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Abstract

Purpose—Acral melanoma is a rare subtype of melanoma that arises on the non-hair-bearing 

skin of the palms, soles and nail beds. In this study, we used single cell RNA-seq (scRNA-seq) 

to map the transcriptional landscape of acral melanoma and identify novel immunotherapeutic 

targets.

Experimental Design—We performed scRNA-seq on 9 clinical specimens (5 primary, 4 

metastases) of acral melanoma. Detailed cell type curation was performed, the immune landscapes 
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were mapped, and key results were validated by analysis of TCGA and single cell datasets. 

Cell-cell interactions were inferred and compared to those in non-acral cutaneous melanoma.

Results—Multiple phenotypic subsets of T cells, NK cells, B cells, macrophages, and dendritic 

cells with varying levels of activation/exhaustion were identified. A comparison between primary 

and metastatic acral melanoma identified gene signatures associated with changes in immune 

responses and metabolism. Acral melanoma was characterized by a lower overall immune 

infiltrate, fewer effector CD8 T cells and NK cells and a near-complete absence of γδ T cells 

compared to non-acral cutaneous melanomas. Immune cells associated with acral melanoma 

exhibited expression of multiple checkpoints including PD-1, LAG-3, CTLA-4, VISTA, TIGIT 

and the Adenosine A2A receptor (ADORA2). VISTA was expressed in 58.3% of myeloid cells 

and TIGIT was expressed in 22.3% of T/NK cells.

Conclusion—Acral melanoma has a suppressed immune environment compared to that of 

cutaneous melanoma from non-acral skin. Expression of multiple, therapeutically tractable 

immune checkpoints were observed, offering new options for clinical translation.
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Introduction

Acral melanoma is a rare subtype of melanoma (accounting for ~2–3% of all melanoma 

cases) that arises on the skin of the palms of the hands, soles of the feet, and nail beds 

(1,2). Unlike most cutaneous melanomas, which tend to arise more frequently in white 

populations, acral melanoma has a similar incidence across all population groups and is the 

most common form of melanoma in patients of Asian, African and Hispanic descent (2). 

Acral melanoma has a much lower mutational burden than non-acral cutaneous melanoma 

arising on sun-exposed skin. Additionally, it has a lower incidence of activating mutations in 

the two most common cutaneous melanoma oncogenes, BRAF (19%) and NRAS (21%), 

despite these being highly expressed in nevi arising on acral skin (3). Instead, acral 

melanoma has a higher frequency of mutations in c-KIT, NF1, NOTCH2, TYRP1 and PTEN 
and is characterized by genomic amplifications, rearrangements and copy number changes, 

particularly in genes such as CDK4, Cyclin D1, GAB2, PAK1 and TERT (4,5).

From a clinical standpoint, acral melanoma tends to present at a more advanced stage and 

has a worse prognosis than melanomas arising on non-acral skin (2). At this time acral 

melanoma is treated in a similar manner to melanomas arising elsewhere on the skin. With 

regards to targeted therapy, acral melanomas that harbor BRAF mutations show similar 

levels of response to BRAF and BRAF-MEK inhibition as other BRAF-mutant cutaneous 

melanomas. A recent report on a small cohort of Chinese BRAF-mutant acral melanoma 

patients demonstrated single agent vemurafenib to be associated with an overall response 

rate (ORR) of 61.5% with a median progression-free survival (PFS) of 5.4 months (6). In 

a study of Korean patients treated with either BRAF inhibitor monotherapy or BRAF-MEK 

inhibitor combinations, responses were reported in 79% of treated patients, with a median 

PFS of 9.2 months (7).

Li et al. Page 2

Clin Cancer Res. Author manuscript; available in PMC 2022 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Responses to immunotherapies (such as anti-PD-1, anti-CTLA4 and the anti-PD-1/anti-

CTLA4 combination) tend to be shorter in acral melanoma compared to those seen in 

patients with other cutaneous melanomas (7,8). A retrospective analysis of the efficacy of 

anti-PD-1 therapy in a small cohort of acral melanoma patients at US centers showed an 

ORR of 32% (8). Although this was analogous to the ORR reported for other cutaneous 

melanomas, the median PFS months was lower (4.1 versus 6–7 months). In a larger 

retrospective study of Japanese acral melanoma patients, the reported ORR to anti-PD-1 

therapy was much lower (16.5%) (1). Studies have shown that acral melanoma has a 

lower frequency of PD-L1 expression (33% of cases were positive) compared to either 

mucosal (44% positive) or non-acral cutaneous melanoma (62% positive) (9). However, the 

composition of the immune landscape in acral melanoma patients remains poorly defined.

At this time, acral melanoma remains incompletely understood, and there has been little 

progress in developing strategies that are targeted to the unique biology of this disease. 

In the current study, we undertook a single-cell RNA-seq (scRNA-seq) analysis of clinical 

specimens of acral melanoma with the goal of better understanding the immune landscape 

of these tumors. Through these analyses and comparison with other cutaneous melanomas 

(from a previously published scRNA-seq analysis of melanoma skin metastases (10) and two 

publicly available non-acral melanoma single cell datasets (11,12)), we characterized the 

immune transcriptional landscape of acral melanoma identifying 1) important differences in 

the immune environments between acral and non-acral cutaneous melanoma and 2) potential 

novel targets for immunotherapy.

Materials and Methods

Patient Specimens

Nine human acral melanoma specimens from 8 patients were procured under a written 

informed consent protocol approved by the Institutional Review Board (IRB) of Moffitt 

Cancer Center (protocol number MCC# 50297). The study was conducted in accordance 

with recognized ethical guidelines of the Declaration of Helsinki, CIOMS, Belmont Report 

and U.S. Common Rule. Upon collection, samples were immediately placed on ice and 

transferred for processing. Samples were digested using Miltenyi Tissue Dissociation Kit 

(Bergisch Gladbach, Germany) and enriched for live cells using FACS sorting prior to 

quantification and loading. scRNA-Seq data from a previously published analysis (10) of 

a cohort of pre-treatment biopsies (n=5) of non-acral melanoma skin metastases from a 

phase I clinical trial of vemurafenib–cobimetinib–XL888 (NCT02721459) was used as a 

comparator.

