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Abstract
Human epididymis protein-4 (HE4/WFDC2) has been well-studied as an ovarian cancer clinical biomarker. To improve our 
understanding of its functional role in high grade serous ovarian cancer, we determined transcriptomic differences between 
ovarian tumors with high- versus low-WFDC2 mRNA levels in The Cancer Genome Atlas dataset. High-WFDC2 transcript 
levels were significantly associated with reduced survival in stage III/IV serous ovarian cancer patients. Differential expres-
sion and correlation analyses revealed secretory leukocyte peptidase inhibitor (SLPI/WFDC4) as the gene most positively 
correlated with WFDC2, while A kinase anchor protein-12 was most negatively correlated. WFDC2 and SLPI were strongly 
correlated across many cancers. Gene ontology analysis revealed enrichment of oxidative phosphorylation in differentially 
expressed genes associated with high-WFDC2 levels, while extracellular matrix organization was enriched among genes 
associated with low-WFDC2 levels. Immune cell subsets found to be positively correlated with WFDC2 levels were B cells 
and plasmacytoid dendritic cells, while neutrophils and endothelial cells were negatively correlated with WFDC2. Results 
were compared with DepMap cell culture gene expression data. Gene ontology analysis of k-means clustering revealed that 
genes associated with low-WFDC2 were also enriched in extracellular matrix and adhesion categories, while high-WFDC2 
genes were enriched in epithelial cell proliferation and peptidase activity. These results support previous findings regard-
ing the effect of HE4/WFDC2 on ovarian cancer pathogenesis in cell lines and mouse models, while adding another layer 
of complexity to its potential functions in ovarian tumor tissue. Further experimental explorations of these findings in the 
context of the tumor microenvironment are merited.
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Introduction

Human epididymis protein-4 (HE4), encoded by the gene 
whey acidic protein (WAP) four-disulfide core domain 2 
(WFDC2), has been extensively studied as biomarker in 
ovarian cancer [1, 2]. Serum HE4, when used in combi-
nation with serum CA125 in the Risk of Ovarian Malig-
nancy Algorithm (ROMA), demonstrates significantly 
greater detection sensitivity at a set specificity of 75% 
than the Risk of Malignancy Index (RMI), which uses 
pelvic imaging, menopausal status, and serum CA125 
values. Importantly, serum HE4 levels are less commonly 
elevated in benign gynecologic conditions than CA125 [2]. 
Moreover, in vitro and in vivo analyses have shown that 
HE4 promotes ovarian cancer cell growth, extracellular 
matrix production, metastatic properties, angiogenesis, 
and immune evasion through regulation of signaling path-
ways, including focal adhesion kinase (FAK), extracellular 
signal-regulated kinase (ERK), and signal transducer and 
activator of transcription 3 (STAT3) (reviewed in [3]). 
Our previous studies have uncovered a role for HE4 in 
promoting chemoresistance and extracellular matrix gene 
expression in ovarian cancer cells, as well as pro-angio-
genic gene expression in immune cells [4–6]. Nonethe-
less, a complete understanding of how this enigmatic and 
multi-functional protein functions in the context of the 
human ovarian tumor microenvironment to promote chem-
oresistance and worse survival outcomes remains undeter-
mined. While numerous studies have explored its use as 
a diagnostic and prognostic serum biomarker, no study to 
date has examined the transcriptomic signature associated 
with high- and low-WFDC2 mRNA levels in high grade 
serous ovarian cancer (HGSOC) patient tumors.

The complexity of the ovarian cancer microenvironment 
highlights the importance of studying a particular protein 
in the context of this microenvironment in order to fully 
understand its significance in human ovarian tumors. Ovar-
ian cancer is unique in that tumorigenic cells originating 
from the fallopian tubes “seed” onto the ovary, where they 
find an attractive niche to promote their growth. One factor 
that may aid in the production of this ovarian niche is the 
development of fibrosis, which occurs with advancing age 
[7]. Cancer associated fibroblasts (CAFs) promote tumo-
rigenesis through production of cytokines, growth factors, 
and extracellular matrix components, leading to worsening 
fibrosis and tumor growth [8]. Subsequent to the growth 
of cancer cells in the ovary, these cells are susceptible to 
spread within the peritoneal cavity, homing to the highly 
vascular, fatty tissue of the omentum that uses immunologic 
and metabolic mechanisms to promote tumor growth [9]. 
In order to understand the role of HE4/WFDC2 in ovarian 
cancer, it is important to consider its known functions and 

how these might interplay with this complex ovarian tumor 
microenvironment.

