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New, more effective therapeutics are required for the treatment of paediatric cancers. Current treatment protocols of cytotoxic
treatments including chemotherapy trigger cancer-cell death by engaging the apoptosis pathway, and chemotherapy efficacy is
frequently impeded by apoptosis dysregulation. Apoptosis dysregulation, through genetic or epigenetic mechanisms, is a feature of
many cancer types, and contributes to reduced treatment response, disease progression and ultimately treatment resistance. Novel
approaches are required to overcome dysregulated apoptosis signalling, increase the efficacy of cancer treatment and improve
patient outcomes. Here, we provide an insight into current knowledge of how the apoptosis pathway is dysregulated in paediatric
nervous system tumours, with a focus on TRAIL receptors, the BCL-2 proteins and the IAP family, and highlight preclinical evidence
demonstrating that pharmacological manipulation of the apoptosis pathway can restore apoptosis signalling and sensitise cancer
cells to treatment. Finally, we discuss the potential clinical implications of these findings.
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FACTS

® Apoptosis pathways are frequently dysregulated in cancer,
including in paediatric nervous system malignancies and
chemoresistance remains a significant clinical challenge

® Reactivation of apoptosis pathways represents a rational
strategy to sensitise cancer cells to death-inducing treatments,
and the development of targeted agents enables the
pharmacological modulation of anti-apoptotic proteins

® A growing body of preclinical evidence highlights the utility of
targeted agents such as BH3 mimetics and IAP inhibitors in
paediatric oncology

® Techniques such as BH3 profiling will facilitate the clinical
translation of some of these agents

OPEN QUESTIONS

® (Can novel apoptosis modulators increase the sensitivity of
paediatric nervous system cancers to apoptosis-inducing
treatment?

® What biomarkers can identify patients likely to benefit from
such treatments?

® Which combinations of targeted agents are most beneficial in
these cancers?

® How can the apoptosis pathway be optimally targeted
without resulting in on-target effects in non-disease tissue?

INTRODUCTION
After accidents, cancer is the leading cause of death in children, as
well as the leading cause of illness-related death [1, 2]. Between
2001 and 2010, ~400,000 children and adolescents were
diagnosed with cancer worldwide [3]. Tumours of the nervous
system are among the most commonly occurring paediatric
cancers, with brain tumours the second most common solid
malignancy [4]. Within malignant brain tumours, medulloblastoma
is the most frequent, accounting for 20% of all cases [5]. Less
common paediatric brain tumours include glioblastoma, astro-
cytoma, choroid plexus carcinoma, primitive neuro-ectodermal
tumours (PNET), meningioma and ependymoma [6]. Tumours of
the sympathetic nervous system such as neuroblastoma also occur
frequently in young children, with 90% of neuroblastoma cases
diagnosed in patients aged <5 years [7]. In the majority of these
malignancies, chemotherapy is a mainstay of treatment [8-10],
and is of particular importance in patients <3 years for whom
radiation therapy is avoided due to its associated side effects [11].
Apoptosis is a tightly regulated form of programmed cell death
carried out by multicellular organisms as part of normal
development. The two main pathways of apoptosis are the
intrinsic and extrinsic pathways, and these differ in their triggers
and the means by which the apoptotic signal is transduced (Fig.
1). Both pathways converge on caspase activation, which leads to
cell death execution [12]. Intrinsic apoptosis is initiated by
alterations in the intracellular environment and is defined by
mitochondrial outer membrane permeabilization (MOMP) [12].
The extrinsic pathway is triggered by activation of cell surface
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receptors by external signalling molecules or perturbations of the
extracellular environment, and is propagated by caspase 8
activation [12].

Chemotherapy, and indeed most cancer therapies, target the
apoptosis pathway to mediate their effects. Treatment success,
however, is frequently hampered by apoptosis resistance. Indeed,
evading apoptosis is one of the Hallmarks of Cancer, contributing
to both tumour progression and treatment resistance [13].
Apoptosis resistance is either intrinsically present in cancer cells,
for example through genetic mutations, or is acquired in response
to cellular stress by upregulation or downregulation of anti- or
pro-apoptotic proteins, respectively [13]. Characterising apoptosis
defects can identify ways to restore apoptosis signalling, inform
the development of novel anti-tumour strategies, and enable
reduction of toxic chemotherapy regimens. This is of particular
importance for paediatric tumours which are frequently asso-
ciated with defective apoptotic machinery [14]. In this review, we
focus on the ability of paediatric nervous system tumours to evade
apoptosis, and highlight potential strategies to overcome the
associated therapeutic resistance.