Data availability statement

Raw FastQ and iscva.h5 files of scRNA-seq have been deposited in the NCBI SRA (NCBI, 

RRID:SCR_00647) database under SRA accession number PRJNA784961 and the GEO 

database under accession number GSE189889. Data are also available for analysis in 

ISCVA: iscva.moffitt.org
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Whole-exome sequencing and mutational analysis

4 acral melanoma samples (AM3, AM4, AM7 and AM8-primary) were subjected to 

Moffitt-STAR clinical sequencing as part of routine clinical care. STAR NGS (STAR, 

RRID:SCR_004463) is a targeted DNA and RNA-based next-generation sequencing (NGS) 

assay based on the Illumina TruSight Tumor 170 platform (13). Whole-exome sequencing 

(WES) was performed to identify somatic mutations in the remaining 4 acral melanoma 

samples (AM1, AM2, AM5 and AM6). Following a quantitative-PCR-based DNA quality 

and quantity assessment using the Agilent NGS FFPE QC Kit, 200ng of DNA was used 

as input into the Agilent SureSelect XT Clinical Research Exome kit. Briefly, for each 

DNA sample, a genomic DNA library was constructed according to the manufacturer’s 

protocol and the size and quality of the library was evaluated using the Agilent BioAnalyzer 

(BioAnalyzer 2100, RRID:SCR_019715). An equimolar amount of library DNA was used 

for a whole-exome enrichment using the Agilent capture baits. After quantitative PCR 

library quantitation and QC analysis on the BioAnalyzer, approximately 130 million 75-base 

paired-end sequence reads per sample were generated using v2 chemistry on an Illumina 

NextSeq 500 sequencer. Sequence reads were aligned to the reference human genome 

with the Burrows-Wheeler Aligner (BWA RRID:SCR_010910) (14) and insertion/deletion 

realignment and quality score recalibration were performed with the Genome Analysis 

ToolKit (GATK RRID:SCR_001876) (15). Tumor specific mutations were identified 

with Strelka (Strelka, RRID:SCR_005109) and MuTect (MuTect, RRID:SCR_000559) 

(16), and were annotated to determine genic context (ie, non-synonymous, missense, 

splicing) using ANNOVAR (ANNOVAR, RRID:SCR_012821) (17). Additional contextual 

information was incorporated, including allele frequency in other studies such as 1000 

Genomes (1000 Genomes Project and AWS, RRID:SCR_008801), the NHLBI Exome 

Sequence Project (NHLBI Exome Sequencing Project (ESP), RRID:SCR_012761), in 

silico function impact predictions, and observed impacts from databases like ClinVar 

(http://www.ncbi.nlm.nih.gov/clinvar/) (ClinVar, RRID:SCR_006169), and the Collection Of 

Somatic Mutations In Cancer (COSMIC, RRID:SCR_002260).

Single Cell RNA-seq

A single-cell suspension from each tissue was quantified and analyzed for viability using the 

Nexcelom Cellometer K2 and then loaded onto the 10X Genomics Chromium Single Cell 

Controller for single-cell RNA-sequencing library preparation (10X Genomics, Pleasanton, 

CA). Briefly, the single cells, reagents, and 10X Genomics gel beads were encapsulated into 

individual nanoliter-sized Gelbeads in Emulsion (GEMs) and then reverse transcription of 

poly-adenylated mRNA was performed inside each droplet. The cDNA was amplified and 

purified, and cDNA libraries were then prepared in bulk reactions using the 10X Chromium 

Single Cell 5’ Library Prep Kit (3’ Kit was utilized for sample AM1). Approximately 

25,000 to 50,000 mean sequencing reads per cell were generated on the Illumina NextSeq 

500 instrument using v2.5 flow cells. Demultiplexing, barcode processing, alignment, and 

gene counting were performed using the 10X Genomics CellRanger software (SCIGA, 

RRID:SCR_021002).
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Quality Control and Cell Typing

A two-component computational tool ISCVA, Interactive Single Cell Visual Analytics 

(10), was used to perform scRNA-seq analyses, cell type classification, curation, and 

visualization. It consists of two major components. One includes the back-end scripts, 

functions utilizing R packages commonly utilized by single cell communities while the 

second component uses front-end JavaScripts to enable interactive investigation. Briefly, 

the R package, Seurat (SEURAT, RRID:SCR_007322), was used to process the aggregated 

41,721-cell transcript count matrix generated from the 10X Cell Ranger pipeline. After 

filtering cells with >20% reads in mitochondria or with <200 features, and potential 

doublets, the remaining 36,208 cells were included in the analyses. We have de-batched the 

data using the find “anchors” approach in Seurat (18), which is one of three recommended 

methods for de-batching. In our scRNA-seq analysis the 10X Chromium Single-Cell 3′ 
Library Prep Kit was used for sample AM1’s preparation while the 5’ kit was used for the 

remaining 8 acral samples These differences corresponded to the batch information used 

in the de-batching process. Briefly, the expression of samples was normalized within each 

batch using SCTransform. Regularized negative binomial regression, along with a second 

linear regression against mitochondria read percentage as implemented in SCTransform, was 

used to adjust for cell-to-cell technical variations. Canonical correlation analysis (CCA) is 

performed to find anchors between different batches. The default 3,000 genes were kept for 

downstream analysis. To find a set of anchors between a list of 2 Seurat objects, we kept 

the default 30 as the number of dimensions to use in the anchor weighting procedure. These 

anchors can later be used to integrate the sample objects using Integrate Data function. 

A two-stage clustering was performed after de-batching. The first stage was for broad 

cell type identification while the second stage was for cell sub-population identification 

within lymphoid, myeloid, and melanoma cells respectively. The approach of the two-stage 

clustering and how the number clusters are selected for investigation are described in 

our previous work (10,19). Briefly, at each stage, we used the unsupervised clustering 

algorithms, Louvain at different clustering resolutions (with resolution parameters set at 

0.6, 0.8, 1, 1.2, 2, and 4) and Infomap, in the principal component analysis (PCA) space 

to identify cell groups among all cells that passed QC. Followed by clusters generated at 

different resolutions as described above, we curated cell types against multiple reference 

panels provided in SingleR and other known signatures (10,20) and visualized them 

interactively through ISCVA. In addition, the R package, SingleR, was used to generate 

cell type candidates for each cell using multiple reference panels. The finest level of clusters, 

which we could align to currently known cell types, would be the number of clusters to be 

selected as the curated cell types in ISVCA. For some of the cell types, such as melanoma 

cells, there would be multiple clusters due to biological heterogeneity. For those, we merged 

these clusters from different curated cell types into a single “main category”. Each cell 

group (or main category) is then assigned a broad cell category based on the combination 

of SingleR predictions – mostly using the BlueprintEncode panel and followed by curation. 

In ISCVA, multiple resolutions of these clusters are available for visualization and future 

investigation. The second stage of clustering and curation mapped out the substructure of the 

myeloid and lymphoid cell populations. The myeloid cell analysis included all cells that fell 

under the categories of plasmacytoid dendritic cells (pDC) and macrophage/monocyte/DC, 

while the lymphoid analysis included all T and NK cells. The second stage analyses 
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generated unsupervised clustering of the sub-populations of cells and then annotated these 

clusters according to their distinguishing gene expression, using published markers on 

myeloid and lymphoid cell subpopulations as a guide. Two small clusters of cells (of a 

total of 220 cells) with potential doublet signatures identified were further excluded from 

the analyses, resulting in a final 35,988 cells included in the analyses. To compare the 

cell population differences between acral primary tumors (N=5) and metastases (N=4), 

a Wilcoxon rank test was performed for each cell population of interests. No multiple 

comparison was adjusted. A nominal p-value of 0.05 was used to identified populations of 

interests.