HE4 is a small secreted glycoprotein and protease inhibi-
tor that was originally identified in the epididymis and sug-
gested to be important in sperm maturation. It was later 
found to be expressed in several tissue types, namely tra-
chea, salivary gland, kidney, lung, and nasal epithelium, 
and may be involved in host defense of airways [10–12]. 
In addition to playing a role in ovarian cancer, it is a key 
fibroblast mediator of kidney fibrosis, inhibiting the ability 
of matrix metalloproteinases to degrade collagen I, and is 
also associated with fibrotic diseases of the lung and liver 
[13–17]. Its role in promoting fibrosis is a critical component 
to examine given the degree of desmoplastic, fibrotic matrix 
that characterizes EOC.

To begin investigating the function of HE4/WFDC2 in 
the context of the ovarian tumor microenvironment, we per-
formed gene expression analysis of 378 HGSOC tumors with 
RNA-sequencing (RNA-seq) data available through The 
Cancer Genome Atlas (TCGA), and compared differential 
gene expression in samples with high- versus low-WFDC2 
mRNA levels. We compared these findings to DepMap 
gene expression correlation data for serous ovarian cancer 
cell lines. We identified strong co-regulation of WFDC2 
and two other WAP-family members, secretory leukocyte 
peptidase inhibitor  (SLPI/WFDC4) and peptidase inhibi-
tor-3 (PI3/WFDC14/elafin), suggesting an important role 
for this family of protease inhibitors in promoting ovarian 
tumor pathogenesis. Moreover, our results reveal a poten-
tial novel role for HE4 in modulating oxidative phospho-
rylation metabolic gene expression in HGSOC. Our data 
support previously identified HE4 functions in mediating 
extracellular matrix, angiogenesis, and immune response 
in ovarian cancer cells, while also highlighting the critical 
importance of examining HE4 effects in the context of the 
tumor microenvironment.

Results

HE4 (WFDC2) expression correlates with clinical 
survival outcomes

As a first exploration of WFDC2 expression in the ovarian 
cancer TCGA dataset (TCGA-OV), we compared WFDC2 
mRNA expression with HE4 protein levels using the cBio-
Portal, revealing a strong correlation between mRNA and 
protein (Spearman r = 0.74, p = 2.56e-19) (Fig. 1A). These 
results suggest that WFDC2 mRNA levels are a relatively 
accurate representation of its protein expression in human 
ovarian tumors. Secondly, we examined mRNA expres-
sion in relationship to copy number alterations (CNAs). 
Five percent of 594 samples possess putative copy number 
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amplifications, and CNAs were correlated with mRNA 
expression, with lower mRNA in the samples with shallow 
deletion, and higher mRNA in the samples with amplifica-
tion. Most samples were diploid or possessed copy number 
gains in WFDC2 (Fig. 1B).

Next, as it has been reported that lower tumor muta-
tion count is related to decreased progression-free survival 
(PFS) and overall survival (OS) in ovarian cancer [18], we 
sought to explore the relationship between WFDC2 and 
tumor mutation count. There was a small but significant 
decrease in WFDC2 mRNA expression in tumors with high 
(43–158) versus low (8–43) raw mutation count, which was 
also observed in a slight, but non-significant inverse correla-
tion between WFDC2 mRNA expression and mutation count 
(Spearman r = −0.14, p = 0.058) (Fig. 1C).

To explore the relationship of WFDC2 mRNA with 
clinical outcomes, we performed Kaplan–Meier analysis 
for WFDC2 in TCGA-OV and Gene Expression Omnibus 
(GEO) Series. There was no significant difference in PFS in 
WFDC2-high versus -low groups when examining all serous 
samples, and only a non-significant trend toward worse OS 
in patients with high-WFDC2 (HR = 1.17, p = 0.083) (data 
not shown). Next, we narrowed down our analysis to stage 
III and IV, grade 2 and 3 (n = 975). Using the upper quar-
tile cutoff, we again found no significant difference between 
WFDC2-high and -low groups with regards to PFS; how-
ever, WFDC2-high patients had significantly worse OS 
(HR = 1.22, p = 0.046) (Fig. 1D). When this group was nar-
rowed further to include only optimally debulked patients 
(n = 495), the WFDC2-high group showed decreased PFS 
(HR = 1.31, p = 0.037) and OS (HR = 1.38, p = 0.027) 
(Fig. 1E). Collectively, these results agree with previously 
published studies showing HE4 serum levels are prognos-
tic for ovarian cancer patients [19], and also suggests that 
patients with suboptimal debulking may experience poor 
outcomes regardless of HE4 levels.

