −0.51 – 1.67 −2.88 – 1.09 −1.27 – 1.64 -

 Qp/Qs [ - ] −0.1 – 0.0 −0.03 – 0.03 −0.36 – 0.05 −0.07 – 0.01 -

Site 2 All Control (n=23) TOF (n=13) BAV (n=7) TGA (n=7)

Manual vs. single-site CNN

 Qs [ml/cycle] 0.3 – 4.6 −0.50 – 0.42 −6.44 – 6.71 −4.63 – 30.44 −1.21 – 2.42

 Qp [ml/cycle] −2.1 – 0.3 −1.20 – 0.39 −2.75 – 7.51 −3.91 – 0.09 −10.01 – 2.28

 Qp/Qs [ - ] −0.2 – 0.0 −0.01 – 0.00 −0.30 – 0.53 −0.67 – 0.10 −0.18 – 0.05

Manual vs. multi-site CNN

 Qs [ml/cycle] 0.5 – 3.4 −0.35 – 1.24 −2.59 – 3.03 −0.26 – 8.65 −1.42 – 2.94

 Qp [ml/cycle] −2.1 – 0.2 −1.19 – 0.13 −0.68 – 3.68 −4.46 – 0.68 −15.15 – 2.25

 Qp/Qs [ - ] −0.1 – 0.0 −0.02 – 0.00 −0.08 – 0.05 −0.19 – 0.01 −0.23 – 0.08

Biases significantly larger than zero are shown by bold numbers. TOF, Tetralogy of Fallot; BAV, bicuspid aortic valve; TGA, transposition of 
the great arteries Qs, net flow at the ascending aorta; Qp, net flow at the main pulmonary artery; Qp/Qs, pulmonary-systemic flow ratio; CNN, 
convolutional neural network.
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