InferCNV analysis—The InferCNV package, downloaded from BioConductor (infercnv, 

RRID:SCR_021140) was used to infer large-scale copy number variations (CNVs) from the 

raw gene expression data in the Seurat object. After cell type identification, non-melanoma 

cells were used as reference cells while the CNVs were inferred for the melanoma 

cells. The python script gtf_to_position_file.py, (https://github.com/broadinstitute/inferCNV/

wiki/instructions-create-genome-position-file) (IPython, RRID:SCR_001658), was used to 

convert the GTF (GRCh38, used by CellRanger) to the Genomic Position File, as part of the 

input for InferCNV. The results indicated that all melanoma cells from each acral sample 

have chromosomal segments gains or deletions and were characteristics of malignant cells.

Cell-cell interaction analysis and acral-non-acral cutaneous melanoma comparisons

The cell population level differences between acral melanoma from this study were 

compared to previously published scRNA-seq data from non-acral melanoma skin 

metastases (10). Additional analyses were performed on two publicly available non-acral 

cutaneous melanoma scRNA-Seq datasets (11,12). Wilcoxon rank test was performed 

between acral (N=8: only the primary sample was included from the matched pair) and 

non-acral cutaneous samples (N=5), and boxplot was used for visualization. To identify any 

checkpoint or HLA-related genes of interest as potential targets, the proportion of cells with 

the expression of each gene was compared between acral and non-acral cutaneous samples 

using Wilcoxon rank for each of the major cell types, i.e., melanoma, myeloid and lymphoid 

cells. Since the sample size was small, this comparison was used as an initial screening step 

to identify potential subsets of checkpoints of interests. We then summarized the expression 

of each gene by cell type for each patient to understand the potential (personalized) 

therapeutic options. To investigate cell-cell interaction (CCI) mediated by ligand-receptor 

complexes, especially between NK cells and other subpopulations from single cell 

transcriptome data, SingleCellSignalR (21) was used. Briefly, SingleCellSignalR predicts 

ligand (L) and receptor (R) interactions between two cell types using a regularized LRscore 

based on their curated LR database which contains 3,251 ligand-receptor interactions. 

LRscore is a scaling product score of average ligand expression in one cell type and 

average receptor expression in the other cell type. When comparing CCI between acral 

and cutaneous samples, since the number of cells about 20-fold higher per sample in non-

cutaneous acral cohort than the cutaneous melanoma samples, we down-sampled the number 

of cells in the acral samples to 1/20. This down-sampling ensured that the total number 

of cells per sample between these two groups were comparable before CCI inference was 

performed. The heatmap visualized the interactions with LRscore more than 0.5 (the missing 
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LR scores were imputed as 0) between NK cells and other cell types in each sample and 

the average of number of interactions across the samples at each site. Wilcoxon test was 

performed to compare the number of interactions of paired cell types between two sites. 

In pairs of cells with statistically significant differences using the nominal p-value of 0.05 

as threshold, we further investigated each specific interaction using Wilcoxon test. When 

comparing the CCI between the acral primary and metastasis samples, to maximize the 

information inferred from the data, the full dataset was used. No multiple comparison was 

adjusted considering small sample size. Nominal p-value of 0.05 was used to identified cells 

or interactions of interest.

Tumor heterogeneity analyses

A total of 19,547 melanoma cells from 9 acral samples were included in the tumor 

heterogeneity analyses. Shannnon index was calculated and compared between primary 

(N=5) and metastatic samples (N=4) using the SinCHET software developed by our 

group (22). The cluster and the related cluster biomarkers were determined using the 

Seurat R package (23). ShinyGO gene (ShinyGO, RRID:SCR_019213) ontology enrichment 

analysis was utilized to visualize top 50 markers associated with metastatic melanoma 

cells, prioritized based on proportions of cells differentially expressing each marker, p<0.05 

(Column G, Supplemental Table 1). String (STRING, RRID:SCR_005223) was used for 

visualization of top 20 markers associated with Cluster 2 and Cluster 5 of melanoma cells, 

prioritized based on proportions of cells expressing each marker (Column I, Supplemental 

Table 2) (24).

TCGA validation

For in silico validation, TCGA bulk RNAseq data for acral (N=36) and cutaneous (N=443) 

were downloaded from cBioPortal (cBioPortal, RRID:SCR_014555). Cell type enrichment 

analysis for 64 cell types was performed using xCell, a robust signatures-based method for 

deconvolution (25). Because this approach uses ranked values within each dataset, which 

allows different cohorts or batches (from acral and non-acral) to be compared since absolute 

values are not used. A Wilcoxon rank test was conducted to compare the estimated scores 

associated with each cell population between cutaneous and acral melanoma samples.

Multiplex Immunofluorescent Staining

Human formalin-fixed, paraffin-embedded (FFPE) tissue samples were stained using 

the PerkinElmer OPAL TM Automation IHC kit (Waltham, MA) on the BOND RX 

autostainer (Leica Biosystems, Vista, CA) following the automated OPAL IHC procedure 

(PerkinElmer) with DAPI stain for nuclei (Akoya Biosciences, Menlo Park, California) and 

antibodies against CTLA4 (#ab 237712, Abcam, Cambridge, United Kingdom), VISTA 

(#54979S, Cell Signaling Technology Cat# 54979, RRID:AB_2799474) and ADORA2 

(#LS-C805698, LSBio, Seattle, WA). Slides were imaged using the Vectra3 Automated 

Quantitative Pathology Imaging System. Multi-layer TIFF images were exported from 

InForm (PerkinElmer) (inForm, RRID:SCR_019155) and loaded into HALO (HALO, 

RRID:SCR_018350) for quantitative image analysis. The tissue was segmented into 

individual cells using the DAPI staining and a positivity threshold for each marker was 
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determined based on published staining patterns (VISTA (26), CTLA4 (27), and ADORA2 

(28)) and fluorescence intensity for that specific antibody.

Results

Acral melanoma specimens have a heterogeneous tumor microenvironment.

To interrogate the tumor microenvironment (TME) of acral melanoma at single-cell 

resolution, we performed droplet-based scRNA-seq on 9 surgical specimens from 8 patients. 

These were derived from 5 primary acral melanomas (AM2, AM3, AM4, AM6, AM8-

primary) and 4 acral melanoma locoregional lymph node metastases (AM1, AM5, AM7, 

AM8-mets) (Supplemental Table 3). Two samples were from the same patient (AM8): a 

primary toe acral melanoma and lymph node metastasis. Since initial tissue collection, 4 

patients experienced either disease recurrence or developed a new metastasis (Supplemental 

Table 3). Full clinical information and mutational status is shown in Supplemental Table 3. 

