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Abstract

Skin-interfaced wearable systems with integrated colorimetric assays, microfluidic channels, and 

electrochemical sensors offer powerful capabilities for non-invasive, real-time sweat analysis. This 

review details recent progress in the development and translation of novel wearable sensors for 

personalized assessment of sweat dynamics and biomarkers, with precise sampling and real-time 

analysis. Sensor accuracy, system ruggedness, and large-scale deployment in remote environments 

represent key opportunity areas, enabling broad deployment in the context of field studies, 

clinical trials, and recent commercialization. On-body measurements in these contexts show good 

agreement compared to conventional laboratory based sweat analysis approaches. These device 

demonstrations highlight the utility of biochemical sensing platforms for personalized assessment 

of performance, wellness, and health across a broad range of applications.
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Introduction:

The shifting paradigm in clinical practice to an evidence-based care underscores the critical 

need for an expanded suite of capabilities for the rapid and continuous assessment of 

digital and metabolic biomarkers relevant to human health1,2. Traditional eminence-based 

approaches to patient care, which relied on the informed opinions of medical practitioners 

for selection of a course of therapy, have yielded to evidence-based clinical strategies that 

employ quantitative metrics to inform therapeutic interventions and treatment efficacy3. 

Although recent studies demonstrate the power of this approach in assessing therapeutic 

benefit (e.g., surgical interventions4,5, off-label drug use6-8), evidence-based medicine 

remains, by nature, reactive—capable of supporting treatments for an active, symptomatic 

disease state. Extending evidence-based approaches that enable proactive interventions 

during periods of healthy living and early onset of disease require the advent of new digital 

health tools and analytics that not only track physiological health status but also alert to 

subtle perturbations.

Skin-interfaced wearable systems offer multiparameter sensing capabilities to address these 

limitations by monitoring the diverse range of signals arising from natural physiological 

processes9. Novel instruments that track the biochemical (i.e. electrolytes, metabolites, 

hormones), biophysical (i.e. temperature, biopotentials, hemodynamics), and kinematic (e.g. 

movement, posture, gait) signals from the body, provide critically valuable information 

about overall health status10. Conventional wearable systems support the quantitative 

assessment of select physiological parameters via wrist-worn (e.g. smart watches), chest-

strapped (e.g. heart-rate monitors), and apparel-integrated (e.g. sun exposure monitors) 

device form-factors. Continuous glucose monitors (CGMs) have been commercialized and 

widely adopted, highlighting the enormous potential for real time biochemical sensing of 

glucose levels for diabetics. For devices worn continuously, the ubiquitous nature of such 

systems can yield important health insights from a limited range of health markers11. 

Nevertheless, these conventional platforms typically lack the ability to non-invasively 
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characterize multiple biomarkers and the underpinning metabolic processes essential to 

overall health.

Blood-based analysis is the primary approach to monitoring body chemistry via invasive 

sampling (blood draw) and expensive, centralized laboratory equipment12. Biofluids such 

as tears, interstitial fluid, and sweat are attractive alternatives for non-invasive sampling 

and analysis.13 Of these alternative biofluids, eccrine sweat is of particular interest12,14 

on account of rich composition of biochemical information including micronutrients 

(electrolytes), metabolites, hormones, proteins, nucleic acids, and exogenous agents15-20 and 

suitability for facile, non-invasive collection. Emerging classes of skin-interfaced wearable 

platforms harness recent advances in soft microfluidics, flexible/stretchable electronics, and 

electrochemical sensing technologies to support the continuous or intermittent assessment of 

sweat composition in a variety of conditions or settings15,21-24. The resulting time-dynamic 

insight these platforms offer into metabolic activity is critical for creating a comprehensive 

understanding of health, nutrition, stress, and wellness status.

This perspective offers an overview of the current state-of-the-art for wearable sweat 

biosensors, with particular emphasis on the application use-cases for these sensors. The 

nascent field is of considerable interest with recent reviews11,14,20,25-54 contextualizing the 

progress of wearable sweat sensors within the scope of skin-interfaced devices9,15,18,23,24,55, 

sensing technologies13,22,24,56-63, specific applications10,17,19,21,57,61,64,65, material 

systems66,67, and fabrication methods68. By contrast, this perspective highlights the 

most advanced translational embodiments spanning the fundamental use cases for these 

platforms in relationship to sensing targets. A short introductory section summarizes 

key considerations in terms of sweat collection and the sensing architectural constructs 

that form the foundation of these wearable systems. The section that follows broadly 

classifies the application targets according to athletic performance and clinical diagnostics 

with representative examples of the current approaches. The perspective concludes with a 

discussion of efforts to expand overall utility of these sensors for diagnostic applications, 

in which clinical validation of sensor technologies will be critically important for 

commercialization.