Differential gene expression reveals a positive 
correlation of WFDC2 and SLPI across many cancers

We next performed differential gene expression analysis 
in TCGA-OV dataset, which was split into high- and low-
WFDC2 groups according to median WFDC2 fragments per 
kilobase of transcript per million mapped reads (FPKM) lev-
els (Table S1). Principal component analysis (PCA) revealed 
no strong grouping of the samples, which is unsurprising 
given the large population with a high degree of biologi-
cal variability inherently present (Fig.  2A). We identi-
fied 512 significant differentially expressed genes (DEGs) 
(p-adj. < 0.05, log2 fold-change ≥|0.5|, protein-coding), 
with 399 DEGs corresponding to high-WFDC2 expression 
(“high-WFDC2 DEGs”) and 113 DEGs corresponding to 

low-WFDC2 expression (“low-WFDC2 DEGs”) (Table S2). 
A volcano plot was generated to show the top five DEGs, 
which reassuringly included WFDC2 (Fig. 2B). Notably, 
another WAP-domain containing protein, secretory leuko-
cyte peptidase inhibitor (SLPI/WFDC4) was also among 
the top five DEGs that were associated with high-WFDC2 
levels. We then performed correlation analyses of all DEGs 
with log2 fold-change of ≥ 0.5 in either direction. The cBio-
Portal co-expression feature was used to generate Spearman 
r values using RNA Seq V2 RSEM data. As expected, the 
direction of correlations matched well with the differen-
tial gene expression analysis (data not shown). All DEGs 
that were significantly correlated (p < 0.01) with Spearman 
r ≥ 0.3 were compared by heatmap analysis to fold-change 
values, displaying a high degree of similarity between the 
differential gene expression analysis and correlation analysis 
results (Fig. 2C).

As previously noted, SLPI emerged as a top high-WFDC2 
DEG that was also the most strongly positively correlated 
gene (Spearman r = 0.59, p = 6.9e-30). A kinase anchor 
protein-12 (AKAP12) emerged as the low-WFDC2 DEG 
that was most strongly negatively correlated with WFDC2 
(Spearman r = −0.36, p = 1.09e-10) (Fig. 2D–G). Since 
SLPI was very strongly correlated with WFDC2 and is also 
a WAP-domain containing protease inhibitor, we suspected 
that these two proteins may show a tendency toward co-
regulation. We performed a pan-cancer correlation analysis 
of WFDC2 and SLPI, which revealed their strong correlation 
across many cancers, in particular pancreatic adenocarci-
noma (PADD), thymoma (THYM), and uterine carcinosar-
coma (UCS) (Fig. 2H). While SLPI has been reported to 
play a role in ovarian cancer pathogenesis and is associated 
with worse outcomes in ovarian cancer patients [20–22], 
there is no clear understanding of the potential overlapping 
or divergent roles HE4/WFDC2 and SLPI may have in regu-
lating tumorigenic properties.

In addition to SLPI, the gene peptidase inhibitor-3 
(PI3), encoding the protein elafin, was also among the 
top WFDC2-high DEGs that was strongly correlated with 
WFDC2 (r = 0.386, p = 2.39e-12). Elafin is also a WFDC 
protein that is overexpressed in ovarian cancer and related to 
poor outcomes [23, 24]; however, even less is known about 
elafin’s role in ovarian cancer than SLPI’s. Nonetheless, the 
co-regulation of these three WFDC proteins in ovarian can-
cer suggests an important role for this protein family in this 
disease.

Gene ontology analysis implicates metabolism 
and extracellular matrix correlations with WFDC2 
mRNA expression

Gene ontology (GO) analysis was performed on the DEGs 
of high- and low-WFDC2 expressing tumors. The complete 
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lists of enriched categories are shown in Tables S3 and S4. 
Strikingly, categories related to oxidative phosphorylation 
(OXPHOS)/mitochondrial metabolism were highly enriched 
in high-WFDC2 DEGs. Categories termed “antimicrobial 
humoral response” and “neutrophil activation” were also 
significantly enriched, which is interesting in light of a pre-
viously reported role for HE4 in regulating innate immunity 
of the respiratory tract [10] (Fig. 3A, Table S3). Of note, in 
the “neutrophil activation” category, CXCL8 (Interleukin-8; 
IL8), was among the identified DEGs, which is in agree-
ment with our previous study reporting on the regulation of 
CXCL8/IL8 by HE4 in immune cells [6].

GO assessment of low-WFDC2 DEGs revealed enrich-
ment for categories related to extracellular matrix, vascular 
development, epithelial cell proliferation, and ERK signaling 
(Fig. 3B, Table S4). These results were particularly surpris-
ing given the consistent reports of the stimulatory role of 
WFDC2 in metastasis, angiogenesis, proliferation, and ERK 
signaling [3, 6], raising the possibility of negative feedback 
mechanisms producing this unexpected result. In support 
of this hypothesis, we noted that expression of tenascin-C 
(TNC), which we have previously found to be upregulated 
by HE4 overexpression or treatment in OVCAR8 ovarian 
cancer cells [5], was a low-WFDC2 DEG. Alternatively, the 
enrichment of these categories may occur through selective 
alterations in genes that negatively regulate these processes. 
In support of this hypothesis, we noted that early growth 
response-1 (EGR1) was a low-WFDC2 DEG. We have 

previously reported that cisplatin-induced EGR1 expression 
was suppressed in WFDC2-overexpressing cells [4], sup-
porting a role for HE4 in suppressing the apoptosis-promot-
ing effects of EGR1 in response to chemotherapy. Moreo-
ver, AKAP12 was listed in the “ERK1 and ERK2 cascade” 
category, and is described as a tumor suppressor known to 
suppress the ERK signaling pathway [25]. Collectively, HE4 
may regulate these various pathways through a combination 
of feedback mechanisms or negative regulatory approaches, 
which in some cases may be more accurately represented in 
the complex tumor microenvironment than in ovarian cancer 
cell lines.