The only clinically relevant mutations identified were: AM4: NF1 mutation (L581Ffs*6), 

AM7: BRAF-V600E mutation and AM8: NF1 mutation (R1207*). Several variants of 

unknown significance were identified including KIT V339I and NRAS G115A in AM1 

and BRAF L711V in AM6 (MAF files provided in Supplemental Material).

Visualization of subpopulations of cells and genes in t-distributed stochastic neighbor 

embedding (t-SNE) projections (Figure 1A), demonstrated the acral melanoma samples 

to consist of a diverse landscape of malignant and host cell types (Figure 1B). A total 

of 10 broad cell types (melanoma cells, macrophage/monocyte/DCs, T/NK cells, pDCs, 

fibroblasts, B cells, plasma cells, endothelial cells, hematopoietic stem cells [HSC] and 

other) were identified at this level (Figure 1C–E). Pooled analysis of all samples revealed 

the melanoma cells to be the most diverse population of cells and that most patients’ 

cells formed their own distinct clusters, whereas the stromal and immune cell subtypes 

from different patients tended to cluster together (Figures 1A–C). InferCNV analysis 

demonstrated that the cells identified as melanoma cells had patterns of amplification and 

deletion characteristic of malignant cells (Supplemental Figure 1). At the individual sample 

level, considerable variability was seen in the cell composition (Figures 1D–E, Supplemental 

Table 4, proportions of non-tumor cells in each sample are shown in Supplemental Figure 

2). Of interest, some specimens (e.g., AM2, AM4) were characterized by a high degree 

of immune infiltrate, whereas others (e.g., AM3, AM6, AM7, AM8-primary) had a high 

proportion of tumor cells with much less immune infiltrate (Figure 1D–E). Analysis of 

the Hematoxylin & Eosin stained samples by our study pathologist revealed reasonable 

agreement between the cell type proportions identified by scRNA-seq and those seen by 

histological evaluation (Supplemental Figure 3). It should be noted that there are limitations 

in directly comparing results from highly quantitative scRNA-seq approaches and generally 

qualitative H&E pathology annotation in a quantitative manner. Additionally, the cells 

isolated for scRNA-seq come from a small area of the tumor, which may not represent 

the heterogeneity of the entire tumor.
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The lymphocytic landscape of acral melanoma.

To better understand the landscape of lymphocytes in acral melanoma in finer detail, we 

applied a second stage of clustering and curation to map the substructure of the cell 

populations, including all of the T and NK cells (Figure 2A,B). A high-level overview 

of the lymphocyte population indicated distinct patterns of gene expression in terms of 

effector/cytotoxic markers (e.g., GZMB, IFNG) and checkpoint markers (PD-1, CTLA-4, 

TIM-3, LAG-3, etc.) (Figure 2C). A breakdown of the lymphocyte subsets revealed there to 

be a total of 18 subgroups, 9 sub-clusters of CD4 cells (with one cluster of CD4 regulatory 

T cells [Tregs] and one of T follicular helper cells [TFH]), 6 clusters of CD8 T cells 

(including effector memory T cells: [TEM] and tissue-resident memory T cells: [TRM], 

HSCs and two subgroups of NK cells (Supplemental Figure 4 and Supplemental Table 

5 shows how gene expression differentiates each cluster, Supplemental Figure 5 shows 

lineage marker expression across clusters). To further determine the likely activation status 

of each identified T and NK cell subset, we next interrogated the data for known activation/

exhaustion markers and assigned inferred activation states to each (Figure 2D, Supplemental 

Table 6). Among the major populations of T cells identified, the Clusters #1, 2 and 6 of 

T cells were judged to be naïve CD4 T cells, the Clusters #3 and #4 were activated but 

non-proliferating CD4 T cells and Clusters #7 and #8 were activated, proliferating CD4 

T cells. Within the CD8 T cells, Cluster #10 and #11 were considered to be in an “early 

activation state”, cluster #12 was activated but non-proliferating (Figure 2D). CD8 T cell 

Cluster #13 was predicted to be a TEM cell phenotype and clusters #14 and #15 were CD8 

TRM phenotypes. An analysis of the T cell profiles of each individual tumor demonstrated 

some, such as AM1, AM2, AM3, and AM4 to have increased proportions of exhausted T 

cell subsets, and to harbor the most Tregs (Figure 2E). It was additionally noted that acral 

melanomas harbored 3 sub-clusters of B cells and 2 of plasma cells (Supplemental Figure 

6 and Supplemental Table 4). The highest proportion of B cells were found in AM1, AM4 

and AM8-met. AM3, AM5 and AM7 had very low numbers of B cells (Supplemental Figure 

6). As B cells were found both in the lymph node metastases and some primary tumors it is 

not possible to determine whether the B cells in the metastases were from the surrounding 

lymphatic tissue or the tumor microenvironment

The myeloid environment of acral melanoma.

We next turned our attention to the landscape of myeloid cells in acral melanoma and 

identified macrophages, monocytes, and dendritic cells (cDC1–2, DC3, pDC) (Supplemental 

Figure 7A,B). We then analyzed the myeloid cell populations for the key distinguishing 

markers (Supplemental Figure 7C and Supplemental Table 7, Supplemental Figure 5 

shows lineage marker expression across clusters) and the entire landscape for expression 

of melanoma antigens and MHC genes (Supplemental Figure 7D). Most melanoma cells 

retained the expression of melanoma antigens (e.g., SOX10, MLANA, S100A1, etc.). 

Some melanoma clusters showed low expression of class I MHC (e.g., B2M, HLA-A, 

HLA-B, etc.). The majority of class II MHC was expressed in B cells and the myeloid 

cell populations (Supplemental Figure 7D). An analysis of the phenotypic breakdown of the 

myeloid cells by sample showed some to have macrophages as the major cluster (e.g., AM4, 

AM8-primary and AM7), whereas others were more characterized by high proportions of 

dendritic cells (e.g., AM2, AM3, AM5 and AM8-mets) (Supplemental Figure 7E).
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Primary and metastatic acral melanomas have distinct transcriptional profiles.