Sweat analysis: sampling methods and analytical approaches

Wearable, sweat-based platforms must address sweat collection for a diverse range of 

applications including passive sweat in fragile infants to intense physical exertion in athletes 

and warfighters. These sensors must function in arid, hot temperatures, under high humidity 

conditions, and even during aquatic activities. Across all use cases these platforms must 

establish and maintain a conformal, intimate interface with the epidermis to support robust 

sweat collection and analysis. Soft, wearable microfluidic devices utilize biocompatible, 

low-modulus elastomeric (poly(dimethylsiloxane), PDMS) substrates and hypoallergenic 

silicone adhesives to support a robust, watertight interface for the pristine capture and 

clean storage of sweat. Activated eccrine sweat glands excrete sweat at a natural pressure 

sufficient to route sweat through networks of microfluidic channels and reservoirs69. As 

detailed in recent reviews15,24,43,45,62,70, the integration of optical (e.g. colorimetric22,71-80, 

fluorescent81-84 assays) and electrochemical22,23,30,45,85 sensors, either singularly or in 
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tandem, enable quantitative analysis of sweat biocomposition. Constraints from operating 

conditions, body-interfacing locations, and time-dynamic biochemical variations in sweat 

composition necessitate sophisticated lab-on-chip design strategies to obtain high-quality 

measurements. These competing requirements define the chemical sensor performance 

specifications for precision, sensitivity, selectivity, operational stability, operational lifespan, 

methodology of data transfer, and power requirements.

Simple, adequate stimulation of sweat remains a longstanding96 and significant97-99 

challenge for sweat-based analytical platforms. Intense physical activity, exposure to heat 

stress, and localized chemical inducement are the core methods for generating sufficient 

microliter volumes of sweat for biochemical analysis with suitability defined by target 

application16,100-104. Whereas exercise-based stimulation serves as the primary means 

for athletic performance monitoring86 (Fig. 1A), clinical diagnostics support on-demand 

analysis through the transcutaneous delivery of a cholinergic agonist via iontophoretic 

stimulation87 (Fig. 1B) to activate localized sweat glands. For a given sensing application, 

a key consideration in tandem with mode of deployment (ambulatory vs. stationary 

individual) is the dependence of both the rate of sweat production105 and biochemical 

composition100,106,107 on the stimulation method. Additionally, these methods are not 

amenable to applications that require frequent, repeated stimulation events (as comparable 

to blood glucose measurements). Recent efforts to support daily health assessments 

demonstrate the potential for collection of sweat at a consistent flow rate108 generated 

either during showering88 (Fig 1C) or by natural perspiration processes109-111 (Fig 1D). 

By virtue of the passive nature and circumvention of resource and exertion requirements, 

these alternative stimulation methods may significantly expand the breadth of potential 

applications for sweat analytics.

Emerging from early device designs71 of simple networks of microfluidic channels and 

reservoirs, current wearable microfluidic platforms employ a suite of sophisticated design 

strategies to collect and route sweat. Valves are a key component to many fluidic 

platforms and thus permit the direct capture and routing of sweat from the epidermis 

to target regions of a device in a programmatic manner. Most demonstrations90 (Fig. 

2A) are passive in nature (i.e. battery-free) relying upon fluidic resistance changes69, 

one-time chemical reactions (e.g., sodium polyacrylate, a super-absorbent polymer)74, or 

surface functionalization (hydrophobic/hydrophilic surfaces)112 to control fluid flow via a 

series of irreversible stop-points. A recent device embodiment91 employs an active valve 

concept comprising the combination of thermo-responsive poly(N-isopropylacrylamide)-

based hydrogel and wireless heating elements to enable dynamic control of sweat transport 

in response to physical actuation of hydrogel size (Fig. 2B). These valve concepts offer 

nuanced control over fluid routing42, which is key both for accurate sensor performance and 

for correlating the time-dynamic response of sweat constituents to physiological parameters 