Survival outcomes related to top correlated DEGs

We then performed Kaplan–Meier analyses for OS for all of 
the top correlated DEGs. To keep the comparison between 
WFDC2 and these genes comparable, we used the same 
parameters we found to produce the most prognostic results 
for WFDC2 in Fig. 1 (stage III, IV; grade 2, 3 disease, opti-
mally debulked, top quartile cutoff). All genes with hazard 
ratios (HR) ≤ 0.75 or ≥ 1.5 (log-rank p < 0.01) are shown in 
Fig. 4A–N. Several genes had higher HRs than WFDC2, 
including SLPI (HR = 1.63 [1.23–2.16], p = 0.00056) and 
several NADH:ubiquinone oxidoreductase (NDU) family 
genes. Using average expression of all these NDU genes also 
demonstrated a significant HR of 1.8 [1.36–2.4] (p = 3.6e-
5) (Fig. 4M). The most prognostic gene was reactive oxy-
gen species modulator-1 (ROMO1), with an HR of 2.7 
[1.6–4.55], p = 0.00011) (Fig. 4D). These data suggest that 
the coordinate expression of specific sets of genes related to 
WFDC2 expression may indicate patient clinical outcomes 
in EOC.

WFDC2 levels influence immune cell infiltration

Using TIMER 2.0, we examined all immune deconvolu-
tion methods to determine immune cell populations sig-
nificantly correlating with WFDC2 expression in TCGA. B 
cells (TIMER) and plasmacytoid dendritic cells (XCELL) 
were positively correlated with WFDC2 levels (Spearman 
r = 0.243, p = 1.02e-04 and Spearman r = 0.221, p = 4.41e-
04, respectively).

Conversely, neutrophils (MCPCOUNTER) (Spearman 
r = −0.278, p = 8.45e-06), and endothelial cells (MCP-
COUNTER, EPIC) (Spearman r = −0.309, p = 6.43e-07 
and Spearman r = −0.206, p = 1.07e-03, respectively) were 
significantly negatively correlated with WFDC2 levels, 
however the correlations were overall weak (Fig. 5A–F). 
The putative reduction of endothelial cells in WFDC2-high 
tumors could reflect hypoxia-induced increases in WFDC2 
levels, as has been reported to occur during renal fibrosis and 
in gastric cancer [26, 27].

Fig. 1   HE4 (WFDC2) expression correlates with clinical survival 
outcomes A WFDC2 mRNA and HE4 protein levels were correlated 
by Spearman rank correlation analysis using all samples of the Fire-
hose Legacy cohort with mRNA (RNA Seq V2 RSEM) and protein 
(mass spectrometry by CPTAC) levels available (n = 105), showing 
strong correlation between mRNA and protein. B Putative copy num-
ber alterations (CNAs) were plotted against WFDC2 mRNA (RNA 
Seq V2 RSEM) levels in the Firehose Legacy cohort. A majority of 
samples were diploid (n = 95) or had CNA gains (n = 169). Median 
mRNA levels generally corresponded to CNAs. C WFDC2 mRNA 
levels (RNA Seq V2 RSEM) were correlated to mutation counts 
using Spearman rank correlation (left panel). Firehose Legacy TCGA 
samples were split into low (8–43) and high (43–158) mutation count 
groups and median WFDC2 mRNA levels (RNA Seq V2 RSEM and 
U133 microarray) determined for each group (right panels). There 
was a small, non-significant inverse correlation between WFDC2 
and mutation count, as well as a small, but significant decrease in 
WFDC2 mRNA levels in patients with fewer mutations. D Kaplan–
Meier curves for overall survival and progression-free survival were 
determined for WFDC2 using all cohorts (GEO Series and TCGA) 
available for ovarian cancer at http://​KMplot.​com. Analysis was 
restricted to serous Stage III and IV, grade 2 and 3. Patients with 
higher WFDC2 levels had worse overall survival. E Kaplan–Meier 
curves for overall survival and progression-free survival were deter-
mined for WFDC2 using all cohorts (GEO Series and TCGA) avail-
able for ovarian cancer at http://​KMplot.​com. Analysis was restricted 
to serous Stage III and IV, grade 2 and 3, optimally debulked only. 
Patients with higher WFDC2 levels had worse overall survival and 
progression-free survival