We next determined the differences between primary and metastatic acral melanomas 

(Figure 3A). Most of the metastatic samples were from lymph nodes and, as expected, 

contained more B cells and CD4 T cells and fewer endothelial cells and fibroblasts than the 

primary lesions (Figure 3A). A higher proportion of myeloid cells (macrophages, monocytes 

and dendritic cells) were observed in primary samples than metastatic samples (p = 0.014) 

while no major differences found between other cell types. A more in-depth analysis of 

the lymphocyte compartment of matched primary and metastatic samples from the same 

individual (AM8) was performed (Supplemental Figure 8A–B). It was noted that the primary 

had multiple subsets of CD8 T cells, NK cells and TFH CD4 cells. By contrast, the lymph 

node metastasis contained far fewer CD8 T cells, NK cells, monocytes and macrophages and 

showed increased infiltration of two subsets of CD4 T cells and B cells, pDCs and cDC2s 

(Supplemental Figure 8C,D). Preclinical studies have shown melanomas to be composed 

of cells with different transcriptional states that interact to drive tumor progression and 

drug resistance (29,30). We utilized the Seurat clusters of melanoma cells, defining 16 

transcriptional states with unique gene signatures (Figures 3B, Supplemental Table 2). 

We investigated whether acral melanomas (with their lower mutational burdens) showed 

a similar degree of heterogeneity and how the transcriptional make-up differed between 

primary and metastatic acral melanomas (Figure 3C). It was noted that some transcriptional 

clusters were shared across specimens (Supplemental Table 4). Among these Cluster #1 

(enriched for genes involved in telomere maintenance) was found in AM2 and AM6, Cluster 

#5 (suppression of genes involved in mitochondrial transport/respiration) was identified 

in AM1, AM2, AM3, AM5 AM6 and AM7, Cluster #6 (development and cytoskeletal 

remodeling) was in AM2, AM3 and AM4 and Cluster #8 (suppressed WNT signaling and 

apoptosis induction) was in AM2 and AM6 (Figure 3C and Supplemental Table 2). These 

groups of tumor cells may exhibit differences in immune recognition, because some clusters 

(e.g., #8) had higher expression of MHC class II molecules, whereas clusters #0, 5, 6, 9 and 

15 had reduced expression of Class I MHC (Supplemental Figure 9). We next investigated 

the relationships of the 16 acral melanoma clusters with respected to previously reported 

transcriptional states (e.g. MITF and AXL gene signatures (11) and the 7 signatures (ranging 

from Undifferentiated to Melanocytic), as described in (31) (Supplemental Figure 10). We 

then performed PCA analysis of expression levels of genes within each of the 9 signatures 

as listed in Supplemental Table 8. The PC1 scores were used to summarize each signature 

and visualized across 16 clusters using boxplots. We observed the PC1 scores of Neural 

crest-like signature in Cluster #2 and Cluster #12 (Supplemental Figure 10A). In addition, 

we observed the transitory stage in Cluster #11 and Cluster #14 which were primarily found 

in AM5 and AM1 (Supplemental Figure 10B). The loadings for each gene were summarized 

in Supplemental Table 8. For instance, the genes in the neural crest signature with high 

(negative) PC1 loadings such as SFRP1, CADM3, PHLDA2, and NES are higher expressed 

in Clusters #2 and #12 (Supplemental Figure 10C) while the genes in the transitory signature 

with higher PC1 loading such as RNASE1, ALDH1A1 and FXYD3 are higher expressed in 

Cluster #11 (Supplemental Figure 10D).

A detailed comparison of the primary and metastasis samples revealed altered expression of 

genes implicated in melanin synthesis/metabolism, metabolic regulation and developmental 
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programs (Figure 3D,E). Among these increased in the metastases was the transcriptional 

regulator CITED1, a CBP/EP300 interacting gene known to regulate MITF expression in 

cutaneous melanoma (32,33) (Figure 3E). Other genes noted to be higher in the acral 

melanoma metastases included those implicated in the cell cycle (CDKN2A), the immune 

response (CTSK, RARRES2) and metabolism (APOC1, SDHA) (Figure 3E).

To study the heterogeneity in a more controlled setting, we next compared the transcriptional 

profiles of the tumor cells from the matched primary and lymph node metastasis samples 

from AM8. InferCNV analysis confirmed that the AM8-primary and AM8 met samples 

showed similar patterns of gains and loss (Supplemental Figure 11). These analyses revealed 

the primary melanoma to be split between 2 major sub-clusters (#2 and #3) and the 

metastasis to be dominated by sub-cluster #3 (Figure 3C). It was noted that the metastasis 

sample had fewer cells in sub-cluster #2, which had higher expression of genes involved 

in interferon responses (IFITM1, IFI27, MX2) and metabolism (IGFBP4, SLC25A46) 

(Figure 3B,F). Instead, the lymph node metastasis was enriched for cell-cell adhesion 

genes including CADM3, NDRG2 and CCD80 (involved in adhesion and regulation of 

WNT signaling) and multiple immune regulatory genes including HLA-A, HLA-C and 

multiple mediators of the interferon response. Together, these results imply a role for altered 

metabolism and changes in expression of immune modulatory molecules in the development 

of metastatic acral melanoma.

The immune microenvironment of acral melanoma is characterized by reduced immune 
infiltrate, less NK cells and γδ T cells.

Although acral melanoma is considered less responsive to immune checkpoint inhibitor 

therapy than melanoma arising on non-acral skin, little is known about how the immune 

environments of these two melanoma subtypes differ. To address this, we compared 

the immune landscapes of from scRNA-seq data from 5 non-acral cutaneous melanoma 

metastases previously analyzed by our group (10) and two previously published non-acral 

melanoma datasets (GSE115978 and GSE72056 (11,12)) to our acral melanoma specimens 

(Figure 4A,B and Supplemental Figure 12). A statistical analysis demonstrated the acral 

melanomas to have significantly fewer pDC, CD8 T effector memory cells and NK cells, 

and very few γδ T cells (Figure 4B,C and Supplemental Figure 13). We then compared the 

extent of immune infiltrate in our acral and non-acral melanoma samples to two previously 

published non-acral melanoma single cell datasets (GSE115978 and GSE72056) (11,12). 

It was noted that the levels of immune infiltrate were similar across all three non-acral 

melanoma datasets, and that these were significantly higher than those in our acral samples 

(Figure 4D). The mean level of immune infiltrate for acral melanoma was 39.1% (95% 

CI: 13.1–65.1%) and was much higher for non-acral melanoma samples from our previous 

study [66.6% (95% CI: 33.5–99.7%); N=5] (10). The other non-acral cutaneous scRNA-

seq datasets had similar findings as our non-acral melanoma samples [71.2% of immune 

infiltrate (95% CI: 61.8–80.7%) for GSE115978 (N=32), and 67.6% (95% CI: 51.9–83.3%) 

for GSE72056 (N=19)].

To further validate our findings in a larger cohort of samples, we interrogated the TCGA 

datasets for non-acral cutaneous melanoma (N=443) and acral melanoma (N=36) to map 
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immune cell gene signatures in each tumor bulk sample (Figure 4E). Cell type enrichment 

was estimated using xCell. This analysis also revealed lower proportion of CD8 T effector 

memory cells, NK cells and γδ T cells in the acral samples compared to the non-acral 

cutaneous (Figure 4E). Levels of pDCs between the two sample sets did not show a 

significant difference in the TCGA dataset.