(e.g., mental state, physical activity). Valves are of particular interest for optical sensing 

approaches. Colorimetric and fluorescence-based sensors operate by reacting a defined 

sweat volume with a chemical or molecular assay to generate an optical signal proportional 

to target analyte concentration. Integration of networks of valves enable fully passive optical 

sensors to “chronosample” sweat113 as described in Fig. 2A, either in time or fixed volumes, 

to provide quantitative measurements at defined intervals. By contrast, electrochemical 
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sensors, typically employed for continuous sweat monitoring, require constant flux of sweat 

over the sensor surface to maintain analytical performance30,45,49,50,114. Integration of such 

sensors with networks of active or passive valves enables discrete activation of sensors, 

deconvolution of flow-rate effects, and programmed sensing at selected time intervals.

The expanding library of valving approaches, in combination with other emerging design 

concepts such as integrated mixing systems115, facilitates development of devices capable 

of high-precision sensing of sweat biomarkers. Research efforts seek expanded sensing 

capabilities to support the long-term, real-time monitoring of sweat biomarkers in a battery-

free manner. Use of smartphone-based image analysis offers a simple, direct mode for 

biomarker analysis75,86,88,116,117; however, this analytical pathway is ill-suited for assessing 

time-dynamic information in demanding applications (i.e. during active physical exercise). 

One recent embodiment92 employs sweat-activated galvanic cells to serve as a series of 

“stopwatches” to establish time stamps for passive colorimetric measurements during an 

activity period (Fig. 2C). Other approaches harness sweat-based biofuel cells93 to generate 

sufficient power to record and store measurements from electrochemical sensors during an 

activity to be retrieved via a wireless data transfer at the conclusion of the testing period 

(Fig. 2D). Implementation of such strategies118-120 enables epidermal microfluidic devices 

to support multiple sensing modes (optical/electrochemical) in a battery-free form factor.

As described elsewhere9,13,15,16,24,55,121-123, eccrine sweat contains a wide range of 

metabolites, electrolytes, and xenobiotics that offer detailed clinical insight into disease 

states and valuable information regarding overall health. Many target sweat biomarkers 

are present only in extremely low concentrations20. Transduction of meaningful signals 

from these low-concentration species requires careful consideration of strategies to mitigate 

sample loss, biofouling of sensor surfaces, sample contamination, and deconvolution of 

interfering factors46. Optimizing device and sensor geometries yield powerful advantages 

in this context. Fig. 2E highlights a recent strategy94 to reduce sample loss from device 

deformation with a device construct that directly integrates impermeable, rigid channels 

within a soft, compliant polymer matrix. Resistant to deformation from physical impact, 

the optimized device geometry maintains a robust, conformal interface with the epidermis 

to support sweat collection and analysis. A similar approach124 offers improvements to 

the robustness of integrated sensors such as in the utilization of novel material designs 

to circumvent biofouling on the surface of electrochemical sensors. Both examples reduce 

or eliminate interference effects for devices during operation; however, certain biomarkers 

(sweat chloride for cystic fibrosis) may require ex situ analysis necessitating consideration 

of external contamination factors. Eliminating operator interaction through utilization of 

custom extraction hardware95 represents one such strategy for obtaining a “clean” sweat 

sample free of interfering contaminants (Fig. 2F). In all cases, obtaining meaningful 

insight from wearable sweat sensors requires operational performance to remain invariant 

to external environmental factors13. To this end, recent efforts125 seek to decouple target 

signals from interfering species, co-dependent biomarkers (e.g., pH, temperature), and other 

sources of noise (e.g., motion, biophysical signals). Further technical progress necessitates 

sophisticated sensing strategies and complex device designs to address these expanding 

challenges of sweat stimulation, fluid-handling, and contamination. Such developments 

are critical for obtaining meaningful physiological insight from sweat in a variety of 
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potential use cases. Such considerations must occur in tandem to the demands imposed 

by application-specific requirements.

Translational Applications

Wearable platforms for real-time sweat analysis represent a significant advancement for 

providing personalized and actionable insights across a variety of applications spanning 

athletic performance to daily health monitoring. Integration of advanced sensors and fluid-

sampling designs coupled with soft, flexible substrates establishes a powerful foundation 

for expanding the suite of biochemical markers and physiological signals accessible to the 

wearer. The sections that follow highlight emerging epidermal microfluidic devices broadly 

categorized by use for performance health management and clinical diagnostics.