◂

http://KMplot.com
http://KMplot.com
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Comparison of TCGA data with DepMap ovarian 
cancer cell line data

We next went on to compare DepMap Cancer Cell Line 
Encyclopedia (CCLE) cell line expression data at https://​
depmap.​org/​portal/ (Table S5). First, we analyzed SLPI 
and PI3 (elafin) correlation data for 24 HGSOC cell lines. 
We found these genes to be strongly and significantly cor-
related with WFDC2, confirming their relationship with 
WFDC2 (Fig. 6A, B). Next, we stratified the cell lines 
according to median WFDC2 transcripts per million 
(TPM) and then analyzed the gene expression of the top 
five low- and top five high-WFDC2 expressing cell lines 
using iDEP.94 k-means clustering [28]. PCA revealed a 
good clustering of low- versus high-WFDC2 cell lines 
(Fig. 6C). Next, we performed k-means clustering using 
the top 500 most variable genes (Fig. 6D, Table S6). Gene 
ontology analysis of the resulting clusters revealed that the 
genes associated with low-WFDC2 were enriched for cat-
egories including extracellular matrix, cell-substrate adhe-
sion, and angiogenesis, which matched the enriched cate-
gories we found in our TCGA analysis (Fig. 6E, Table S7). 
When examining the genes associated with high-WFDC2, 
we found the enriched categories were involved in epider-
mis development, epithelial cell proliferation, and negative 
regulation of peptidase activity (Fig. 6F, Table S8). These 
results are not entirely unexpected, since HE4 is a protease 
inhibitor with a known role in promoting proliferation [3]; 
however, these categories differ from enriched categories 
in our TCGA analysis. It is possible these differences are 
related to the lack of tumor microenvironment interactions 
and hypoxia in the cell lines that are present in ovarian 
tumors. Overall, these results confirm the role of HE4 in 
regulating extracellular matrix functions, but suggest it 
may also have additional effects in an in vivo context ver-
sus in vitro.

Discussion

In this analysis, we identified SLPI as the gene most promi-
nently correlated with WFDC2. In differential gene expres-
sion analysis, it was also among the top five genes with 
significantly higher levels in HGSOC samples with high-
WFDC2 levels. SLPI and HE4 are both WFDC proteins with 
reported anti-protease functions [11]. While HE4 has been 
extensively studied as a biomarker and for its tumor promot-
ing functions, SLPI has received overall less attention. Our 
results confirmed that SLPI is a prognostic factor in ovarian 
cancer, with its transcript levels showing better prognostica-
tion than WFDC2. We also determined that SLPI is broadly 
correlated with WFDC2 across cancer types, suggesting 
that these two genes are frequently co-regulated. One unan-
swered question regarding the functions of SLPI and HE4 
is whether they possess redundant anti-protease functions 
or if their functions are unique. Supporting their potential 
unique roles is one study showing their co-expression in 
similar tissues of the respiratory tract, but divergent subcel-
lular localizations [10]. The question of these two proteins’ 
overlapping versus divergent functions will be important to 
answer if either protein were to be targeted therapeutically.

One surprising result from gene ontology analysis of 
high-WFDC2 DEGs was the enrichment of OXPHOS/
mitochondrial metabolism categories. No previous studies 
in ovarian cancer cell lines or mouse models have identi-
fied a potential relationship between HE4 and metabolism. 
While previous dogma stated that tumors undergo a glyco-
lytic switch whereby they move from relying on OXPHOS 
to glycolysis, more recent studies show that OXPHOS is an 
important metabolic pathway in several tumor types [29]. In 
ovarian cancer, OXPHOS is important in mediating resist-
ance to chemotherapy [30–32]. Interestingly, one study also 
reported that ovarian cancer stem cells prioritize OXPHOS 
for their metabolism [33], suggesting high OXPHOS metab-
olism to be a potential defining characteristic of a subset of 
chemoresistant cancer stem cells. Single-cell sequencing of 
ovarian tumors identified epithelial and stromal cell subsets 
in ovarian tumors, with the epithelial subset being charac-
terized by OXPHOS genes [34]. These studies point to the 
importance of OXPHOS as a key energy production pathway 
in ovarian cancer and our results raise the possibility of a 
connection between HE4/WFDC2 and hypoxia, fibrosis, and 
OXPHOS metabolism. However, the interplay between these 
various features remains to be elucidated.

Other enriched categories in high-WFDC2 DEGs were 
related to immune response, including “antimicrobial 
humoral immunity”, and “neutrophil activation”. An early 
study on HE4 reported its potential role in innate immu-
nity and epithelial host defense in the respiratory tract [10]. 