As loss of MHC expression can affect immune recognition, we next looked at expression of 

MHC genes and noted similar levels of MHC class I expression between acral and non-acral 

cutaneous melanomas. Some acral melanoma samples had reduced MHC expression, e.g. 

HLA-B in AM3 and AM7 and B2M in AM3 (Supplemental Figure 14). Of note, both AM3 

and AM7 had a high proportion of tumor cells compared to immune infiltrate (Figure 1D).

Acral melanoma and cutaneous melanoma have different patterns of cell-cell 
communication in the immune microenvironment.

To better understand the nature of the immune landscape of acral melanoma, we performed 

cell-cell interaction analysis using SingleCellSignalR (21). This method, which maps 

expression of ligand-receptor pairs between different tumor and host immune cells in the 

TME, allows potential cell-cell interactions to be inferred. As the total number of cells 

was less in the non-acral samples, we downsampled the acral data so that the number 

of cells per sample in two sample types were equivalent. Across samples, several trends 

were noted. The non-acral cutaneous melanoma cells showed increased communication (i.e., 

immune cell->tumor) with CD4 T cells, CD8 T cells, cDC2 cells, NK cells, monocytes, 

macrophages, fibroblasts and endothelial cells; especially with NK cells and cDC2 cells 

(p = 0.01 and 0.045, respectively) compared to the acral melanoma cells. (Figure 5A,B 

and Supplemental Table 9). An equivalent cell-cell interaction analysis was also performed 

across the publicly available scRNA-seq datasets and is shown in Supplemental Figure 15.

As our analyses of the immune landscape identified reduced numbers of NK cells in 

acral melanomas, we next asked whether this resulted from differences in specific cell-cell 

interactions. The sample level analysis identified very few NK cells in most of the acral 

melanoma samples, with AM2 showing the highest NK cell proportion (Supplemental 

Figure 16). Interestingly, most acral melanoma samples had NK cells from the NK18 cluster 

whereas AM2 was mostly NK17 cluster that had lower expression of cytotoxicity markers 

(such as GMZM, GMZK) (Figure 2D and Supplemental Figures 16,17) (34), whereas AM4 

and AM8-primary had NK cells with a more cytotoxic profile (NK18). An analysis of 

the inferred interactions between NK cells and all other tumor/immune cell types in both 

acral and non-acral cutaneous melanomas demonstrated most acral melanoma samples to 

have fewer inferred NK cell-immune/tumor interactions (Supplemental Figures 18A,B). 

Similarly, higher numbers of inferred NK cell-immune/tumor interactions were observed 

in non-acral cutaneous melanoma samples in an additional public scRNAseq dataset 

GSE115978 (Supplemental Figure 19). In the three acral melanoma samples with predicted 

NK cell-immune cell/tumor interactions (AM2, AM5, AM6, AM8-primary), the interactions 

observed were similar to those seen in non-acral cutaneous melanomas (Supplemental 

Figure 18B). An in-depth analysis of the specific inferred communication identified NK cell 

receptor (KIR2DL3, KLRF1)-mediated interaction with components of MHC (e.g., HLA-A, 
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HLA-B, HLA-C and B2M) as occurring frequently in non-acral cutaneous melanomas 

(Supplemental Figure 20A,B). Similar NK cell-immune/tumor interactions were identified 

in the public melanoma scRNA-seq dataset GSE115978 (Supplemental Figure 21).

To better visualize the complexity of tumor-immune environment in acral vs. non-acral 

cutaneous melanoma we next mapped all cell-cell interactions and represented these as 

directional Circos plots (Figure 5C). For these analyses, we excluded AM7 as no significant 

immune-tumor or immune-immune cell interactions were observed (since the sample was 

mostly melanoma cells). Although our sample size was somewhat limited, there was a 

trend towards acral melanoma samples having a reduced density of cell-cell communication 

in the immune microenvironment compared to cutaneous melanomas. As one caveat, the 

cell-cell interactions between the acral and non-acral melanoma cohorts are likely not 100% 

comparable due to the differences in cell composition between the two sample sets.

The immune checkpoint expression landscape of acral melanoma

As immune checkpoints are key regulators of T cell activation and immune cell infiltration, 

we next determined the landscape of checkpoint expression in the cells of the acral 

immune microenvironment. A diverse pattern of checkpoint expression was noted across 

the immune cell types including expression of CTLA-4, PDCD1 (PD-1), LAG-3, TIGIT 

and VISTA (VSIR) in the T/NK cell population (Figure 6A). To further identify checkpoint 

genes of interests, we compared gene expression levels in the T/NK cell compartment 

in the acral and non-acral cutaneous melanoma samples. Within our small cohort it was 

noted that acral melanomas had significantly lower expression of TIM-3 (HAVCR2) and 

increased expression of VISTA and ADORA2 (adenosine receptor A2A) in their T/NK 

cells compared to non-acral cutaneous melanomas (Figure 6B and Supplemental Figure 22). 

At the individual sample level, it was found that some acral melanoma samples exhibited 

expression of ADORA2 in their T/NK cells with others having ADORA2 expression in 

their plasma cells (AM6 and AM8) and myeloid cells (AM2) (Figure 6C). It was further 

found that expression of CD73 (NT5E), the enzyme that generates adenosine (35), had a 

significantly higher expression in the acral melanoma samples compared to the non-acral 

cutaneous melanoma (Supplemental Figure 23). VISTA was expressed in 58.3% (95% 

CI: 46.7–69.9%) of myeloid cells, and 18.6% (95% CI: 10.0–27.1%) across all types 

(Supplemental Table 10). Although not differentially expressed between acral and non-acral 

samples, TIGIT was noted to be expressed in 22.3% (95% CI: 18.6–25.9%) of T/NK cells 

in acral melanoma samples. LAG3, was also found to be expressed in 12.9% (95% CI: 8.7 

−17.2%) of T/NK cells and 12.6% (95% CI: −15.4 ~ 40.7%) of pDCs in acral melanoma 

samples (Figure 6C). However, as noted, due to the small sample size, the 95%CI is wider 

than desired for small cell clusters, such as pDCs. Although less TIM-3 expressed in acral 

than non-acral cutaneous melanoma in T/NK cells, it is worth noting that 29.2% (95% CI: 

23.07–35.4%) of the myeloid cells in acral melanoma did express the gene. Sample level 

proportional expression is shown for multiple other checkpoints in Supplemental Figure 

24. Multiplexed IHC analysis of VISTA, ADORA2 and CTLA-4 confirmed the presence 

of all three checkpoints in acral melanoma samples (Figure 6D,E,F). Expression of TIGIT, 

VISTA and ADORA2 in publicly available melanoma scRNA-seq datasets is shown in 

Supplemental Figure 25.
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Discussion

We have undertaken the first comprehensive analysis of the immune/tumor transcriptional 

landscape of acral melanoma, a rare subtype of melanoma that arises on areas of the 

body with relatively little exposure to ultraviolet radiation (1). Our study identified unique 

features of the immune environment of acral melanoma, including immune checkpoints of 

translational interest that could represent novel therapeutic targets for this neglected disease.