Performance Health Management

Many commercial demonstrations of performance driven wearable devices have focused 

on monitoring physiological and biomechanical signals during physical activity131. Initially 

developed for professional athletes, wide adoption of fitness trackers over the past decade 

illustrates the growing consumer interest in understanding the activity-dependent response 

of the human body to physical stress65. Such insight is essential for reducing risk of 

injury, monitoring recovery times, and improving overall well-being. Although capable 

of assessing the core biophysical and kinematic signals for this purpose, these existing 

wearable platforms lack the sensing capabilities necessary to monitor metabolic health126. 

This section describes the latest representative skin-interfaced microfluidic devices deployed 

for ambulatory metabolic health assessment.

Thermoregulatory sweat response is essential for maintaining homeostasis and gives rise 

to loss of water, electrolytes, and other sweat constituents during physical activity102. 

Excessive total sweat fluid and electrolyte losses could impair cognitive and athletic 

performance or result in severe conditions such as heat stroke or death101. These effects 

manifest as changes in sweat parameters (rate, composition) and tend to vary widely across 

individuals100. Differences in physiology, training, activity-type, physical intensity, and 

surrounding environment necessitate personalized hydration strategies based on individual 

sweat profiles to ensure adequate fluid replenishment101,132. Practitioners and athletes 

typically estimate whole-body sweat loss by recording changes in body mass after physical 

activity103. This approach requires high fidelity measurements through careful adherence 

to testing protocols and precise accounting of fluid intake and urine loss during the 

exercise period to obtain meaningful, albeit retrospective, insight. By contrast, regional 

sweat sampling estimates whole-body sweat loss by collecting sweat from a localized 

anatomical site via absorbent pads, filter paper, or plastic coils and specialized, wired 

equipment133. Although more practical, the absence of a standardized assessment method 

has historically restricted the utility of regional sampling resulting in the generation of only 

limited physiological insight.

Epidermal microfluidic devices offer powerful capabilities for accurately monitoring sweat 

dynamics by virtue of the conformal, fluid-tight interface. These devices harvest sweat 
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directly from sweat glands in a manner that isolates the sample from environmental 

contaminants thereby enabling precise, real-time characterization of sweat biomarkers. 

Although the performance of these sensing platforms has been extensively validated for 

a variety of biomolecular targets and sensor architectures23,43, there is an absence of studies 

correlating regional measurements from such wearable sensors and the whole-body sweat 

response. A recent report126 (Fig. 3A) represents the first large-scale systematic study (N 

= 312) correlating regional and whole-body sweat rate and sweat chloride measurements 

using a soft, flexible microfluidic patch. The device comprises two discrete networks of 

microfluidic channels which contain either an integrated colorimetric assay for quantifying 

sweat chloride concentration or a highly-visible dye to facilitate assessment of sweat 

volume. Use of a smartphone and companion app enables digital image capture and 

automated measurement of instantaneous sweat rate, sweat chloride, and total sweat loss. 

Contralateral comparisons of these epidermal microfluidic devices to absorbent patches in 

combination with whole-body sweat measurements in a controlled laboratory environment 

demonstrate good agreement between the predicted (from regional measurements) and 

measured whole-body sweat rate and sweat chloride concentrations (mean absolute error 

of 14% and 13% respectively), which serves as the basis for actionable hydration feedback.

Establishing a strong correlation between regional and whole-body sweat-based 

measurements represents a key step for developing new insights into the physiological 

relevance of sweat biochemical signals. In addition to fluid and chloride loss, the 

concentration of glucose125,134, lactate135,136, ammonia137, and cortisol138 in sweat 

have value for monitoring athletic training and conditioning. Varying dynamically with 

physiological status (diet, stress, overall health) and activity20, biomarker concentrations 

also correspond to dynamic variations in instantaneous sweat rate125,139. Recent efforts (Fig. 

3B-D) offer the requisite temporal resolution of instantaneous sweat rate to deconvolve 

this variability with real-time continuous sensing strategies. Representative devices integrate 

electrical conductivity127 (Fig. 3B), capacitive128 (Fig. 3C), or temperature129 (Fig. 3D) 

sensors with wireless data transfer and ultrathin batteries to support continuous monitoring 

of physiologically relevant sweat rates (0 to 5 μL min−1). Conductive127 or capacitive 

methods utilize electrode pairs embedded in microfluidic channels to measure the change in 

conductivity or capacitance across the channel as sweat fills. For the conductive method, a 

direct contact to sweat and electrodes, whereas the capacitive method relies on non-contact 

measurement of sweat fill into the device. An alternative non-contact approach measures 

real-time sweat flow rate using a localized heater embedded between two thermistors. 