Fig. 2   Differential gene expression reveals a positive correlation 
of WFDC2 and SLPI across many cancers. A Principal component 
analysis (PCA) of all TCGA-OV  samples. B Volcano plot analy-
sis showing top five differentially expressed genes (DEGs) between 
high- and low-WFDC2 levels. Protein-coding genes significantly 
changed (p-adj. < 0.05) with log2 fold-change ≥ 0.5 in either direc-
tion are shown as red dots. C All DEGs were correlated with WFDC2 
in cBioPortal. Log2 fold-change (log2 FC) and Spearman r-values 
are represented in a heat map side-by-side comparison for all genes 
that significantly correlated with WFDC2 ≥ 0.3 in either direction. 
Fold-change data versus correlation data show a high degree of 
similarity. D, E SLPI was determined to be the  high-WFDC2 DEG 
that most strongly correlated with WFDC2 in the Firehose Leg-
acy cohort, while AKAP12 was the  low-WFDC2 DEG most nega-
tively correlated with WFDC2. Average FPKM values for SLPI and 
AKAP12 were plotted for WFDC2-high versus WFDC2-low samples. 
****p < 0.0001 F, G Spearman rank correlations are shown for SLPI 
and AKAP12. H Pan-cancer Spearman rank correlation analysis of 
WFDC2 and SLPI 

◂

https://depmap.org/portal/
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Recently, a correlation between innate immune response 
and serum HE4 was confirmed in COVID-19 patients [35]. 
We have also studied its role in regulating gene expression 
in immune cells, finding that it regulates several important 
immune genes and promotes secretion of Interleukin-8 
(IL8/CXCL8) from peripheral blood mononuclear cells 
(PBMCs), and contributes to suppression of PBMC cytotox-
icity against cancer cells [6, 36, 37]. Given that IL8/CXCL8, 
which was also a high-WFDC2 DEG in this current analysis, 
is a potent neutrophil chemotactic factor [38], it made sense 
that categories related to neutrophil activation and degranu-
lation were enriched. However, somewhat contradictorily, 
we observed a weak association with reduced neutrophil 
infiltration according to the TIMER analysis. Further stud-
ies are required to query this TIMER result and elucidate the 
reasoning behind these contradictory findings.

Several interesting GO categories were enriched in the 
low-WFDC2 DEG group, with a heavy focus on categories 

related to extracellular matrix (ECM) organization. As pre-
viously mentioned, this enrichment of ECM categories in 
the low-WFDC2 group could result from negative feed-
back mechanisms, or through downregulation of genes that 
negatively regulate these processes. Notably, many colla-
gen genes were downregulated, which could signal negative 
feedback mechanisms or an imbalance of various collagen 
types, leading to a fibrotic phenotype. The relative amounts 
and spatial location of various collagens may play a role 
in the development of fibrosis [39]. Furthermore, an inter-
esting connection between OXPHOS categories and ECM 
categories exists, with studies reporting that metabolic func-
tions and ECM regulation are intricately linked. Modulation 
of OXPHOS in osteosarcoma cells resulted in significant 
changes in ECM genes [40], and triple-negative breast can-
cer demonstrated increased OXPHOS with decreasing col-
lagen density [41]. Metformin, a drug used to treat diabetes 
and a known inhibitor of fibrosis [42, 43] and OXPHOS 
[44], suppresses ovarian cancer growth and metastasis [45], 

Fig. 3   Gene ontology analysis implicates metabolism and extracel-
lular matrix correlations with WFDC2 mRNA expression. A Gene 
ontology analysis was performed for all DEGs associated with 
high-WFDC2, revealing enrichment in categories related to metabo-
lism/oxidative phosphorylation. Number of genes in each category 
(“Count”) are indicated by circle size, while adjusted p-value (“p.

adjust”) is indicated by color. B Gene ontology analysis was per-
formed for all differentially expressed genes associated with low-
WFDC2, revealing enrichment in categories related to extracellular 
matrix, vascular development, and proliferation. Number of genes in 
each category (“Count”) are indicated by circle size, while adjusted 
p-value (“p.adjust”) is indicated by color
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further supporting the connection between these tumor 
features. Further studies are needed to determine if HE4-
mediated changes in ECM regulate metabolic pathways in 
HGSOC.

“Regulation of response to growth factor stimulus” and 
the “ERK1 and ERK2 cascade” were two other enriched 
categories in the low-WFDC2 DEG group. It has been 
well-documented that HE4 promotes activation of the ERK 
pathway and other signaling pathways in ovarian cancer 

(reviewed in [3]). Therefore, a possible explanation for this 
GO finding can be found by examining the specific genes 
found in the ERK enrichment group, which include AKAP12 
and elastin microfibril interfacer-1 (EMILIN1)—both nega-
tive regulators of the ERK pathway [25, 46]. Finally, the 
“vascular development” category was also enriched in the 
low-WFDC2 DEG group, which highly overlapped with 
ECM genes. EGR1, which mediates apoptosis, was also 
listed in this category, which supports our previous study 

