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Abstract

Improvements in understanding the neurobiological basis of mental illness have unfortunately not 

translated into major advances in treatment. At this point, it is clear that psychiatric disorders are 

exceedingly complex, and that in order to account for and leverage this complexity, we need to 

collect longitudinal datasets from much larger and more diverse samples than is practical using 

traditional methods. We discuss how smartphone-based research methods have the potential to 

dramatically advance our understanding of the neuroscience of mental health. This, we expect, 

will take the form of complementing lab-based hard neuroscience research with dense sampling 

of cognitive tests, clinical questionnaires, passive data from smartphone sensors, and experience-

sampling data as people go about their daily lives. Theory- and data-driven approaches can help 

make sense of these rich data sets, and the combination of computational tools and the big data 

that smartphones make possible has great potential value for researchers wishing to understand 

how aspects of brain function give rise to, or emerge from, states of mental health and illness.
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INTRODUCTION

As our understanding of the neurobiological and cognitive correlates of mental health and 

mental illness has grown through decades of research, one thing has become clear: Things 

are more complicated than we might have hoped. The notion of one-to-one mappings 

between abnormalities in specific brain areas or cognitive markers and individual categories 

from the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (APA 2013) 

has all but been abandoned. Much like the field of neuroscience overall (Button et al. 

2013), clinical neuroscience research has been substantially underpowered (Marek et al. 
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2020), and the findings from many studies do not hold up when subjected to large-scale 

replication attempts (Rutledge et al. 2017) or meta-analyses (Müller et al. 2017, Widge 

et al. 2019), and when they do, effect sizes are small (Marek et al. 2020) and dependent 

on disorder versus healthy control comparisons (Davidson & Heinrichs 2003, Hoogman 

et al. 2019), rather than being specific to one diagnostic category over the next (Bickel 

et al. 2012, Gillan et al. 2017, Lipszyc & Schachar 2010). Excitement about the role of 

candidate genes or gene–environment interactions in major psychiatric disorders has been 

replaced with the acknowledgment that complex mental health conditions are massively 

polygenic, and single genes likely carry very small individual risk (Farrell et al. 2015, Flint 

& Kendler 2014). Likewise, in terms of environmental influences, childhood adversity and 

stress confer similar generalized risk for psychopathology (Kessler et al. 1997), and while 

substantial, it is far from deterministic. These influences may compete and interact with 

myriad other factors such as diet (O’Neil et al. 2014), exercise (Chekroud et al. 2018), 

the gut microbiome (Kelly et al. 2015), social isolation (Richard et al. 2017), urban living 

(Paykel et al. 2000), socioeconomic status (Lorant et al. 2003), sleep (Ford & Kamerow 

1989), drug use (Jané-Llopis & Matytsina 2006), alcohol (Weitzman 2004), and cigarettes 

(Fluharty et al. 2017). For many of these factors, it remains challenging to arbitrate between 

causation versus selection-based explanations (Goldman 1994) and to develop strong causal 

models. The role that cognition plays in mental illness is even less-well understood because 

large epidemiological-style studies of brain process are challenging to conduct.

Here we argue that in order to develop robust neurocognitive models of mental illness, 

we must invest in new methods that can deliver on substantially richer, multivariate data 

sets and larger samples than are feasible in the traditional small, single-site studies that 

dominate the field (Figure 1). New approaches must be capable of capturing numerous 

interacting and confounding variables within the same individual, and crucially, they must 

facilitate following large cohorts through time. The vast majority of research in psychiatric 

mechanisms is cross-sectional—this, we believe, presents the most significant barrier to the 

delivery of neuroscience-informed clinical tools. If we hope to translate cognitive insights 

into clinical treatment, a major paradigm shift is needed that can move the field beyond the 

descriptive and toward the predictive (Browning et al. 2020).

To this end, we focus on smartphones as a new methodology for basic research in 

neuropsychiatry that can dramatically increase the depth and breadth of research and 

encourage a shift away from cross-sectional research to longitudinal designs that are 

essential for clinical translation. In doing so, we must, for practical reasons, feature 

cognitive, behavior and clinical measurements more than others. Later, we will discuss 

how these data can be linked to ‘harder’ tools of neuroscience, but emphasize that this 

is not the only, or indeed primary, goal of this endeavor. Much of the benefit/opportunity 

of a smartphone-based approach to clinical neuroscience is to enrich research within this 

higher-order level of analysis because (i) much is to be gained for neuroscience in the 

study of behavior alone and (ii) for those most interested in more direct measures of brain 

function, it is nonetheless these ‘levels of analysis’ that neuroscientists seek to explain, 

understand and/or predict.
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Although the uptake of smartphones for research in this field is relatively new, we draw on 

several recent examples that highlight the potential of this new discipline. Because research 

in this area is in its infancy, we will also discuss internet-based research methods more 

generally, which have risen in popularity for psychiatry research in the last five years (Gillan 

& Daw 2016) and that share some of the advantages of smartphone-based approaches, 

particularly for testing large and diverse samples. Crowdsourcing platforms that support 

browser-based testing such as Amazon Mechanical Turk (AMT) and Prolific may soon 

comprise the majority of all cognitive neuroscience studies (Stewart et al. 2017). We lay 

out a roadmap for a natural extension of this methodology with substantial added value: 

cognitive neuropsychiatry research in the age of smartphones.

DATA QUALITY

Can We Collect High-Quality Data Remotely?

Several validation studies have demonstrated that internet-based, remote cognitive testing 

yields reliable and valid data, whether collected via crowdsourcing platforms (Crump et al. 