TARGETING THE EXTRINSIC APOPTOSIS PATHWAY IN
PAEDIATRIC NERVOUS SYSTEM TUMOURS

The extrinsic apoptosis pathway

Extrinsic apoptosis is initiated by extracellular perturbations,
generating a signal that is transduced by receptors located on
the plasma membrane. Death receptors are activated by ligand
binding. TRAIL, for instance, binds TRAIL-RT and TRAIL-R2 (also
known as DR4 and DR5) to initiate extrinsic apoptosis signalling

[15]. In contrast, dependence receptors are activated when ligand
levels drop below certain thresholds [16]. Death receptors are
characterised by a cytoplasmic ‘death domain’ to relay the signal
from the cell surface. TRAIL receptor ligation enables association
of the FADD adapter molecule at the TRAIL-R1/R2 death domain
[17], leading to formation of the death-inducing signalling
complex (DISC) which recruits and activates caspase 8 [18].
Proteolytic activation of caspase 8 via interactions at the DISC
initiates the caspase cascade and apoptosis execution. Cells are
considered as type | or type Il based on how they execute extrinsic
apoptosis [19]. In type | cells, levels of activated caspase 8 are
sufficient to drive apoptosis via activation of executioner caspases
3 and 7, and death is independent of the mitochondria [19]. In
contrast, type Il cells require involvement of the mitochondrial
pathway to execute apoptosis, as DISC formation is lower in these
cells [20]. Mitochondrial pathway involvement is mediated by
caspase 8 truncation of BID, a pro-apoptotic protein [21], with
truncated BID (tBID) subsequently engaging BAX and/or BAK to
induce MOMP and the release of pro-apoptotic mediators, thereby
amplifying the death signal (Fig. 1). Finally, cFLIP is a non-
proteolytically active homologue of caspase 8 [22]. Its recruitment
to the DISC forms an apoptosis inhibitory complex in conjunction
with FADD [22], preventing caspase 8 activation. cFLIP therefore
controls the susceptibility of tumour cells to TRAIL (Fig. 1).

Targeting TRAIL receptors and downstream signalling

Exogenous TRAIL holds promise as a potential cancer therapeutic
due to its selectivity for malignant cells with minimal toxicity
against normal tissue [23], and its translational relevance has been
increased by the development of new variants such as 1Z11551 [24]
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and ABV-2661, a TRAIL-R agonist fusion protein [25] which is
currently in a Phase 1 clinical trial for adult patients with
previously-treated malignancies (NCT03082209).

The efficacy of TRAIL against cancer is limited, by frequent
dysregulation of the extrinsic apoptosis pathway, including
downregulation of TRAIL receptors and downstream signalling
mediators, for example by epigenetic silencing [26]. Therefore,
agents that restore expression of these key molecules have
potential as TRAIL sensitisers, and the reversibility of epigenetic
silencing is of clinical importance as epigenetic remodelling can
be targeted pharmacologically.

Upregulation of TRAIL-R2/DR5 in neuroblastoma cells by
etoposide [27, 28] or doxorubicin treatment [27] has been
documented to increase TRAIL sensitivity. In medulloblastoma,
TRAIL-R2/DR5 is commonly expressed, while TRAIL-R1/DR4 is
frequently absent [29, 30]. This silencing of DR4 is understood to
be mediated by aberrant histone deacetylation [30], and treat-
ment of medulloblastoma cell lines with the histone deacetylase
(HDAQ) inhibitor MS275 increased DR4 expression, via increased
acetylation of H3 and H4 at its transcriptional start site, and
enhanced TRAIL-induced apoptosis [30].

Other potential strategies to sensitise cells to TRAIL treatment
have been identified, including modulation of the BCL-2 protein
family which is of particular relevance in type Il cells [20]. The
combination of TRAIL with the proteasome inhibitor Bortezomib
was highlighted as an effective strategy for inducing apoptosis in
cell line models and primary cultures of neuroblastoma [31] and
meningioma [32]. Bortezomib enhanced TRAIL-induced, caspase
8-mediated tBID levels, and induced mitochondrial apoptosis and
caspase activation through a mechanism involving p53 and
upregulation of NOXA, a pro-apoptotic protein [31] whose role is
described further in section 3.1. Encouragingly, this effect was also
observed in an in vivo model of neuroblastoma [31], underscoring
the potential clinical relevance of this combination. However, no
clinical trials have been undertaken to assess the efficacy of this,
as Bortezomib lacks the ability to cross the blood-brain barrier,
limiting its relevance in the context of CNS tumours [33]. In this
regard, another proteasome inhibitor, Marizomib, has increased
potential as it can penetrate the blood-brain barrier, and is
currently in a phase lll trial in adult GBM patients (NCT03345095).