A SLPI       UQCRFS1      RPL31       ROMO1       

NDUFB11       NDUFB3       NDUFA3       NDUFB2      

NPC2      INO80B      GPRC5C      ATOX1      
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All NDU genes
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Fig. 4   Survival outcomes related to top correlated DEGs. Kaplan–
Meier curves were generated at http://​KMplot.​com for all available 
datasets (TCGA and GEO Series). Top DEGs that were most asso-
ciated with overall survival (OS)  are shown in A–L (hazard ratio 

(HR) > 1.5; p < 0.01). M All NADH:Ubiquinone (NDU) genes were 
combined and analyzed by Kaplan–Meier. N Summary of hazard 
ratios

http://KMplot.com
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finding HE4-mediated suppression of EGR1 expression fol-
lowing cisplatin treatment [4]. It is unclear whether the pres-
ence of this category actually signals a reduction in vascular 
formation or angiogenesis, which would disagree with our 
previous study showing an angiogenesis promoting effect of 
HE4 via regulation of STAT3 and IL8 in vitro [6]. However, 
the TIMER immune cell data does suggest reduced endothe-
lial cell infiltration, although these computational findings 
will need to be confirmed experimentally.

The comparison of these TCGA analysis results with 
correlation data from high- and low-WFDC2 expressing 
HGSOC cell lines revealed some interesting findings. We 
observed an agreement in GO analysis of low-WFDC2 asso-
ciated genes in the categories of extracellular matrix, cell-
substrate adhesion, and angiogenesis, confirming an impor-
tant role for HE4 in regulating these functions. However, 
the enriched categories among high-WFDC2 associated 
genes were notably different between TCGA and HGSOC 
cell lines, with TCGA data pointing to metabolic functions 

and the DepMap data pointing to peptidase regulation and 
epithelial cell proliferation. These data do not preclude 
the regulation of peptidase activity and proliferation in an 
in vivo context, but suggest there are tumor microenviron-
mental effects that lead to a strong association of HE4 with 
OXPHOS metabolism. Despite these differences, we again 
noted a strong correlation of WFDC2 with SLPI and PI3 
(elafin) in the cell lines, confirming the association of these 
genes in ovarian cancer. In summary, we have identified 
genes differentially expressed between HGSOC with high- 
versus low-WFDC2 expression in human ovarian tumors 
and cell lines, revealing novel insights but also raising new 
questions regarding the pathogenic processes that may be 
regulated by the HE4 protein in the context of the tumor 
microenvironment in HGSOC. Future studies will further 
elaborate on the role of HE4 in extracellular matrix regula-
tion and angiogenesis that we have already reported in vitro 
[5, 6], as well as studies on the metabolic effects of HE4 in 
an in vivo context.

Fig. 5   WFDC2 levels influence immune cell infiltration. TIMER 2.0 
was used to determine the relationship between immune cell infiltra-
tion and WFDC2 transcripts per million (TPM) in TCGA-OV dataset. 

Purity correction was performed for all analyses (A). Significantly 
correlated immune subsets using the indicated algorithm (TIMER, 
XCELL, MCPCOUNTER, or EPIC) are shown in B–F 
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Fig. 6   Comparison of TCGA data with DepMap ovarian cancer cell 
line data. A, B Pearson correlation of SLPI and PI3 (elafin) with 
WFDC2 TPMs in DepMap HGSOC cell lines. C Principal compo-
nent analysis (PCA) of the top five low- and high-WFDC2 express-
ing HGSOC cell lines. D Two k-means clustering analysis of the top 
five low- and high-WFDC2 expressing cell lines, using the 500 most 
variable genes. E Gene ontology analysis was performed for Cluster 
B genes (genes associated with low-WFDC2 in DepMap HGSOC 
cell lines), revealing enrichment in categories related to extracellular 

matrix and adhesion. Number of genes in each category (“Count”) are 
indicated by circle size, while adjusted p-value (“p.adjust”) is indi-
cated by color. F Gene ontology analysis was performed for k-means 
cluster A genes (genes associated with high-WFDC2 in DepMap 
HGSOC cell lines), revealing enrichment in categories related to epi-
dermis development, proliferation, and peptidase activity. Number of 
genes in each category (“Count”) are indicated by circle size, while 
adjusted p-value (“p.adjust”) is indicated by color
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Methods

cBioPortal

For all cBioPortal [47, 48] analyses, TCGA ovarian cancer 
Firehose Legacy dataset was explored. All gene correlations 
were performed using the “co-expression” feature. Protein 
and mRNA correlation and mRNA levels according to copy 
number alterations were performed using the “plots” fea-
ture. Mutation count analyses were performed using the 
“plots” feature and the “mutations count” feature selecting 
“median”. RNA Seq V2 RSEM or U133 microarray data 
were used where indicated.