2013, Goodman et al. 2013) or more general browser-based methods (Casler et al. 2013, 

Germine et al. 2012). Such data are often thought to be noisier than in-person data, but there 

is evidence that this is to some extent task dependent (Crump et al. 2013). For example, the 

association between normal variation in compulsivity and deficits in a relatively complex 

cognitive capacity [model-based planning (Daw et al. 2011)] requires 461 students in person 

to have 80% power to detect an effect at p < .05 (Seow et al. 2020), while online via 

AMT, the required N rises approximately 30% to 670 (Gillan et al. 2016). In a recent 

developmental study, it was shown that while 15 subjects per group are required to observe 

a change in model-based planning from childhood to adolescence, 21 are required on AMT 

(Nussenbaum et al. 2020). These differences are thus consistent, but relatively modest, and 

could be due in part to differences in subject motivation or other demographic differences 

between university-based versus AMT samples.

Cognitive task data gathered via smartphone are likely to be even noisier because the 

testing environment is less controlled as subjects participate on the go. Furthermore, unpaid 

participants may be more likely to quit tasks that they do not enjoy, leading to incomplete 

data sets. Over 40,000 people downloaded The Great Brain Experiment in the first month 

after release, and approximately 20,000 of those submitted complete data for at least one 

5-min task. Smartphone data showed similar effects to those observed in the lab and with 

comparable quality to in-person studies across multiple domains of cognition (Brown et 

al. 2014). For example, the effect of distraction on working memory performance was 

similar in magnitude in over 3,000 people assessed via smartphone (Cohen’s d = 0.42) 

and in 21 participants tested in the lab (Cohen’s d = 0.37) (Brown et al. 2014). Out-of-

sample model predictions for mood dynamics during a risk-taking task were higher, but not 

substantially so, in two lab samples (mean model fit r2 of 0.29 and 0.33) compared to a 

much larger and more diverse smartphone sample (mean model fit r2 of 0.24) (Rutledge et 

al. 2014). In contrast, effects sizes for the stop-signal reaction time (SSRT) task were three 

times larger for in-person compared to smartphone samples (Brown et al. 2014). A major 

strength of smartphone-based testing is that increased noise can be mitigated by collecting 
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substantially larger samples than are feasible to collect in person because the cost of testing 

additional subjects can be negligible. For example, for the observed reduction in the key 

effect size associated with SSRT, adequate power requires one order of magnitude more 

participants, but the sample size collected via smartphone was approximately 10,000 (Brown 

et al. 2014), more than two orders of magnitude larger than typical in-person cognitive 

studies. Aside from sample size gains, smartphone-based studies provide the opportunity 

to easily evaluate the robustness of links between symptoms and task performance with 

multiple task variations. A/B testing also allows researchers to refine the experimental 

design (Daniel-Watanabe et al. 2020) and improve upon critical reliability metrics essential 

for between-subject designs (Hedge et al. 2018). Though not outside the scope of lab-based 

experiments, smartphone tasks that are gamified naturally lend themselves to being adaptive 

to a user’s performance. For example, using Bayesian adaptive algorithms to present 

maximally informative options for the estimation of decision model parameters can greatly 

increase the efficiency of data collection (Pooseh et al. 2018).

What About Clinical Data?

The extension of this methodology to psychiatry research is rising, but perhaps more slowly 

than for cognitive science research (Chandler & Shapiro 2016). This slow pace may be 

because clinical researchers harbor doubts that such an approach is valid because remote 

formal diagnosis may be impossible. While the self-report measures that are most easily 

collected are fundamentally different, ample arguments support a move toward greater use 

of self-report measurements in psychiatry research. Without digressing into the broader 

critiques of the validity of DSM-5 constructs (Fried & Nesse 2015, Haslam et al. 2012, 

Kapur et al. 2012), it is important to highlight some salient issues related to reliability. In 

the DSM-5 field trials, which saw two clinicians perform separate diagnostic interviews with 

the same patient [interval ranging from 4 h to 2 weeks (Clarke et al. 2013)], the inter-rater 

reliability of clinician-assigned disorders was low for some of the most prevalent and 

most-studied disorders, including major depressive disorder and generalized anxiety disorder 

(GAD) (Regier et al. 2013). Without this basic psychometric property, studies aiming to link 

brain changes to disorder categories can never show strong associations. In contrast, self-

report assessments of the same constructs can perform considerably better, whether collected 

in person or online. For example, studies run on AMT find high 1-week test-retest reliability 

for the Beck Depression Inventory (r = .87) (Shapiro et al. 2013) and 3-week test-retest 

reliability for the Big Five (r = .85) (Buhrmester et al. 2011). Self-report questionnaires have 

the advantage of avoiding variability across clinician (in interpretation of patients’ responses 

to interview probes) and within clinician (the reliability of that interpretation over time).

Concerns about the utility and reliability of DSM-5 categories, particularly for the most 

common disorders like anxiety and depression, suggest that using self-report assessments 

rather than clinician-assigned diagnoses could actually improve our ability to relate changes 

in brain function to specific aspects of psychopathology. These assessments have the distinct 

advantage that they can easily collect remotely with much less effort than structured clinical 

interviews. A recent study found empirical support for this possibility (Gillan et al. 2019). 

A structured telephone-based diagnostic interview established DSM-5 diagnoses of either 

GAD, obsessive-compulsive disorder (OCD), or a combination of the two in a sample of 
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285 patients. Subjects completed multiple self-report clinical questionnaires and an online 

cognitive test of model-based planning (Daw et al. 2011), which had been previously linked 

to compulsive disorders in a series of case-control studies (Voon et al. 2014). No difference 

in cognitive performance was observed between these patient groups. However, higher 

self-report levels of compulsivity across the entire sample (collapsed across diagnostic 

categories) were associated with reductions in model-based planning ability. These data 

suggest that self-report clinical data might provide a closer mapping to underlying brain 

changes than the diagnosis one is assigned.

Although self-report has advantages for reliability, there are cases where we might expect 

self-report responses to be less valid than clinician-assigned diagnosis, and this warrants 

more careful study. One example is the study of mental health issues characterized by a 

lack of insight; for example, Shapiro et al. (2013) noted implausibly high rates of mania 

in an online sample. Another is when eligibility checks encourage deception, for example, 

by indicating to participants that they must endorse certain symptoms at prescreening in 

order to participate, one increases the chances of malingering (Chandler & Paolacci 2017). 