This design architecture can quantify flow rates with high sensitivity and without direct 

contact within the microfluidic device. Sensing platforms that leverage real-time sweat rate 

measurements with highly sensitive and selective multiparameter sensors for monitoring 

low-concentration sweat constituents (e.g. cytokines) may yield further insights for assessing 

the health status of athletes during activity, recovery, and rest.

A logical progression for performance assessment is the development of bi-directional 

communication between the device and user upon detection of an anomalous physiological 

event (e.g. dehydration). Fig. 3E shows a skin-interfaced platform130 that circumvents the 

need for user engagement during wear with the automated delivery of sensory warnings 

via sweat-triggered chemesthetic agents. The device deploys an effervescent pump to eject 
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menthol (or capsaicin) onto the epidermis when a dehydration condition is detected due to 

excessive sweat loss.

The device geometry and reversible visual sweat indicators permit the sensor to be 

manually reset after rehydration. In aggregate, these representative platforms represent 

key advances in establishing the compatibility of regional sweat analysis at prescribed 

anatomical locations with developing holistic personalized hydration strategies or for 

athletic performance monitoring.

Clinical Diagnostics

Prior to the advent of epidermal microfluidic sensors, few applications existed for clinical 

utilization of biochemical sweat analysis. Chloride is a critical sweat biomarker used in 

clinical diagnostics of cystic fibrosis (CF). Diagnosis of CF is perhaps the oldest sweat-

based diagnostic based upon recorded instances from the Middle-Ages147. Established 

clinically in 1959148, quantitative evaluation of sweat chloride in neonates remains the only 

widely available method for confirmatory diagnosis of cystic fibrosis. Conventional clinical 

diagnostic methods are cumbersome; they utilize wrist-strapped devices to collect sweat 

from infants that often produce insufficient sweat for analysis. Recent work (Fig. 4A, 4) 

highlights the immense promise of wearable sweat sensors in mitigating such diagnostic 

and interfacing challenges. One recent demonstration140 (Fig. 4A) utilizes a soft elastomeric 

microfluidic platform and a skin-safe adhesive to maintain conformal integration with the 

skin to facilitate near perfect efficiency in collecting sufficient sweat volumes for analysis 

(N = 51, infants to adults). Integration of colorimetric chloride sensors with advanced image 

processing techniques enables smartphone-based image analysis to quantify sweat chloride 

levels with an accuracy similar to the established clinical method (coulometric titration) 

in a limited study (N = 5, adults). Another embodiment149 integrates a salt-bridge based 

potentiometric sensor with wireless Bluetooth communications to monitor sweat chloride 

concentration from a smartphone in real-time during exercise. A small field study highlights 

performance for adult patients with (N=10) and without (N=10) cystic fibrosis. Although 

these platforms and others150,151 demonstrate immense potential to improving cystic fibrosis 

diagnostics, substantial expansion of clinical study populations is requisite for establishing 

operational performance equivalence to current clinical methods152.

Resulting from recent interest in utilizing sweat as a non-invasive target for metabolic health 

monitoring, considerable research efforts seek to expand the utility of diagnostic sweat 

testing from CF and atopic dermatitis to diabetes. Self-testing and frequent assessments 

of blood glucose concentration are vital components to diabetic health management 

strategies153. Conventional sensing approaches for daily assessment rely on invasive, 

painful, skin-piercing microneedle sampling (finger prick). Although continuous glucose 

monitoring systems154,155 may mitigate the need for frequent self-testing, development 

of a non-invasive, pain-free glucose monitoring device remains of intense academic and 

commercial interest. Sweat represents an attractive biofluid in this context as recent 

studies demonstrate a linear correlation between sweat and blood glucose levels156-160. One 

recent demonstrator device83 (Fig. 4C) employs a ratiometric fluorescence sensing strategy 

to detect the onset of hyperglycemia during sleep. A simple wearable pad containing 
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co-immobilized with functionalized dual-fluorescence nanohybrid substrates (luminescent 

porous silicon nanoparticle/carbon quantum dot structure with bimetallic nanoparticles) and 

glucose-oxidase measures sweat glucose concentration by monitoring a proportional color 

shift (red to blue) under UV illumination using a smartphone camera.