DepMap Portal

Cell line expression data (CCLE Expression Public 21Q4) 
available in the DepMap portal [49] (https://​depmap.​org/​
portal/) were downloaded for k-means clustering analysis or 
analyzed using the “Data Explorer” feature in “Tools”. Data 
were analyzed for 24 HGSOC cell lines and correlation data 
were downloaded for SLPI and PI3 with WFDC2.

Differential gene expression analysis

The Cancer Genome Atlas (TCGA) ovarian cancer dataset 
with complete RNA-sequencing results in Fragments Per 
Kilobase of transcript per Million mapped reads (FPKM) 
(n = 378) was obtained using GenomicDataCommons (ver-
sion 1.12.0) and RStudio (R version 4.0.0) [50, 51]. The R 
scripts used for plotting and to identify the high- and low-
WFDC2 DEGs in this publication are available to the pub-
lic: https://​github.​com/​mg859​337/​WFDC2_​TCGA_​Analy​
sis. The median FPKM of WFDC2 was calculated using the 
FPKM table from TGCA. FPKM values were used to split 
the samples into WFDC2-high and -low groups. Based on 
this, a metadata file for this dataset was manually created in 
Excel and saved as a csv. The gene count table from TCGA 
was used to create a PCA plot by variance-stabilizing trans-
formation (vst) of the dds created using DESeq2 (v1.28.1) 
and plotted using ggplot2 (v3.3.3) in RStudio (Rv4.0.2) 
(deseq ref, ggplot ref). DESeq2 differential expression analy-
sis was run with the design of “ ~ WFDC2”. Differentially 
expressed genes (DEGs) were defined as protein-coding 
genes with log2 fold-change of ≥ 0.5 or ≤ −0.5 that had a 
p-adjust value < 0.05. The volcano plot was created using 
ggplot2, dplyr (v1.0.2), and ggrepel (v0.8.2) with DEGs 
plotted in red.

iDEP.94 k‑means clustering analysis

HGSOC cell line expression data (CCLE Expression Public 
21Q4) available in the DepMap portal [49] (https://​depmap.​
org/​portal/) was downloaded. The cell lines were stratified 
according to median transcripts per million (TPM), and then 
the top five low-WFDC2 and top five high-WFDC2 express-
ing cell lines were determined. Data for these cell lines were 
uploaded into the iDEP.94 portal [28], and the data were pre-
processed, log-transformed, and very low expressing genes 
were filtered (genes with 0 TPMs in half the samples). A 
PCA plot was generated, and k-means clustering analysis 
was performed for two clusters with the 500 most variable 
genes.

Gene ontology analysis

The R scripts used for gene ontology analysis are available to 
the public: https://​github.​com/​mg859​337/​WFDC2_​TCGA_​
Analy​sis. The DEGs identified using DESeq2 were divided 
into “high-WFDC2 DEGs” and “low-WFDC2 DEGs” based 
on their log2 fold-change. The gene lists for the DepMap 
gene ontology analysis were generated from k-means clus-
tering data. The gene lists were saved into text files and 
used as input for clusterProfiler (v3.16.1). To use cluster-
Profiler, loading the packages org.Hs.eg.db (v3.11.4), DOSE 
(V3.14.0), and ggplot2 (v3.3.3) into RStudio (Rv4.0.2) was 
also necessary [52–55]. From the gene ontology results of 
clusterProfiler, dotplots were constructed for each of the 
DEG lists ordered by “GeneRatio”.

Kaplan–Meier curves

The ovarian cancer plotter at http://​KMplot.​com [56] was 
used to determine progression-free survival (PFS) and over-
all survival (OS) in TCGA and Gene Expression Omnibus 
(GEO) Series cohorts limited to stage III and IV, grade 2 
and 3 samples. N = 472 (PFS) and n = 495 (OS) for all genes 
limited to optimally debulked samples except ROMO1, for 
which only 384–387 samples were available for analysis. 
n = 942 (PFS) and n = 975 (OS) for analysis of WFDC2 in all 
serous stage III and IV, grade 2 and 3 samples. Top quartile 
of expression was used to delineate low and high expressing 
groups for all analyses.

TIMER immune cell subset analysis

TIMER 2.0 for immune cell subsets with purity adjustment 
was performed for WFDC2 in TCGA-OV dataset (n = 303), 
using the website http://​timer.​comp-​genom​ics.​org/. WFDC2 
and SLPI pancancer correlation analysis was also performed 
using TIMER 2.0 “Gene_Corr” feature [57].

https://depmap.org/portal/
https://depmap.org/portal/
https://github.com/mg859337/WFDC2_TCGA_Analysis
https://github.com/mg859337/WFDC2_TCGA_Analysis
https://depmap.org/portal/
https://depmap.org/portal/
https://github.com/mg859337/WFDC2_TCGA_Analysis
https://github.com/mg859337/WFDC2_TCGA_Analysis
http://KMplot.com
http://timer.comp-genomics.org/
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