Targeting caspase 8 to increase sensitivity to TRAIL

Weak caspase 8 expression is predictive of unfavourable
progression-free survival (PFS) in medulloblastoma, where
patients with low caspase 8 tumour levels had a 5-year PFS of
31%, compared with 73% in those with moderate or strong
expression [34]. Additionally, loss or silencing of caspase 8
expression is associated with MYCN-amplified and aggressive
neuroblastomas [35, 36].

Moreover, caspase 8 expression is key in determining TRAIL
sensitivity, and loss of expression is frequent in the development
of TRAIL resistance. Increased methylation of the caspase 8
promoter mediates its transcriptional silencing in medulloblas-
toma, PNET, and neuroblastoma [29, 34, 37-39]. Indeed, caspase 8
promoter methylation and subsequent silencing are associated
with tumour aggressiveness in ganglioneuromas [39], and with
invasiveness in TRAIL-resistant neuroblastoma cell lines [40, 41].

In this context, methylation inhibitors may be beneficial. In vitro
treatment with 5-Aza-2’-deoxycytidine, a demethylating agent,
successfully restored caspase 8 expression and sensitivity to TRAIL-
induced apoptosis in cell line models of PNET [37], neuroblastoma
[38, 40, 42] and medulloblastoma [42].

Furthermore, interferon-y (IFNy) treatment of caspase 8
deficient cells restored caspase 8 expression and TRAIL sensitivity
in TRAIL-resistant medulloblastoma [34, 42] and neuroblastoma
cell lines [27, 28, 43-46]. This was due to IFNy-mediated
regulation of an interferon-sensitive response element within
the caspase 8 promoter [43, 47, 48]. IFNy-mediated caspase 8
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upregulation was also shown to enhance sensitivity of medullo-
blastoma cells to standard chemotherapeutic agents including
cisplatin, doxorubicin, and etoposide, as well as to ionising
radiation [49]. Together, these findings highlight that resistance
to TRAIL-induced death may be overcome by targeting the
epigenome to upregulate caspase 8 expression. The clinical
importance of these findings is enhanced by the capability of 5-
Aza-2'-deoxycytidine to readily penetrate the blood-brain barrier
[50], and a phase | trial is underway investigating the safety of
directly infusing this into the fourth ventricle in paediatric
ependymoma patients (NCT02940483).

TARGETING THE BCL-2 PROTEIN FAMILY IN PAEDIATRIC
NERVOUS SYSTEM TUMOURS

The BCL-2 protein family

The intrinsic pathway of apoptosis is characterised by MOMP,
which facilitates the cytosolic release of cytochrome ¢, SMAC, and
other intermembrane space proteins, enabling apoptosome
formation, caspase activation, and apoptosis execution. MOMP is
tightly regulated by the BCL-2 protein family, whose members
share homology in at least one BCL-2 homology (BH) domain
(BH1, BH2, BH3 and BH4). On this basis they are classified into
three groups, shown in Fig. 2: the anti-apoptotic proteins BCL-2,
BCL-XL, MCL-1, BCL-W and BFL-1/A1 with sequence homology in
all four BH regions, the pro-apoptotic proteins (termed multi-
domain effectors) BAX, BAK and BOK with sequence homology at
BH1, BH2 and BH3, and pro-apoptotic proteins such as BIM, BID,
PUMA and NOXA, which only possess the short BH3 domain. This
final group are designated as BH3-only proteins and can be
further sub-classified as either ‘activators’ (BIM, BID and PUMA) or
‘sensitisers’, (BAD, BIK, BMF, HRK and NOXA) [51].

BAX and BAK are MOMP effectors which dimerise via their
exposed BH3 domains [52] and form higher-order structures
through cross-linking of cysteine residues in their N-terminal
epitopes [52]. These oligomers insert into the mitochondrial outer
membrane lipid bilayer to form pores [53], leading to loss of
mitochondrial membrane potential and disruption of mitochon-
drial structure, and culminating in release of cytochrome c and
SMAC from the mitochondria [54]. While BOK is classified as a pro-
apoptotic multi-domain effector protein, its role in apoptosis
remains the subject of uncertainty and it is understood to be the
least potent of the MOMP effector family [55]. As shown in Fig. 3,
BAX/BAK activation is antagonised via direct interactions with the
anti-apoptotic proteins BCL-XL, BCL-2, MCL-1, BCL-W and BFL-1/
A1, which sequester pro-apoptotic proteins and prevent MOMP
[51, 56-58]. Activator BH3-only proteins have the ability to bind
non-activated BAX/BAK to directly trigger their activation [51].
Sensitiser BH3-only proteins mediate their pro-apoptotic functions
indirectly, by binding anti-apoptotic proteins and competitively
displacing BAX/BAK monomers or activator BH3-only proteins
from the anti-apoptotic proteins [58, 59].