Attention to these and other potential issues will be critical as we develop new testing 

protocols and study designs specific to smartphone-based research. Of course, in-person 

research can also be susceptible to experimenter demand effects, and careful consideration 

of possible effects is essential for both in-person and remote studies. Beyond data integrity, 

online research methods present important ethical dilemmas that are the subject of current 

debate. Most prominent among these is the issue of clinical responsibility over subjects 

who may be anonymous participants or in locations far removed from the researcher. 

This complex issue is beyond the scope of this paper but likely to gain prominence as 

online protocols for research in this area become commonplace. When it comes to the data 

themselves, however, we can say with confidence that self-report clinical data collected 

in online studies have been shown to be valid and reliable (Chandler & Shapiro 2016), 

providing a compelling justification for the proliferation of smartphone (and other internet-

based) studies of psychiatry and cognition.

Are Smartphone Samples Representative?

An important but oft overlooked requirement for clinical translation is that the findings 

from our studies generalize to new settings and, most importantly, new samples. Most 

in-person cognitive studies evaluate primarily young and ‘WEIRD’ samples, i.e. those 

that are Western, Educated, Industrialized, Rich, and Democratic (Henrich et al. 2010). 

Online samples are typically more diverse (Buhrmester et al. 2011) (e.g., for spread of 

educational attainment and age for the Neureka app, see Figure 2a), and therefore the 

results from smartphone studies may be more likely to generalize to clinical samples. 

Moreover, smartphone studies facilitate comparison across geographic regions with relative 

ease. This fact will be crucial as we think about how findings from primarily Western 

samples translate to developing countries, where, for example, the incidence of dementia is 

expected to rise most over the next 50 years (Kalaria et al. 2008). Though age is considered 

a barrier to online research, with limited participation expected from elderly users, older 

adults increasingly use smartphones and have interest and time to participate in research, 

particularly where the topic is of relevance. For example, the Neureka app has a partial focus 

Gillan and Rutledge Page 5

Annu Rev Neurosci. Author manuscript; available in PMC 2022 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on early dementia detection, and of the first 2,000 registered users, the average age is 39 and 

14% are 60 years or older (Figure 2a). These distributions are much more representative than 

lab-based or even AMT samples (Figure 2a). Testing of thousands of elderly participants 

via The Great Brain Experiment has shown that ageing leads to working memory being 

increasingly compromised by distractors presented during encoding (McNab et al. 2015) and 

that ageing reduces risk-taking for rewards (Rutledge et al. 2016). In addition to achieving a 

greater spread of ages, it is perhaps also notable that the first 2,000 adopters of the Neureka 

app have a much broader distribution of depression symptomatology than in-person or AMT 

samples (Figure 2b), which might be a feature of citizen science research, where subjects are 

usually not paid for participation. Marketing is likely more effective for individuals with a 

personal experience of mental health, potentially leading to oversampling of individuals with 

current depression.

Smartphone-based assessment can also resolve potential confounds or provide important 

qualifiers to gender-based findings. A recent example was the finding of gender differences 

in spatial navigation ability in 2.1 million users of the Sea Hero Quest app (Figure 3). While 

this finding is relatively well documented in smaller face-to-face studies (Linn & Petersen 

1985), Coughlan et al. (2019) used their large data set to reveal an important qualification—

the difference between genders was partially explained by the extent of the gender inequality 

in the country from which data were drawn (Coutrot et al. 2018).

HOW SMARTPHONE DATA CAN ENHANCE COGNITIVE NEUROSCIENCE 

RESEARCH IN PSYCHIATRY

Repeated Within-Subject Assessment

A relative dearth of within-subject longitudinal assessment of cognition, behavior and 

thought in contemporary neuroscience research represents a significant gap in knowledge 

that impedes our ability to develop and test causal models. Smartphones make possible 

dense experience sampling and the sort of repeated within-subject measurement that 

is essential for developing explanatory accounts of how changes in specific aspects of 

brain function might lead to, or result from, mental illness. The growing utilization of 

personal smartphones makes possible large-scale inexpensive research in neuropsychiatry; 

cognitive tests and self-report measurements can be rolled out at scale to thousands of 

research participants simultaneously and through time. To reduce the burden on participants, 

smartphones uniquely support the seamless integration of passive proxies for self-reported 

data points, and cognitive tasks can be designed to maximize engagement and enjoyment. 

Moreover, users can be prompted to participate as they go about their daily lives, 

increasing our ability to study brain and behavior in naturalistic settings. As outlined in 

the introduction, we will largely focus our discussion on indirect measures of brain function 

(i.e. cognition), experiences (e.g. behavior) and self-report (e.g. emotions) that can be easily 

gathered via smartphone. Later, we will describe how these data can be further enriched with 

more direct ‘hard’ tools of neuroscience, first in humans and ultimately across species.

The added value of rich within-subject assessment via smartphone is nicely illustrated in the 

findings from the Track Your Happiness project, which showed in 2,250 participants that 
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mind wandering is associated with reduced happiness (Killingsworth & Gilbert 2010). While 

prior work had demonstrated this cross-sectionally (Smallwood et al., 2009), the availability 

of time-series data gathered through the app, within-subject, allowed the authors to conduct 

time-lag analysis, which revealed evidence for a perhaps unexpected direction of influence 

– mind-wandering precedes bouts of unhappiness. Using a similar experience sampling 

approach, Villano et al. (2020) gathered dense samples of mood via smartphone in a student 

sample on days following their first viewing of a new exam grade. They then applied a 

popular construct in computational neuroscience, prediction error (when experiences differ 

from expectations), to this real-world situation. Outside of the typical lab setting, they found 

that prediction errors are critically important in dictating the mood of students. Specifically, 

they observed that emotions following the issuance of grades depended more on prediction 

errors (i.e., whether their grade was better/worse grade than expected) than the actual grade 

itself. This finding has proved generalizable to a variety of settings. For example, within 

the more constrained setting of a single game played on a smartphone. The Great Brain 

Experiment app asked individuals choose between gambles of varying risk and expected 

value (Figure 4) and rate how they felt about it at regular intervals. Consistent with the 

real-world findings of Villano and colleagues (2020), momentary fluctuations in mood were 

shown to be dependent on prediction errors experienced during the game (Rutledge et al. 