In common with melanoma arising on non-acral skin, acral melanomas were found 

to have diverse immune landscapes, with a high degree of interpatient heterogeneity 

(10,11). The most heterogeneous cell compartment in acral melanoma was the tumor 

cells (10,11). Like non-acral cutaneous melanomas, acral melanomas were composed 

of multiple, transcriptionally heterogeneous cancer cell states (10,21,30). Alterations in 

immune pathways and metabolism were noted when comparing pooled primary acral 

melanoma samples to those from acral melanoma metastases.

Within our sample set, some acral melanoma specimens had a very low extent of immune 

infiltrate and a high percentage of cancer cells, whereas others were comprised mostly 

of immune cells and stromal cells with only a small proportion of cancer cells. In some 

cases, these differences may have been a reflection of decreased MHC expression on the 

tumor cells, as has been reported for other non-acral cutaneous melanoma and other cancers 

(36,37).

We next sought to understand how the TME of acral melanoma differed from that of 

non-acral cutaneous melanoma. Analysis of our cohort of acral melanoma samples showed 

there to be significantly less infiltration of NK cells, pDCs, CD8 (TEM) T cells and γδ T 

cells compared to non-acral cutaneous melanomas. Among these, γδ T cells constitute a 

minor T cell subset (1–10% of CD3+ cells in the peripheral blood) that have been previously 

implicated in the immune recognition of melanoma (38–40). In contrast to conventional 

αβ T cells, γδ T cells do not recognize antigen loaded onto MHC but instead recognize 

tumors independently of antigen processing and HLA restriction (40,41). Activation of γδ T 

cells can occur in response to recognition of metabolic intermediates generated by bacteria, 

parasites (42,43) and some tumors (44,45). Intriguingly, γδ T cells share multiple receptors 

with the innate immune system’s NK cells (such as NKG2D, NKp30, NKp44) which can 

directly trigger cytotoxic activity (46,47).

Like γδ T cells, NK cells can also be activated without DC priming and can recognize tumor 

cells that lack MHC expression (48). NK cells express cytotoxic proteins commonly found 

in CD8 T cells (such as GMZB, GZMK, perforin, etc.) that directly kill target cells (49). 

There is evidence from both preclinical and clinical studies in melanoma that recruitment 

of NK cells is associated with responses to both targeted therapy and immunotherapy 

(50,51). A recent scRNA-seq characterization of circulating and tumor-associated NK cells 

in patients with melanoma identified 7 unique clusters of cells (34). These appeared to 

represent different levels of functional specialization, with some clusters exhibiting higher 

expression of the chemokines XCL1 and XCL2, associated with a reduced cytotoxicity 

profile and others with increased expression of CCL3, CCL4 and CCL5 and a cytotoxicity 
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gene expression signature (34). Analysis of the limited numbers of NK cells in our acral 

melanoma samples demonstrated most of the NK cells (73%) to be from one sample (AM2). 

Interestingly the NK cells in AM2 (NK17 cluster) seemed to express reduced levels of 

granzyme, indicating that these could be less cytotoxic (34).

Immune checkpoints limit immune cell recruitment and activation the TME. Quantification 

of immune checkpoint expression identified VISTA, ADORA2 and TIGIT as checkpoints 

that have not been previously characterized in acral melanoma. Although our data suggested 

ADORA2 and VISTA expression was higher in acral melanoma compared to non-acral 

cutaneous melanoma, our sample size was limited and some caution is advised.

ADORA2, which encodes the G-protein coupled adenosine A2A receptor (A2AR), is an 

important immune checkpoint that regulates the accumulation of CD8 effector T cells and 

NK cells (52–54). The major function of the adenosine/ADORA2 pathway is to protect 

tissues from immune-mediated damage following non-infectious inflammation. In tumors, 

altered metabolism and increased expression of the 5’-nucleotidase (NT5E: also known 

as CD73), which converts AMP to adenosine can lead to increased adenosine levels in 

the microenvironment (54,55). Our analyses identified high expression of ADORA2 in 

some acral melanoma specimens. Two of the major cell types known to be affected by 

increased tumoral adenosine levels are CD8 effector T cells and NK cells (53,54) - cell 

types that showed a lower accumulation in acral melanoma compared to non-acral cutaneous 

melanomas. We additionally noted a reduced accumulation of γδ T cells, which are known 

to express high levels of the adenosine A2A receptor (56). Multiple antagonists of ADORA2 

have been developed, with early indications that these compounds work effectively in 

combination with anti-PD-1 with responses seen in patients who derived no benefit from 

prior anti-PD-1/PD-L1 therapy (57).

Another immune checkpoint identified in acral melanoma is the type I transmembrane 

protein VISTA (V-domain immunoglobin suppressor of T cell activation) (58). VISTA, 

which has a high degree of structural homology with PD-L1, is highly expressed in myeloid 

cells (including neutrophils, monocytes, macrophages and dendritic cells) as well as on 

naïve CD4 T cells and FOXP3+ Tregs (58,59). Preclinical studies have shown that inhibition 

of VISTA can suppress CD3-stimulated proliferation of CD4 and CD8 T cells as well as the 

production of IFNγ and IL-2 (59). In melanoma, single agent anti-PD-1 or the anti-PD-1/

anti-CTLA-4 combination therapy increases VISTA expression on lymphocytes. Enforced 

expression of VISTA in melanoma cells reprograms the tumor immune microenvironment 

leading to increased PD-L1 expression in tumor-associated macrophages, increased Treg 

infiltration and reduced MHC expression on dendritic cells (60). Other studies have shown 

that increased VISTA expression in primary melanoma is a negative prognostic factor and 

that VISTA expression is associated with acquired resistance to anti-PD-1 therapy (61,62). 