BCL-2 proteins as therapeutic targets in cancer

Dysregulation of BCL-2 protein family members is reported in
many cancers, and hence, their targeting may sensitise cancer
cells towards apoptotic stimuli. For example, tumours frequently
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Fig.2 The structure of BCL-2 protein family members. TM denotes
the transmembrane domain.
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depend on an overabundance of anti-apoptotic signals to sustain
their survival in the presence of death-inducing agents. In this
regard, BH3 mimetics, a class of highly specific small molecule
inhibitors that mimic the function of the pro-apoptotic BH3-only
proteins, hold great potential.

ABT-737 was one of the earliest BH3 mimetics designed to
inhibit the anti-apoptotic BCL-2 protein family. With nanomolar
affinity for BCL-2, BCL-XL and BCL-W [60], ABT-737 demonstrated
single-agent efficacy against lymphoma and small-cell lung cancer
(SCLQ), and synergy in combination with chemotherapy and
radiation in vitro and in vivo. However, in vivo ABT-737 treatment
resulted in platelet apoptosis [61] due to the exquisite anti-
apoptotic dependence of platelets on BCL-XL [62], leading to
reduced platelet and lymphocyte counts [60].

The clinical utility of ABT-737 was also hindered by its lack of
oral bioavailability, prompting the development of ABT-263/
Navitoclax, an orally available BH3 mimetic with a similar binding
profile to ABT-737 [63]. Mechanistically, ABT-263 induces apopto-
sis by disrupting BIM:BCL-XL and BIM:BCL-2 interactions, releasing
BIM and resulting in BAX-dependent MOMP [63]. ABT-263
demonstrated activity as a single agent in SCLC and haematolo-
gical malignancies, resulted in tumour regression in SCLC and
acute lymphoblastic leukaemia (ALL) xenograft models [63], and
enhanced the activity of chemotherapeutic agents in vivo [63].
However, ABT-263 also induced platelet apoptosis and thrombo-
cytopenia in vivo [61, 63]. Nevertheless, a Phase 1 study showed
Navitoclax to be well tolerated in patients with SCLC and other
solid malignancies [64], although a Phase Il study showed limited
efficacy as a single agent [65]. Results from the Paediatric
Preclinical Testing Programme, which tested the efficacy of ABT-
263 in a panel of 23 cell lines and 44 xenograft models, showed
that ABT-263 had activity in approximately 50% of cell lines, but
only limited single-agent activity in solid tumour xenograft
models [66]. Further studies therefore focused on the effect of
ABT-263 administered concurrently with other agents such as
carboplatin and paclitaxel, though only modest anti-tumour
effects were observed [67]. Nevertheless, a current clinical trial is
evaluating its efficacy in combination with the MEK inhibitor
trametinib in adult patients with advanced solid tumours
(NCT02079740). It is possible that the identification of biomarkers
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of ABT-263 response could be used to identify patients likely to
respond to ABT-263 treatment.

Specific inhibitors of individual anti-apoptotic proteins have
also been developed, such as the BCL-2 inhibitor ABT-199/
Venetoclax [68], BCL-XL inhibitors A1331852 [69] and WEHI-539
[70], and MCL-1 inhibitors S63845 [71], AMG-176 [72] and
AZD5991 [73] (Fig. 1). These inhibitors have potential utility in
the treatment of both paediatric and adult cancers, in blood and
solid malignancies.

BCL-2 proteins as therapeutic targets in paediatric tumours of
the nervous system

With regards to paediatric tumours of the nervous system
specifically, the anti-apoptotic BCL-2 protein family members are
also potential therapeutic targets as their overexpression is
commonly reported in these tumours, and correlates with clinical
parameters such as therapeutic responsiveness and disease
progression. BCL-2 expression in neuroblastoma [74-79] is
associated with drug resistance, unfavourable histology and
N-MYC amplification [74, 75], and a high-risk phenotype [76].
BCL-2 expression is also associated with poor outcome in
paediatric glioblastoma [80] and ependymoma [81]. Interestingly,
in medulloblastoma BCL-2 is the least frequently expressed of the
anti-apoptotic BCL-2 proteins [82, 83], although expression is
associated with poorly differentiated and highly proliferative
tumour regions, and tends to correlate with poor outcome [84].
BCL-2 has also been identified as an important mediator of
Hedgehog activity in the Sonic Hedgehog (SHH) subtype [85], and
Gli1 and Gli2, essential transcriptional drivers of the SHH subtype
of medulloblastoma, regulate BCL-2 transcription [86]. Indeed,
mouse studies have shown that postnatal overexpression of BCL-2
promotes medulloblastoma tumour formation in cooperation with
Sonic hedgehog pathway activation [87], highlighting a subtype-
specific role for BCL-2 in medulloblastoma.