2014). Interestingly, while sensitivity to prediction errors was not linked to depression, 

baseline mood during the game was found to relate to depression symptom severity (Figure 

4). This illustrates how complementing between-subject assessments with more granular 

within-subject probes provides a more nuanced view of how mood and reward sensitivity 

interact, on different timescales and levels of abstraction.

The benefit of complementing cross-sectional approaches with longitudinal ones is further 

underscored by findings from the 58 Seconds app. Here, researchers tracked the sort of 

activities that over 28,000 users chose to engage in over an approximately 1-month period 

while in a good versus bad mood. Researchers were able to use these time-series data 

to ascertain that people actively select mood-increasing activities while in a bad mood 

(Taquet et al. 2016). Later, they showed that this mood homeostasis effect (choosing 

to engage in mood-modifying activities to stabilize mood) was reduced in people with 

overall low mood (in this same data set) and in people with a history of depression (in 

an independent data set) (Taquet et al. 2020). Together, these studies highlight how cross-

sectional observations can be enriched from within-subject insights, offer new insights into 

causal mechanisms. Numerous other examples of this have emerged, where for example the 

Mappiness app used geolocation tracking from over 20,000 users to show that happiness 

was higher when people were in natural compared to urban environments, controlling for 

weather, activity, companionship, and time of day (MacKerron & Mourato 2013). Another 

experience-sampling study used within subject sampling to provide a window into the causal 

relationships that exist between sleep and mood. They found that day-to-day effects of sleep 

on mood are actually larger than the effect of mood on sleep (Triantafillou et al. 2019). 

In some cases, within-subject analyses are important to sure-up equivocal between-subject 

effects. For example, a cross-sectional analysis of nearly 27,000 US and UK users of The 

Great Brain Experiment app showed that risk-taking in trials with potential losses increased 

with time of day (Bedder et al. 2020). Computational modelling using prospect theory 
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suggested that this pattern could be explained by a decrease in loss sensitivity that occurs 

as the day wears on, making large potential losses less aversive. Although an interesting 

possibility, with cross-sectional data only, it is difficult to know if this is truly an effect 

of the time of day, or rather reflects between-subject differences in the sorts of individuals 

who prefer to play at day versus at night. Importantly, a within-subject analysis of 2,646 

users playing twice on different days between 8 a.m. and 10 p.m. identified a similar effect, 

increasing confidence that the time-of-day findings were not due to differences in diurnal 

patterns of users.

Smartphones can also be used to repeatedly assess cognition in relation to ongoing treatment 

with pharmacological agents, a major gain for basic neuroscientific, as well clinical, 

research. Selective serotonin reuptake inhibitor (SSRI) antidepressant drugs can take 4–6 

weeks to take their effect and we know surprisingly little about how clinical benefit is 

achieved. One popular theory is that these drugs positively bias one’s response to affective 

information, having the effect of gradually improving mood (Pringle et al. 2011). Consistent 

with this, week-long SSRI treatment has recently been shown to enhance the impact of 

positive mood inductions on subsequent learning, clarifying one possible mechanism of 

drug action (Michely et al. 2020). Dense sampling is less burdensome for both participants 

and experimenters when done remotely and as such there is great potential for smartphone-

based research to enhance our understanding of drug mechanisms of action in real life, 

longitudinal settings. As repeated assessment becomes the norm in cognitive studies in 

mental health, we may also learn that one-shot cognitive testing is less informative than 

are methods that allow us to estimate variance in performance or average performance over 

time. This is important because we know that cognitive abilities (as measured through tasks) 

can vary considerably within an individual, depending on factors such as sleep, stress, and 

caffeine (Goel et al. 2009, Jarvis 1993, Lieberman et al. 2002), reducing the accuracy of our 

estimates. Beyond this, variance in performance is of increasing interest to the field. Certain 

psychiatric populations such as schizophrenia patients exhibit an increased variability in 

their performance on cognitive tests, in addition to reduced overall performance (Pietrzak 

et al. 2009). A clinically meaningful observation, experience sampling was used to estimate 

within-subject variance in mood, and this was found to be an important predictor of future 

depression status (van de Leemput et al. 2014). The extent to which this applies to cognition 

is a relatively open question and one which smartphone-based assessments can facilitate.

Digital Phenotyping

The previous section highlighted the potential for regular repeated assessments gathered 

via smartphone to improve our understanding of how cognitive changes manifest in the 

real world, change over time, and interact with emotional, social, and physical states. 

Unfortunately, gathering these data requires high compliance on the part of research 

participants, which likely introduces systematic bias in sample selection, data completeness, 

and attrition (Scollon et al. 2003). Other potential issues with this methodology include 

the facts that reflecting on a behavior or internal state can sometimes alter it and that 

many cognitive tests carry practice effects. Sensors on smartphones provide additional 

complementary tools without these limitations in the form of passive data gathering (Harari 

et al. 2017), which can be used to create so-called digital phenotypes (Insel 2018). 
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Passive data refers to measurements that are gathered automatically without requiring active 

engagement or submission of data by the research participant. Common measures that can 

be derived from smartphones include sensor data such as accelerometer; global positioning 

system (GPS), or light sensors; data pertaining to text messaging, emails, calls, and app use, 

including social media use; and even microphone or camera data. These data can be used to 

infer aspects of everyday behavior of interest to researchers in psychiatry, including social 

engagement, mobility, sleep, and exercise (Cornet & Holden 2018, Mohr et al. 2017).