A recent paper111 (Fig. 4D) reports utilization of Janus-wettability (hydrophobic/

hydrophilic) textile band to self-pump microdroplets of sweat from the epidermis to 

functionalized chronoamperometric sensing electrodes to monitoring concentrations of 

glucose, lactate, Na+, and K+ in sweat. Another approach116 (Fig. 4E) achieves wireless, 

battery-free sweat glucose monitoring during physical exercise from biofuel cell glucose 

sensors, near-field communication (NFC) technology for data retrieval, and smartphone. 

The biofuel cell-based glucose sensor generates electrical signals in proportion to the 

concentration of glucose, which circumvents the need for a potentiostat (as required 

for amperometric sensors) thereby minimizing overall device size. The integration of 

colorimetric sensors for sweat chloride and pH in addition to biofuel cell lactate sensors 

permits simultaneous multiparameter analysis of metabolic activity and overall physiological 

state.

Other wearable sensor designs seek to harness blood-correlated biomarkers beyond chloride 

and glucose (e.g. lactate161-165, ethanol156, cortisol166,167) to address diagnostic challenges 

related to diabetes and other diseases. Recent examples of wearable electrochemical 

sensing platforms demonstrate the promise of sweat analytics for monitoring biomolecular 

changes relevant to diseases such as gout142 (uric acid, Fig. 4F) or general conditions 

such as fever143 (cytokines, Fig. 4G). Nitrile glove-based system, with integrated electrode 

sensors144 (Fig. 4H), provides in situ monitoring of sweat biomarkers including ethanol, 

Zn, pH, chloride, and vitamin C. The glove creates a local environment that is conducive 

to passive sweat induction and analysis across multiple biomarkers. To achieve a broad 

target specificity, a recent study145 (Fig. 4I) uses flexible plasmonic metasurface designs 

with surface-enhanced Raman scattering (SERS), whereby the intensities of the biomarkers 

are measured via Raman spectrometer equipped microscope. Because the SERS spectrum is 

different across different biomarkers, the sensor showed robust target specificity compared 

with wearable electrochemical sensors. Another recent demonstration device146 (Fig. 4J) 

circumvents the need for aggregate sweat collection or physical activity with a design 

that integrates hydrophilic wicking materials, an optimized microfluidic channel network, 

and electrochemical sensors to collect and analyze thermoregulatory sweat at a resting 

state. Supported by small pilot studies, this platform is capable of monitoring the onset 

of disease conditions (hypoglycemia) and variations in psychological factors (stress) 

through changes in sweat rate as well as the time-dynamic variations in concentration of 

drug therapeutics (Parkinson’s) through electrochemical analysis. These and other recent 

examples93,138,143,145,168-173 highlight the powerful capabilities that wearable sensors offer 

for non-invasive clinical diagnostics and disease management.

Future Opportunities and Commercialization

Rapid manufacturing and process development of wearable sweat sensors has gained 

significant traction recently, due in part to the convergence of key advances in flexible 
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electronics, biochemical sensors, and materials science. The initial cohort of epidermal 

microfluidic sensors established an analytical pathway for obtaining personalized, real-

time, continuous assessment of physiological parameters relevant for vastly expanding 

understanding of human health. The wearable sweat sensing platforms highlighted here 

represent key technological developments for realizing this significant potential. While these 

milestones suggest rapid maturation of this class of technology, a few key challenges remain 

before wide-spread adoption could be achieved.

Continued progress requires technological innovations with particular emphasis on scale up 

manufacturing and robustness. An important frontier of this research is in the integration 

of multimodal sensing platforms for monitoring biochemical and biophysical parameters 

in a continuous, long-term mode of operation. This necessitates consideration of sensor 

performance within a broad context of power management, wireless communication, 

and data acquisition of fully-integrated biochemical sensing systems. The recent 

emergence93,169,174-177 of biofuel cell-based self-powered wearable sensors represent a 

successful pathway to realizing such a fully-integrated platform.