BCL-XL and MCL-1 are also of potential therapeutic interest.
BCL-XL is the most frequently expressed anti-apoptotic BCL-2
protein in medulloblastoma tumours [83] and is expressed in the
majority of medulloblastoma cell lines [88]. It is also expressed in
most neuroblastoma cell lines [89], where its overexpression
inhibits chemotherapy-induced apoptosis. Similarly, MCL-1 is also
frequently expressed in medulloblastoma [~50% of tumours, [83]]
and in neuroblastoma, where high expression is associated with a
high-risk phenotype [76].

The identification of the anti-apoptotic BCL-2 proteins as
therapeutic targets has led to the development of BH3 mimetics
(Fig. 1), which have demonstrated efficacy in multiple cancer types
in vitro as single agents or as sensitising agents. Early studies
using the pan-BCL-2 inhibitor ABT-737 in neuroblastoma cell lines
revealed a synergistic cytotoxicity with fenretinide, a synthetic
retinoid derivative that inhibits cancer-cell line growth, while the
combination also increased event-free survival in an orthotopic
mouse model of neuroblastoma [90]. Subsequently, BCL-2
silencing in neuroblastoma cells was shown to induce apoptotic
cell death [77] while ABT-199 also synergised with fenretinide in
both neuroblastoma cell lines and PDX models expressing high
BCL-2 levels, where improved event-free survival was demon-
strated [91]. Mechanistically, neuroblastoma cell lines identified as
BCL-2 dependent possess high levels of BCL-2 [92] and BIM:BCL-2
complexes, and ABT-199 mediates its effects by displacing BIM
from BCL-2 [78, 79, 93], allowing mitochondrial apoptosis to
proceed. MYCN-amplified neuroblastoma has been identified as
particularly sensitive to ABT-199 treatment, and, in xenograft
models, ABT-199 induced apoptosis and tumour regression in
combination with the Aurora-A inhibitor MLN8237 [94]. In other
xenograft models of BCL-2 dependent neuroblastoma [78], ABT-
199 exhibited its effects through inhibition of tumour growth,
rather than by inducing apoptosis. Results with ABT-263 [77] also
suggested that ABT-263 mediates its effects in neuroblastoma
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through BCL-2 inhibition. Collectively, these studies identified a
significant role for BCL-2 in mediating neuroblastoma resistance
apoptosis, which could be overcome by utilising combinational
treatment strategies.

Targeting MCL-1 or BCL-XL has also proven successful.
Treatment with $63845 (MCL-1 inhibitor) or A1331852 (BCL-XL
inhibitor) reduced viability and induced apoptosis in a subset of
neuroblastoma cell lines, due to the release of pro-apoptotic
proteins from BCL-XL- or MCL-1-mediated sequestration [92].
Furthermore, MCL-1 knockdown induced apoptosis and increased
sensitivity to both etoposide and doxorubicin in cell line models
of neuroblastoma [76], in a mechanism also understood to involve
the release of BIM from MCL-1 sequestration [93]. The MCL-1
inhibitor A-1210477 is shown to synergise with the Hedgehog
pathway inhibitor GANT61 in a subset of medulloblastoma cell
lines [95]. BCL-XL targeting has additionally been demonstrated to
sensitise medulloblastoma cells to MLN8237 treatment [96] as
well as to ionising radiation [97], while synergy between ABT-263
and vincristine has also been attributed to its BCL-XL-targeting
ability [98].