Sleep disturbance is a core diagnostic feature of depression (APA 2013, Tsuno et al. 

2005) that can be difficult to measure retrospectively. Using light sensor and phone use 

data (Abdullah et al. 2014, Wang et al. 2014), studies have described sleep disturbance 

in depression, including that sufferers are later to bed, later to rise and more likely to 

wake at night (Ben-Zeev et al. 2015). Wrist-worn accelerometer data from 91,105 UK 

Biobank participants showed that depression and bipolar disorder were both associated with 

disrupted sleep patterns (Lyall et al. 2018). Higher levels of depression are also associated 

with reductions in GPS-derived metrics of mobility that tap into sedentary aspects of the 

condition. Individuals with depression visit fewer locations, spend more time at home, and 

move less through geographic space (Ben-Zeev et al. 2015, Canzian & Musolesi 2015, 

Saeb et al. 2015), and the opposite is true of individuals drawn from the general population 

who have high levels of positive affect and exhibit greater variability in locations visited 

(Heller et al. 2020). Likewise, happiness has been linked to temporal fluctuations in both 

exercise and more general physical activity assayed from accelerometer data (Lathia et al. 

2017), mirroring findings from a recent large-scale, self-report investigation linking exercise 

and depression (Chekroud et al. 2018). In terms of social engagement, audio data can be 

used to quantify conversation frequency and duration, which are both reduced in depression 

(Wang et al. 2014), and Bluetooth data related to the presence of nearby devices can also 

act as a proxy for social interactions. Together, these metrics have been utilized to develop 

prediction/detection tools that might have practical clinical value in the future—for example, 

in predicting upcoming manic episodes (Abdullah et al. 2016) or relapse in psychosis 

(Barnett et al. 2018, Ben-Zeev et al. 2017).

In terms of mechanism, however, there exists a major gap between digital phenotyping from 

passive data and new insights into the changes that occur in the brain that account for these 

associations. While the cross-sectional association between physical activity and improved 

mental health is now well established, causality is likely bidirectional (Pinto Pereira et al. 

2014), and the neurobiological processes that explain this effect remain poorly understood. 

Targeting the former issue, smartphone-derived passive assays of activity can allow us to 

develop directional models in a real-world setting, inferring evidence for causality from the 

temporal dynamics of events. Crucially, smartphone-based cognitive assessments gathered in 

tandem have the potential to uncover key brain mediators of these important relationships 

by providing richer data from tasks designed to probe the specific neural circuits that are 

believed to be most impacted by mental illness. Future studies should collect passive data, 

experience sampling, and task performance over time in patients to provide a detailed 

picture of illness trajectory.

Gillan and Rutledge Page 9

Annu Rev Neurosci. Author manuscript; available in PMC 2022 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Natural Language/Text Mining

In addition to these indirect forms of digital phenotyping, a major category of passive 

data that can be gathered in great volume from smartphones concerns language use. The 

question of what language can tell us about a person’s current or future mental state has 

been of considerable interest in psychiatry for many decades now (Pennebaker et al. 2003). 

In schizophrenia, speech disturbances like alogia or poverty of speech are well-established 

diagnostic features (APA 2013), which can to a certain extent be quantified objectively 

using vocal analysis (Cohen et al. 2014). Recently, a proof of concept has shown this 

can be done outside of well-controlled settings using videos gathered via smartphone at 

key points throughout the day (Cohen et al. 2020). These symptoms can be distinguished 

from other clinical characteristics, such as the flight of ideas seen in mania, which can be 

accessed through graphical analysis of narratives produced by patients (Mota et al. 2012). 

Beyond explicit diagnostic features, studies have shown that depressed individuals are more 

internally focused in their language use, using first-person pronouns like “I” to a greater 

extent than healthy individuals, both orally and in written word (Bucci & Freedman 1981, 

Rude et al. 2004). Smartphones provide an excellent source of linguistic data through text 

messaging and audio data and also from social media posts on third-party apps such as 

Twitter, Facebook, and Instagram. Language derived from Twitter posts, for example, has 

been shown to closely mirror that from other more traditional sources in terms of its ability 

to track depression status (De Choudhury et al. 2013, Reece et al. 2017).

Social media data therefore may present an interesting alternative to traditional ecological 

momentary assessment (EMA) methods, allowing researchers to assess changes in cognition 

in tandem with language features and self-reported clinical data over time. Such an approach 

may prove crucial for developing mechanistic explanations for cross-sectional observations. 

The advantage here is that rather than asking research participants to regularly complete 

self-report questionnaires in an EMA study, microblogging sites hold rich longitudinal 

archives of not just subtle linguistic features but also semantic content pertaining to users’ 

emotional states, thoughts, and recent events. These data could allow researchers to study 

longer timescales and in larger samples than can typically be gathered using explicit 

EMA approaches. For example, archival microblogging data could be used to test whether 

linguistic features characteristic of a disorder also precipitate the transition into an episode, 

providing a window into causation and/or early intervention, or in the case of suicide, 

prevention (Braithwaite et al. 2016). Recently, these data were used to understand how 

the network dynamics of depression change during episodes of illness. Kelley and Gillan 

(2020) identified linguistic features characteristic of depression from the tweets of N=946 

individuals. In a subset of that sample (N=286) who experienced a depressive episode in the 

12-month period under study, they found that these depression features became more tightly 

inter-dependent when a person was ill.