The complex composition of sweat poses some of the most interesting challenges for 

wearable sweat sensors. In contrast to conventional laboratory-based analytical methods, 

these sensing platforms must operate in robust, stable manner under dynamic conditions 

and without the oversight of skilled technicians. Demonstrations of selective and multimodal 

sensors offer routes towards rapid, repeatable on-body measurements; however, certain 

constructs exhibit susceptibility to measurement errors caused by biofouling, varying 

ambient conditions (e.g. temperature or pH fluctuations), and motion artifacts. Although 

highly multiplexed sensors and nuanced device designs can mitigate such influences, 

development of new encapsulation materials and packaging strategies that protect against 

noise factors such as moisture and corrosion, could eliminate deterioration and sources of 

noise from non-specific binding or cross-talk, particularly for ultralow concentration species 

(e.g. DNA, RNA), is of critical importance.

Key to the widespread adoption of wearable sweat-sensors is the comprehensive validation 

of the systems. Although sweat offers enormous potential for noninvasive physiological 

monitoring, it has remained relatively unexplored in comparison to traditional biofluids 

such as blood. The emergence of novel physiologically-relevant sweat constituents, such as 

cortisol, lactate, and ethanol, is the direct result of the interest in non-invasive monitoring 

and rapid advances in the development of wearable sensing platforms. Continued progress 

requires extensive, large-scale, multi-center validation studies and formalized clinical trials. 

Such efforts could yield critical insights into the correlations with blood and urine analytes 

(and associated time-scales) requisite for establishing a comprehensive profile of sweat-

based biochemical markers with physiological relevance. Moreover, such testing could, in 

turn, validate device performance beyond the research prototype stage of development.

Another important factor driving the demand for wearable sweat-sensor technologies is 

the development of multiparameter, long duration biochemical and biophysical sensing 

capabilities. One recent demonstration178 achieves long-term sensing via on-demand 

iontophoretic stimulation at defined intervals (Fig. 5A) to monitor sweat biomarkers 
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with integrated electrochemical sensors. Another recent example179 integrates a suite of 

sensor constructs within a single wearable platform to obtain multiparameter measurements 

of haemodynamic and metabolic biomarkers simultaneously throughout daily activities. 

Commercialization efforts around these multimodal systems tend to be costly70, requiring 

novel manufacturing tooling and test strategies for large-scale production at high yield180 

(Fig. 5B). It is only within the last few years that the first commercial consumer wearable 

sweat sensors became widely available to consumers. Developed by Epicore Biosystems and 

The Gatorade Company and clinically validated in blinded studies181 (the Gx Sweat Patch, 

Fig. 5C), these microfluidic devices measure regional and whole-body sweat loss, sweat 

rate and electrolyte parameters, which are relevant to athletic performance and hydration. 

The Gx Sweat Patch employs colorimetric dyes and assays, along with real-time image 

processing via a smartphone application to compute results and actionable feedback in real 

time. Integration of this class of microfluidic technology with electronic modules enables 

continuous biochemical sensing and real-time alerts. These electronics-enabled epifluidic 

solutions rely on advances in energy storage, wireless communication, and memory storage 

as part of the full-integrated system. Large-scale clinical validations studies in sports and 

industrial safety are underway for the Connected Hydration System (Fig. 5D), and other 

representative examples of this technology.
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Figure 1. 
Methods for sweat stimulation. Typical methods for sweat stimulation include (A) physical 

activity86 or (B) pharmacological stimulation87. Adapted with permission from ref (86), 

Copyright 2019 American Association for the Advancement of Science, and ref (87), 

Copyright 2018 John Wiley and Sons, respectively. Alternative approaches seek to collect 

sweat passively using (C) thermal stimulation via showering88 or (D) wicking materials89. 

Adapted with permission from ref (88), Copyright 2019 The Royal Society of Chemistry, and 

ref (89), Copyright 2021 American Chemical Society, respectively.
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Figure 2. 
Technology foundations for wearable sweat sensing. Fluid Handling. Networks of (A) 

passive90 or (B) active valves91 enable sophisticated routing of harvested sweat in a 

programmatic manner. Adapted with permission from ref (90), Copyright 2017 John Wiley 

and Sons, and ref (91), Copyright 2020 Springer Nature, respectively Timing. Nuanced 

designs integrate sensing features such as sweat-activated galvanic cells shown in (C) 

to enable temporal analysis of sweat constituents92. Adapted with permission from ref 

(92). Copyright 2019 John Wiley and Sons. In large arrays (D) such biofuel cells support 

battery-free electrochemical sensing of sweat93. Adapted with permission from ref (93). 