Combining BH3 mimetics has also emerged as a promising
strategy to target BCL-2 protein-mediated resistance and enhance
tumour cell killing, with early in vitro studies showing that MCL-1
knockdown overcomes ABT-737 resistance [76]. In some neuro-
blastoma mouse models, it was shown that ABT-199 treatment
induced growth inhibition rather than apoptosis, due to MCL-1
upregulation and subsequent BIM sequestration by MCL-1 [78]. In
vitro, MCL-1 inhibition sensitised neuroblastoma cells to ABT-199
treatment, highlighting the protective role MCL-1 mediates in
cells with high BCL-2:BIM complex levels [78]. Furthermore, recent
research demonstrated that dual inhibition of BCL-XL and MCL-1
synergistically reduces viability and induces death in neuroblas-
toma cell lines displaying treatment resistance to individual BCL-2,
BCL-XL, or MCL-1 inhibitors [99]. Specifically, the efficacy of BCL-XL
inhibition is limited by MCL-1, and the use of $63845 can
therefore be used to abolish MCL-1-mediated resistance to
A1331852 treatment by preventing MCL-1 binding pro-
apoptotic the pro-apoptotic proteins displaced from BCL-XL by
A1331852 [99]. The dual BCL-2/MCL-1 inhibitor TW-37 also
successfully induces apoptosis in N-MYC-amplified neuroblastoma
in vitro and in vivo [100], further emphasising that targeting
multiple anti-apoptotic BCL-2 family members is necessary to
induce apoptosis in some scenarios.

Clearly, the variable dependence of cancer cells on different
anti-apoptotic proteins complicates the selection of the target
protein. This is a particular concern in developing therapeutic
combinations for paediatric patients, given that paediatric organs
and tissues are more highly primed for apoptosis than the
corresponding tissues of adults [101]. Fortunately, BH3 profiling
represents a high-throughput experimental approach that can be
used to elucidate dependencies of cancer-cell lines and patient
tumour samples on individual anti-apoptotic proteins [102-104].
Studies in neuroblastoma, for instance, utilised BH3 profiling to
predict responses to ABT-737 [105]. Alcon and colleagues have
highlighted the potential of this approach in paediatric cancers
[103], although further work is required to confirm the utility of
BH3 profiling in the clinical paediatric cancer setting, and
specifically in tumours of the paediatric nervous system.

Encouragingly, the lack of cancer-cell specificity of current BH3
mimetics is beginning to be addressed with the development of
targeted inhibitors with a reduced toxicity profile. The dose-
limiting platelet toxicity associated with BCL-XL inhibitors has led
to the development of DT2216, a proteolysis-targeting chimera
(PROTAQ) that targets the BCL-XL protein for degradation via the
Von Hippel-Lindau (VHL) (E3) ligase [106] in a cancer-cell specific
manner. In vitro studies showed that DT2216 could sensitise
prostate, TNBC, liver and colorectal cancer-cell lines to standard
chemotherapeutic agents such as doxorubicin, docetaxel and
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vincristine [106], and this effect was also observed in a xenograft
model of TNBC. Furthermore, DT2216 administered with ABT-199
completely suppressed tumour growth in a SCLC xenograft model
[106], and also led to reduced disease burden and improved
survival in a T-cell lymphoma PDX model [107]. DT2216 has
entered a first-in-human clinical trial in patients with advanced/
metastatic treatment-refractory solid or haematological malig-
nancies (NCT04886622). A second compound selectively targeting
BCL-XL in cancer is mirzotamab clezutoclax/ABBV-155 [108], an
antibody-drug conjugate consisting of a BCL-XL inhibitor con-
jugated to a monoclonal anti-B7H3 antibody that targets the drug
to cancer cells due to their selective B7H3 expression [109]. ABBV-
155 is currently in dose-escalation studies in patients with
relapsed or refractory solid tumours (NCT03595059). Trial results
are eagerly awaited and potentially provide hope for the
paediatric cancer community.

TARGETING IAP SIGNALLING IN PAEDIATRIC CANCERS OF THE
NERVOUS SYSTEM

The IAP family

The inhibitor of apoptosis (IAP) family of anti-apoptotic regulators
prevent cell death by inhibiting caspases [110]. The IAP family has
eight members, which are characterised by possession of at least
one baculoviral IAP repeat (BIR) domain that mediates interactions
with other proteins [111], as shown in Fig. 4. These are X-linked
inhibitor of apoptosis protein (XIAP), cellular IAP 1 (clAP1), cellular
IAP 2 (clAP2), IAP-like protein 2 (ILP-2), melanoma IAP (ML-IAP),
neuronal apoptosis inhibitory protein (NAIP), Apollon and Survivin.
XIAP is both the most potent and best studied member of the IAP
family, and is the only member with the ability to directly inhibit
activation of caspase 3, 7 and 9 [111]. The BIR2 domain has the
ability to bind and inhibit caspase 3 and 7, while its BIR3 domain
confers the ability to inhibit caspase 9 [112]. While clAP1/2 and
NAIP also possess all three BIR domains, they do not directly bind
and inhibit caspases. clAP1/2 indirectly inhibits caspase 3 and 7 by
tagging them for proteasomal degradation, while NAIP constitutes
part of the inflammasome, with roles in mediating innate
immunity [113]. SMAC/DIABLO is an endogenous IAP antagonist
which opposes the anti-apoptotic function of IAPs by interacting
with and inhibiting their BIR2 and BIR3 domains via its N-terminal
domain [114].