This new methodology for studying changes in clinical features over time is timely and 

ripe for integration with other neuroscientific tools, such as pharmacological interventions 

and brain imaging. Recent work identifying the potential for more standard forms of EMA 

to reveal early warning signs for depression, for example, assayed through changes in 

the autocorrelation, variance, and network connectivity of emotions prior to the onset of 
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episodes (van de Leemput et al. 2014). Although suggestive, findings have been based either 

on between-subject comparisons (van de Leemput et al. 2014) or on very small samples 

[N = 1 (Wichers et al. 2016)]. Critical transitions into and out of clinical episodes could in 

theory be examined at a much larger scale (within and between subjects) if self-archived, 

daily, emotional data from social media are of sufficient quality. Answering some of these 

questions (e.g. regarding whether or not there is an increase in autocorrelation of depression 

features prior to an episode) will require particularly dense sampling from social media. This 

means that for certain questions, only the most frequent posters (posting at least once per 

day) will contribute data of sufficient granularity. That social media apps are in widespread 

use on smartphones means that the availability of this sort of data continues to increase 

and there is considerable scope for custom experimental apps to leverage those time-series 

data to greatly enhance our understanding of cause and effect with respect to cognitive and 

neuroscientific markers of mental health and illness.

Enriching ‘Hard’ Neuroscientific Investigations

A limitation of smartphone-based cognitive neuroscience research is that we cannot 

simultaneously collect most of the hard measures that are the mainstay of human cognitive 

neuroscience research. While functional magnetic resonance imaging (fMRI) or positron 

emission tomography scans are unlikely to ever be collected remotely, and we cannot 

currently collect saliva or blood samples via smartphone, there are several ways that 

researchers can bridge this crucial gap. First and foremost, one should, for the most part, 

view large-scale smartphone studies as a complement to in-person work. The former gathers 

vast but noisy data, the latter gathers smaller data sets of higher detail and quality. These 

methods can proceed in tandem (Haworth et al. 2007) but may also occur in series to directly 

inform one another (Gillan & Seow 2020). For example, Coughlan et al. (2019) utilized the 

Sea Hero Quest app to develop and test a new measure of spatial navigation in over 27,000 

individuals (Figure 3a). This large data set allowed them to develop spatial navigation 

benchmarks that were adjusted for age, education, and gender. Crucially, they then brought 

this forward to test a smaller, genetically characterized sample of 60 individuals. They 

found that their benchmark test was sensitive to a preclinical marker of Alzheimer’s disease, 

apolipoprotein e4 allele (APOE-4), moving from large-scale cognitive phenotyping to a 

well-defined genetic marker.

Smartphone-based methods have also yielded mechanistic advances of clinical value that 

were untenable using traditional methods. For example, lab-based pharmacological (Rigoli 

et al. 2016, Rutledge et al. 2015) and neuroimaging (Chew et al. 2019) studies support the 

idea that dopamine plays a value-independent role in risk-taking for rewards that can be 

captured with computational modelling. Natural ageing is associated with a gradual decline 

in the dopamine system (Bäckman et al. 2006), but effects of ageing on risk-taking are 

inconsistent (Samanez-Larkin & Knutson 2015), possibly due to the large samples required 

to identify what are likely to be small effect sizes. Using gamified cognitive testing via 

smartphone, researchers were able to show that ageing is associated with reduced risk-taking 

in trials with potential rewards (but not losses) in over 25,000 players of The Great Brain 

Experiment app (Rutledge et al. 2016). Computational modelling showed that this effect did 

not depend on the value of the risky option, consistent with lab-based findings with respect 
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to the role of dopamine in risk-taking, suggestive of a potential mechanism for age-related 

decline. Because the smartphone study’s sample size was sufficiently large to detect tiny 

effect sizes, the lack of association between ageing and decreased risk-taking for potential 

losses is made even more compelling. In two other games in the app, value-independent 

reward seeking also decreased with age in a motor decision task requiring participants to 

make complex motor actions (Chen et al. 2018), and value-independent model parameters 

predicted information sampling biases in a card game in which participants paid points to 

flip over cards before making risky decisions (Hunt et al. 2016).

Recently, studies have moved to link data gathered online to fMRI and 

electroencephalography (EEG). One study used internet-based testing to acquire a large 

enough sample to define novel self-report transdiagnostic dimensions of impulsivity and 

compulsivity (Parkes et al. 2019). The weights required to transform responses into 

individual scores on the impulsivity and compulsivity dimensions were then applied to 

a smaller sample of diagnosed patients who underwent MRI scanning. The researchers 

found that these self-reported impulsivity and compulsivity dimensions were associated 

with different patterns of effective connectivity, while diagnostic information was much less 

informative. Another study used a similar approach, applying weights from a previously 

published online study with over 1,400 subjects (Gillan et al. 2016) to characterize 

the compulsivity levels of just under 200 in-person participants, who underwent EEG 

while performing a model-based learning task (Seow et al. 2020). This allowed the 

researchers to probe the underlying neural mechanisms of deficient model-based planning in 

compulsivity. Using this method, they found evidence that weaker neural representations of 

state transitions are characteristic of those high in compulsivity, suggesting that previously 

described deficits might arise from a failure to learn an accurate model of the world. 

Though illustrative examples, neither study was conducted via smartphone, relying instead 

on browser-based assessment. This gap was recently filled in a study that found greater 

diversity in physical location, assessed by geolocation tracking via smartphone, was linked 

to greater positive affect assessed by experience sampling. Crucially, resting-state fMRI data 

were collected on roughly half of the subjects (N = 58) and revealed that this association 

was stronger in individuals with greater hippocampal-striatal neural connectivity (Heller et 

al. 2020). Given the growing number of structural and connectivity neuroimaging studies, 

which can have more than 1,000 individuals (e.g., Baker et al. 2019), tracking patients 

with smartphones before and after scanning provides rich data that can be linked to neural 

measurements.

An even more direct approach than those cited so far concerns the use of mobile EEG 

devices (Lau-Zhu et al. 2019). Mobile EEG is still a relatively new area of research, but 

studies have shown that although they have poorer signal-to-noise ratios than traditional 

systems, reliable, albeit basic, signals can be gathered from wearable dry-electrode sets 

(Radüntz 2018). More recently, studies have shown that mobile EEG data can not only be 

integrated with cognitive tests delivered simultaneously via smartphone (Stopczynski et al. 