In our acral melanoma cohort, VISTA was expressed across multiple cell types with the 

highest levels seen in myeloid cells. Significant expression was also noted in plasma cells, T 

and NK cells and endothelial cells. Expression of VISTA in acral melanomas indicates this 

could be another potentially valuable combination partner for anti-PD-1 therapy.
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A further interesting immune checkpoint identified from our scRNA-seq analysis of acral 

melanoma specimens is the T cell immunoreceptor with immunoglobulin and ITIM domain 

(TIGIT) (63). This checkpoint, which is expressed on activated CD4 and CD8 T cells and 

NK cells, binds to CD112 and CD155 which are expressed on both melanoma cells and 

on antigen-presenting cells, such as DCs (64). The immunosuppressive activity that follows 

TIGIT activation is multi-factorial and can involve direct suppression of T and NK cell 

activity, the induction of an immunosuppressive phenotype in DCs, and the inhibition of 

CD226 signaling in tumor cells and DCs leading to impaired T cell and NK activation 

(63). At the same time, TIGIT is highly expressed on Tregs, with its activation leading to 

increased Treg stabilization (65). In melanoma patients, co-inhibition of PD-1 and TIGIT 

increases the proliferation and function of tumor-reactive CD8 T cells. There is also 

evidence that increased expression of the TIGIT ligand CD155 is associated with PD-1 

therapy resistance in melanoma patients (66). Multiple studies have also demonstrated that 

TIGIT mediates exhaustion in NK cells, and that its blockade can restore NK cell function 

(67,68). It is therefore likely that the combination of anti-PD-1 and TIGIT checkpoint 

inhibition could be a potential strategy to restore T cell and NK cell function in acral 

melanoma.

Our study does have several caveats. Firstly, our sample size was quite limited (N=9 

samples) and only one pair of specimens were matched. Additionally, comparing across 

different datasets, e.g. our data vs. TCGA and other single cell datasets can be confounded 

by technical and batch effects and therefore should be interpreted with caution.

Acral melanoma is a rare subtype of melanoma that has been less well characterized than 

cutaneous melanoma arising on non-acral skin. The current standard of care for acral 

melanoma is the same as that for non-acral cutaneous melanoma, but there is evidence 

that anti-PD-1 and anti-CTLA-4 checkpoint inhibition may be less effective in acral 

melanoma. Our analyses demonstrate that acral melanoma has a less T cell inflamed 

immune environment than non-acral cutaneous melanoma and may require additional 

checkpoint inhibition. Our identification of ADORA2, TIGIT and VISTA as novel immune 

checkpoints in acral melanoma offers new avenues for combination immunotherapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational relevance

Acral melanoma is an understudied subtype of melanoma that arises on the non-hair-

bearing skin of the soles, palms, and nail beds. Metastatic acral melanomas are 

treated primarily by immunotherapy, with worse outcomes than those observed in other 

cutaneous melanomas. Here, we provide the first single-cell analysis of primary and 

metastatic acral melanoma and identify fewer effector CD8 T cells and NK cells and an 

absence of γδ T cells compared to non-acral cutaneous melanoma. We further identify 

both VISTA, TIGIT and immune suppressive adenosine signaling as targetable immune 

checkpoints in acral melanoma.
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Figure 1. Defining the cellular landscape of acral melanomas.
A, t-SNE plots showing cellular landscapes based on sample of origin. B, t-SNE plots 

showing cellular landscapes based on major cell types. C, t-SNE plots showing cellular 

landscapes based on detailed cell typing. D, Proportion of cells from major cell types 

identified from each sample. E, Number of cells from the major cell types identified in each 

sample.
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Figure 2. The T and NK cell landscape of acral melanoma.
A, t-SNE analysis showing distribution of T and NK cell clusters across all samples. B, 

t-SNE analysis showing distribution of cells based on sample of origin. C, Expression of 

key T cell activation markers and immune checkpoints across all samples. D, Expression of 

T and NK cell markers associated with active/exhausted/proliferative transcriptional states 

across the subsets of T and NK cells. E, Pie charts show proportions of T and NK cell 

composition by sample. Colored halo indicates predicted activation/exhaustion/proliferative 

status of each T and NK cell sub-cluster based on gene-expression profiles across all 

samples.
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Figure 3. Tumor cell heterogeneity in acral and cutaneous melanomas.
A, Pie charts show proportions of major cell subpopulations in each primary and metastatic 

sample. B, Unsupervised clustering identified 16 clusters of melanoma cells across all acral 

melanoma samples based on gene-expression profiles. C, t-SNE analysis (top) and pie charts 

(bottom) show melanoma heterogeneity across primary and metastatic samples. D, ShinyGO 

Gene Ontology enrichment analysis of genes differentially expressed between primary and 

metastatic acral melanoma samples, showing the major functional pathways affected. E, 
Heatmap shows genes differentially expressed in melanoma cells between primary and 

metastatic acral cutaneous melanoma samples. F, String analysis of top 20 differentially 

expressed genes associated with cluster 2 and cluster 5 of melanoma cells (ranked based 

on differential expression and proportion of cells expressing each marker). Each sphere 

represents a protein product of each gene marker and the lines represent known interactions 

Li et al. Page 24

Clin Cancer Res. Author manuscript; available in PMC 2022 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



among the protein products of each gene. Dotted lines group markers with known roles in 

similar biological processes.
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Figure 4. Comparing immune landscapes between acral and non-acral cutaneous melanoma
A, Pie charts show proportions of major immune cell subpopulations in individual acral 

and cutaneous melanoma samples. B, The average proportion of the major immune cell 

subpopulations in acral and non-acral cutaneous melanoma sample cohorts. C, Boxplots 

showing proportion of immune cell subpopulations which are differentially represented 

between acral and non-acral cutaneous melanoma sample cohorts (Wilcoxon test). D, 
Heatmap of normalized xCell Scores from analysis of acral and non-acral cutaneous 

melanoma specimens in the TCGA dataset. F, Boxplots showing proportion of γδ T cells, 

NK cells and CD8 T effector memory cells in acral and non-acral cutaneous melanoma 

specimens in the TCGA dataset (Wilcoxon test).
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Figure 5. Cell-cell interactions in cutaneous acral and non-acral melanomas.
A, Heatmap showing the mean LR scores from SingleCellSignalR cell-cell interaction 

analysis of acral and non-acral cutaneous melanoma specimens. B, Heatmap showing the 

LR scores from SingleCellSignalR analysis of individual acral and non-acral cutaneous 

melanoma specimens. C, Circos plots showing the mean cell-cell interactions in non-acral 

cutaneous and acral melanoma samples.
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Figure 6. Immune checkpoint expression in acral and non-acral cutaneous melanomas.
A, Heatmap showing the average expression of immune checkpoint receptors across major 

immune cell populations in acral melanoma samples. B, Boxplots showing expression 

of major immune checkpoints between acral and non-acral cutaneous melanoma sample 

cohorts (Wilcoxon test). C, Heatmaps showing proportion of cells expressing ADORA2, 

TIGIT and VISTA across cell types in individual samples of acral melanoma. D, 
Quantification of immunofluorescent staining of ADORA2, VISTA and CTLA4 checkpoints 

in acral melanomas, showing number of cells positive for each marker according to location 

within the tumor. E, Representative images of the immunofluorescent staining of VISTA 

in acral melanoma samples. F, Representative images of the immunofluorescent staining of 

ADORA2 in acral melanoma samples.
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