The IAP family as therapeutic targets

IAP protein family members are dysregulated in both paediatric
and adult malignancies. Medulloblastoma cell lines express higher
IAP levels than normal astrocytes and brain tissue [115, 116], while
XIAP is overexpressed in neuroblastoma cells compared with

XIAP  —| BIR1 — BIR2 —{ BR3 —— RING ——

clAP1/2 —{ BIR1 — BIR2 |— BIR3 —— CARD —{ RING —

PR - E—

ML-IAP —  BIR3 — RING —

NAIP  — BR1 — BIR2 |— BR3 —mMmM—

Apollon _{ BIR

Survivin — BR  |—

Fig. 4 The structure of IAP family members. IAP members all have
at least one baculoviral IAP repeat (BIR) domain that facilitates their
interaction with other proteins. Some I|APs contain a Really
Interesting New Gene (RING) domain that mediates E3 ligase
activity. clAP1/2 additionally contains a CAspase Recruitment
Domain (CARD) which functions in protein-protein interactions.

SPRINGER NATURE



M.-C. Fitzgerald et al.

healthy adrenal gland tissue [117]. Additionally, clAP1 and XIAP
expression levels increase between primary and recurrent
neuroblastoma in vitro, confirming their roles in aggressive
recurrent disease [118]. Radiation and cisplatin treatment also
upregulate protein and mRNA levels of clAP1/2 and XIAP as a
resistance mechanism [119].

IAPs, therefore, represent rational targets to directly sensitise
cancer cells to apoptosis-inducing stimuli, and there are a diversity
of pharmacological approaches capable of targeting IAPs. One
potential mechanism is via SMAC mimetics which are based on
the SMAC structure [120]. IAP suppression using SMAC mimetics
effectively sensitises malignant cells to treatment with some
classes of drugs in a cell line dependent manner [121]. For
instance, treatment with the SMAC mimetic LCL161 activates both
the extrinsic and intrinsic apoptosis pathways to overcome
vincristine resistance in neuroblastoma cell lines [117, 118, 122].
Furthermore, LCL161 suppressed cell proliferation in medulloblas-
toma [116], and sensitised cells to both vincristine- and cisplatin-
induced apoptosis with similar results observed with the IAP
inhibitor, LBW242 [115, 116, 119]. Encouragingly, the combination
of LBW242 and cisplatin was effective at inducing apoptosis in
primary patient samples and a medulloblastoma xenograft model
[119], as well as in CD133+ stem-like cancer cells [115] which are
likely to be responsible for tumour initiation, maintenance and
relapse [123]. Treatment with LCL161 was also shown to increase
event-free survival in glioblastoma xenograft models [124]. While
trials in xenograft models of paediatric cancers including
neuroblastoma, medulloblastoma, ependymoma and glioblas-
toma have demonstrated limited activity of LCL161 as a single
agent [124], combinatorial approaches may yet prove efficacious
when tested in appropriate models.

Survivin is a member of the IAP family encoded by the BIRC5
gene, and is an apoptosis suppressor expressed primarily in
embryonal development, and upregulated in cancer [125]. In cell
line models of neuroblastoma, Survivin expression is linked to
high proliferation rates and resistance to drug-induced death
[126]. Similar associations have been made clinically, where its
expression tends to be associated with poor prognosis and high-
risk disease [126, 127]. For example, gain of 17925 which contains
the Survivin locus occurs frequently in neuroblastoma [127, 128].
Indeed, gain of 17925 is especially common in advanced
neuroblastoma and correlates with worse outcome [127]. Survivin
overexpression is also common in medulloblastoma [129],
correlating with poor prognosis, lower survival and recurrence
[129-133], and is predictive of poor clinical outcome independent
of clinical staging [129]. High expression has been linked to
various negative clinical features in a variety of nervous system
cancers. Specifically, in choroid plexus carcinoma and ependy-
moma, high expression levels have been associated with
increased tumour grade [134] and cell proliferation and poor
patient outcome [135], respectively, while high expression has
also been identified in paediatric glioma [136]. Therefore, Survivin
expression has potential as both a prognostic marker and
therapeutic target.