2014) but also be processed in real time and fed back to the device/user (Blum et al. 2017). 

This is an exciting prospect, the potential of which was recently exemplified in a smartphone 

study of learning-related processes and wearable EEG in 10 volunteers (Eldar et al. 2018). 

Subjects reported their mood four times a day and played a reward learning task twice a day 
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for one week while EEG and heart rate were monitored. The authors found that subjects’ 

neural reward sensitivity, i.e., the extent to which EEG in a session corrected decoded 

prediction errors, was predictive of later changes in mood measured on the smartphone. This 

example nicely illustrates the potential for a suite of new investigations via smartphone that 

can elaborate on candidate mechanisms of future clinical change, both using naturalistic 

designs and in the context of treatment, relapse monitoring, or even neurofeedback-based 

interventions. Although they are crucial for building mechanistic models and defining 

targets for causal manipulation in animal models, it is also important to note that, in many 

cases, it will not be necessary to incorporate these more direct neuroscientific measures 

into smartphone-based studies in psychiatry. Smartphone-based approaches can already 

provide rich information about mental health and illness over time without any direct brain 

measures. Increasing this capacity should be a key target for researchers, particularly those 

concerned with clinical translation. Neuroscience-informed, smartphone-based diagnostics 

and/or interventions will be much less expensive and more scalable than hard measures, 

which, if successful, will allow for an unprecedent democratization of access to early 

identification tools, interventions, and more.

Prediction Over Description

Although smartphone-based assessments are well poised to improve our mechanistic 

descriptions of static states of mental health and illness through rich, multivariate assessment 

in large samples, one of the most exciting opportunities these methods present is for 

longitudinal research. With traditional methods, it is simply too difficult to follow enough 

people for enough time to observe a clinical outcome in sufficient numbers for meaningful 

analysis. Although largely untapped to date, by virtue of their large sample sizes and the 

relative ease with which samples can be retained through time, smartphone-based projects 

are poised to help us to achieve the goal of clinical translation. Sea Hero Quest was an app 

designed to improve our understanding of spatial navigation on a grand scale and provide 

new metrics that might provide sensitive markers of Alzheimer’s disease in the future. 

Having achieved over 4.3 million downloads, there is incredible scope for longitudinal and 

relatively unobtrusive follow-ups to measure cognitive changes 5 or even 10 years after 

initial sign-up.

On a shorter timescale, a crucial area of research for cognitive neuroscientists seeking 

clinical translation is treatment prediction—developing methods can determine who is 

most likely to benefit from an intervention and thereby assist clinical decision-making. 

It has become increasingly clear that treatment response in psychiatry is highly variable 

across individuals (Rush et al. 2006). Decades of research investigating potential single-

variable markers of treatment response have come up empty handed, and there is growing 

consensus that success will likely require complex, multivariate modelling approaches such 

as machine learning (Gillan & Whelan 2017, Rutledge et al. 2019). Machine learning 

approaches that rely on self-report data exclusively have shown potential for predicting 

response to antidepressants in a reanalysis of clinical trial data from over 4,000 patients 

(Chekroud et al. 2016). Hierarchical clustering of individual symptom items from over 

7,000 patients with depression identified three robust symptom clusters that differed in 

antidepressant response (Chekroud et al. 2017). Excitingly, there are clear indications that 
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such predictions can be enhanced through the addition of cognitive measures (Whelan et al. 

2014). Smartphones offer a new route to convenient longitudinal tracking of symptoms in 

individuals who have recently started a new treatment. Principal among the opportunities 

is the growing uptake of internet-based psychological interventions such as internet-based 

cognitive behavioral therapy (iCBT). While research in antidepressants is to some extent rate 

limited by the challenge in recruiting individuals who are about to begin treatment, research 

partnerships with providers of internet-delivered therapies can allow for seamless enrolment 

of participants in treatment and research that truly scales. Though this has yet to be fully 

tapped, a recent analysis of an archival iCBT data set with over 50,000 individuals who 

completed treatment illustrates the potential insightfulness of such partnerships (Chien et al. 

2020). Machine learning methods were used to identify subtypes of users, who engaged in 

different ways with the iCBT tools on offer and ultimately had a more or less successful 

course of treatment. Coupling these sorts of data with rich cognitive and clinical assessment 

would help further elucidate which elements of treatment (e.g., self-reflection, supporter 

interaction, behavioral homework, and psychoeducation) and what treatment durations 

work best for which individual. In sum, there is significant potential for smartphone-based 

methodologies to assist in a push toward treatment-focused research that translates complex 

data sets into individualized predictions of real clinical value (Gillan & Whelan 2017).

Rich and dense data sets combining repeated cognitive testing, experience sampling, self-

report clinical questionnaires, and passive data have enormous potential to advance our 

understanding of mental illness and to make clinically valuable predictions. Collecting 

these data in individuals for whom neural measurements exist, including neuroimaging-

derived structural and functional connectivity, will make possible additional insights into 

the underlying mechanisms. However, data sets with fewer participants than data points 

present challenges for robust analysis, and as smartphone-based data sets become larger, this 

problem can get worse, and external validation becomes increasingly important. Machine 

learning approaches offer ways to cluster individuals to make clinical predictions, and 

related dimensionality-reduction methods provide a way of capturing substantial variance in 

a data set with a smaller number of variables. For example, canonical correlation analysis 

can identify robust patient clusters, and techniques like L2 regularization can improve 

performance (Grosenick et al. 2019). Simpler methods such as factor analysis have been 

used successfully in a number of studies to reduce large sets of self-report questionnaire 

responses (N = 209) to three transdiagnostic symptom dimensions that appear to have 

greater links to underlying biology than extant diagnosis-based summaries of the same data. 