Copyright 2020 American Association for the Advancement of Science. Advanced designs. 

Optimization of mechanical properties (E) address sensing challenges in high-impact 

environments94. Adapted with permission from ref (94). Copyright 2020 John Wiley 

and Sons. Utilization of customized extraction hardware (F) assists in reducing sample 

contamination95. Adapted with permission from ref (95). Copyright 2021 Elsevier B.V.
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Figure 3. 
Performance health management. (A) A recent large-scale study validates the performance 

of a wearable microfluidic patch for estimating whole-body sweat parameters from regional 

sweat analysis126. Many sweat biomarkers exhibit a concentration dependence on rate of 

sweat loss. Adapted with permission from ref (126). Copyright 2020 American Association 

for the Advancement of Science. Recent embodiments utilize (B) conductivity127, (C) 

capacitive128, or (D) thermal129 sensing strategies to continuously measure real-time sweat 

rate. Adapted with permission from ref (127), Copyright 2019 The Royal Society of 

Chemistry, ref (128), Copyright 2020 American Chemical Society, ref (129), Copyright 2021 

Springer Nature, respectively. (E) Emerging device architectures integrate chemesthetic 

sensors and user-activated valves to alert wearers to anomalous physiological conditions 
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during exercise130. Adapted with permission from ref (130). Copyright 2019 Springer 

Nature.
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Figure 4. 
Clinical diagnostics. Sweat chloride. Sweat chloride is a longstanding clinically validated 

diagnostic biomarker used for confirmatory diagnosis of cystic fibrosis (CF). Recent reports 

demonstrate (A) the first large-scale study of a soft, flexible epidermal platform (“sweat 

sticker”)140 for clinical diagnosis and (B) use of wearable sweat sensors for monitoring 

sweat chloride levels outside of a clinical setting141. Adapted with permission from ref 

(140), Copyright 2021 American Association for the Advancement of Science, and ref 

(141), Copyright2020 Springer Nature, respectively. Emerging sweat biomarkers. Use of 

sweat glucose as a noninvasive replacement for blood glucose monitoring in diabetes 

management is of academic and commercial interest with recent efforts demonstrating 

sensors for monitoring sweat glucose levels (C) at rest83 and (D) during exercise111. 

Adapted with permission from ref (83), Copyright 2020 American Chemical Society, and 

ref (111), Copyright 2020 American Chemical Society, respectively. (E) One embodiment 

demonstrates glucose monitoring during exercise in wireless, battery-free form factor.116 

Adapted with permission from ref (116). Copyright 2019 American Association for the 

Advancement of Science. Other targets of interest include the concentration of (F) uric 

acid in sweat142 (for gout), (G) various cytokines143 (inflammation, fever), (H) vitamins144 

(nutrition monitoring), and (I) illicit drugs145. Adapted with permission from ref (142), 

Copyright 2020 Springer Nature; ref (143), Copyright 2021 John Wiley and Sons; ref 

(144), Copyright 2020 American Association for the Advancement of Science; ref(145), 

Copyright 2021 American Association for the Advancement of Science, respectively. 

(J) Device designs exploiting wicking materials enable passive (i.e., absence of active 
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sweating) multiparameter monitoring of disease biomarkers or the concentration of drug 

therapeutics146. Adapted with permission from ref (146). Copyright 2021 Springer Nature.

Ghaffari et al. Page 28

ACS Sens. Author manuscript; available in PMC 2022 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Integrated devices and commercially available systems. (A) An integrated device strategy for 

long-term sweat analysis via on-demand sweat stimulation178. Adapted with permission 

from ref (178). Copyright 2020 The Royal Society of Chemistry. (B) A recent effort 

details a strategy to utilize roll-to-roll manufacturing to produce epidermal microfluidic 

sensors in a scalable manner suitable for mass manufacture180. Implementation of such 

fabrication strategies enables further maturation of wearable sweat sensing platforms and 

offers opportunities for broad consumer adoption. Adapted with permission from ref (180). 

Copyright 2019 American Association for the Advancement of Science. (C) Gx Sweat Patch 

and (D) Connected Hydration System, both developed by Epicore Biosystems181, represent 
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the vanguard of the emerging commercial sensing platforms. Reprinted with permission 

from ref (181). Copyright 2021 Epicore Biosystems.
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