A number of approaches have been utilised to elucidate the
effects of targeting Survivin. siRNA-mediated Survivin depletion
decreased proliferation and promoted cell cycle arrest via
accumulation of cells in G2/M [137], while disruption of the
chromosomal passenger complex containing Survivin resulted in
mitotic catastrophe and apoptotic death [127]. The miRNA miR-
542-3p post-transcriptionally inhibits Survivin expression, and its
expression correlates with better prognosis in neuroblastoma
[138]. Xenograft models of neuroblastoma treated with miR-542-
3p-loaded nanoparticles also had reduced Survivin expression,
decreased proliferation and increased apoptosis [138].

YM155, also known as sepantronium bromide, suppresses
Survivin expression by downregulating transcriptional activity at
the Survivin promoter [139] and inhibits proliferation and
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promotes apoptosis in medulloblastoma [140], glioma [141, 142]
and neuroblastoma cell lines in vitro [143, 144]. In xenograft
models of neuroblastoma YM155 increases apoptosis and tumour
regression, both independently and in combination with cisplatin
[143]. Interestingly, however, cell lines that are sensitive to
Survivin knockdown do not necessarily respond to YM155 [145].
A large-scale study using >100 neuroblastoma cell lines identified
that ABCB1 or P-glycoprotein expression determines resistance to
YM155 by their efflux pump activity [144, 145]. Consistent with
this, ABCB1 inhibition using shRNA, cyclosporine or lapatinib
sensitised cells to YM155 [145, 146]. YM155 and lapatanib
treatment also decreased tumour size in an in vivo neuroblastoma
model [146]. Additional evidence highlights that the anti-tumour
effects of YM155 are not solely mediated by its modulation of
Survivin, but also via its transcriptional downregulation of MCL-1
[141, 147, 148] and induction of DNA damage [148, 149]. In this
context, YM155 has been shown to synergise with both BCL-2
family inhibitors ABT-737 [142] and ABT-263 [147] to induce
apoptosis via MCL-1 downregulation. Furthermore, the combina-
tion of YM155 and TRAIL synergistically induced caspase-
dependent cell death via downregulation of both MCL-1 and
Survivin [141], highlighting how YM155 may effectively target
multiple resistance mechanisms within cancer cells. A number of
trials are in progress to evaluate the clinical activity of YM155 in
adult solid and blood cancers. Results of these trials in
combination with the encouraging preclinical results above could
potentially lead to clinical trials in paediatric patients. Finally,
troglitazone, an anti-hyperglycemic and anti-inflammatory drug
used in the management of type 2 diabetes, has been shown to
reduce expression of both cFLIP and Survivin, resulting in TRAIL
sensitisation in neuroblastoma cells [150]. As troglitazone is
commonly used in the clinic, it would be of great interest to
assess its effects as a sensitiser in combination with other
approved chemotherapeutic agents in the paediatric setting.

Lastly, HDAC inhibitors including NaB, SAHA and TSA have been
shown to increase the sensitivity of neuroblastoma cells to TRAIL-
induced death, through downregulation of XIAP and Survivin [36].
Currently, four HDAC inhibitors, vorinostat, belinostat, panobino-
stat, and romidepsin, are approved by the FDA for cancer
treatment, with several others under clinical investigation. Of
note, two clinical trials are ongoing to examine the activity of
vorinostat and valproic acid in paediatric high-grade glioma in
combination with temozolomide (NCT03243461, NCT01236560).
Results from these trials could pave the way for trials in other
paediatric malignancies.

CONCLUSIONS

Tumours of the nervous system are among the most frequent
malignancies in paediatric patients, and new treatment strategies
are required to improve responsiveness and reduce the significant
side effects associated with current treatment. Evasion of
apoptosis is a Hallmark of cancer, with therapy resistance
frequently associated with aberrant apoptosis signalling. A vast
array of studies have characterised alterations in the apoptosis
pathway that may contribute to defective apoptosis signalling,
leading to the identification of druggable targets. The FDA
approval of the BCL-2 inhibitor ABT-199/Venetoclax in 2016 was a
critical development in the field of apoptosis-targeted therapy,
highlighting the validity of this approach. The development of
companion technologies such as BH3 profiling represents a means
to personalise such therapeutic approaches.

Therapies targeting apoptosis have yet to translate to the
paediatric setting, though many are under clinical trial investiga-
tion in adult patients. We here summarised the growing body of
preclinical evidence that targeting the apoptosis pathway
represents a promising strategy to mediate effective cancer-cell
killing for the treatment of paediatric nervous system cancers.
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Current clinical trials in adults may open new avenues for more
effective treatment of paediatric patients by identifying promising
treatment combinations, while the development of specific
cancer-targeting agents may further reduce the toxicity profile
associated with current therapeutics and improve their potential
clinical utility.
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