‘Compulsivity’, one of the dimensions that emerged from this approach, has a specific 

hallmark where individuals at the higher end of the spectrum reliably have deficits in model-

based planning (Gillan et al. 2016). Scores on this compulsivity dimension are dissociable 

from other dimensions of mental illness characterized by anxiety and depression or social 

withdrawal, that have their own particular cognitive correlates (Rouault et al. 2018, Seow & 

Gillan 2020, Hunter et al. 2019).

In complement to these more data-driven methods, theory-driven computational modelling 

approaches provide a way to exploit knowledge of the generative processes that underlie 

behavior to efficiently summarize a large amount of data with a small number of parameters 

(for example, a learning rate and a stochasticity parameter). Parameter estimates can act 
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as an input to data-driven machine learning approaches, and this combined approach can 

outperform machine learning approaches alone. For example, classifier performance is 

higher for simulated agents that differ in learning rates when classifiers are trained on 

parameters estimated from the data and not directly on the raw data (Huys et al. 2016). 

The combination of theory-driven and data-driven approaches has great potential to improve 

understanding and treatment of mental illness, and we see the proliferation of smartphone-

based data collection methods as a natural means of facilitating this. Care must be taken 

to avoid algorithmic biases that have been shown to inherit biases present in training data 

sets. For example, algorithms trained using internet-based language corpora inherit common 

gender and race biases (Caliskan et al. 2017). Furthermore, validation with independent 

samples is essential for reaching conclusions that are likely to generalize (Rutledge et al. 

2019).

CONCLUSION

Smartphones have great potential to increase the volume of data available to researchers 

in psychiatry by multiple orders of magnitude. This is important because it is becoming 

increasingly clear that univariate effect sizes in cognitive neuropsychiatry are likely small 

and, in order to be predictive, will need contextualization using concurrent measurement 

of between-subject variables like age and education or within-subject state variables like 

recent sleep quality or current stress. Computational tools are emerging that can help us 

make sense of these vast data sets and to link findings to research on the underlying neural 

mechanisms. At this point, standard approaches are unlikely to produce the new treatments 

needed for substantial improvements in our understanding and treatment of mental illnesses. 

Smartphones represent one major new tool that complements existing neuroscientific 

approaches and will be incredibly important as we grapple with the complexity of mental 

well-being.
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Figure 1. 
Smartphones can deliver high-dimensional datasets relevant to the neuroscience of mental 

health and illness. The key value-add to developing a smartphone-based infrastructure for 

neuroscience research in mental health is that it can (i) increase the breath of data gathered 

on any single individual (“broad phenotyping”), thereby allowing us to integrate across 

multiple levels of analysis. (ii) By increasing the overall sample size (“large samples”), we 

can ascertain the extent to which our models are generalizability, appreciate and account for 

diversity in populations, support multivariate analyses and algorithm development needed to 

bring together complex, interactive datasets. Finally (iii), smartphones allow us to enhance 

the depth of the assessments we gather (“dense, repeated assessment”). This is crucial for a 

field seeking to move beyond cross-sectional methods towards time series data that can help 

us to understand causation, make predictions, delineate mechanisms of change and more.
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Figure 2. 
Demographic and clinical comparison of laboratory, online, and smartphone-based samples. 

(a) Density plot depicting the age profile of participants recruited in the laboratory (Lab: 

N = 185), via Amazon Mechanical Turk (AMT) (AMT: N = 1,413), and registered users 

of the smartphone app Neureka (Smartphone: N = 4,000). The Neureka app achieved a 

much broader spread of ages in its first 4,000 early adopters compared with in-person and 

AMT samples. (b) Density plot of depression scores collected using the Zung Depression 

Inventory (Zung 1965) for subjects recruited in the laboratory (Lab: N = 185), via AMT 

(AMT: N = 1,413), and using Neureka (Smartphone: N = 1,500). Depression scores have a 

broader distribution in the smartphone-based sample.
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Figure 3. 
A smartphone-based spatial navigation task from Sea Hero Quest. (a) In the wayfinding 

task, participants are shown a map of checkpoints located in a gamified water maze. 

(b) The map then disappears, and they must navigate to those locations from memory. 

Success depends on multiple complex skills, including accurate interpretation of the map, 

multi-step planning, memory of the checkpoint locations and layout of maze, continuous 

monitoring and updating, and the transformation of a bird’s-eye map perspective to an 

egocentric view as one steers the ship. (c) In all, 2,512,123 users played the game, and data 

were analyzed from 558,143 subjects with a sufficient number of levels completed. Here, 

randomly sampled data from 1,000 individual trajectories are superimposed. Overall, spatial 

navigation performance was quantified for wayfinding and a related task in the app, and 

the authors found that performance declined with age and was better in males relative to 

females. However, they found that this gender difference was smallest in countries with the 

greater gender equality (Coutrot et al. 2018). Figure adapted with permission from Coutrot 

et al. (2018).
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Figure 4. 
A smartphone-based cognitive task from The Great Brain Experiment. Participants chose 

between risky and safe options in a game in The Great Brain Experiment app (over 130,000 

downloads) that varied in their expected value (EV). (a) The gamble on the left has a 50% 

chance of returning 92 points but a 50% chance of returning nothing. Although riskier, 

this corresponds to an expected value of 46 points, which is larger than the expected value 

of the option on the right (100% chance of 35 points). (b) Following their choice, they 

see the outcome of the gamble and experience a reward prediction error, which is the 

deviation between what was expected (EV = 46) and what they got (actual outcome = 92). 

(c) Subjects rated how happy they were after every few trials. (d) A computational model 

(red lines) was used to predict momentary happiness based on trial events, including the 

reward prediction error. Here we show its performance in two example participants, one 

with minimal depressive symptoms [Beck Depression Inventory (BDI = 6)] and one with 

significant depressive symptoms (BDI = 15). (e) The baseline mood of subjects during the 
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game (estimated from the computational model) was correlated with depressive symptoms in 

both smartphone-based and in-person (not pictured) samples (Rutledge et al. 2017).
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