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Abstract

The PharmacoScan pharmacogenomics platform screens for variation in genes that affect drug 

absorption, distribution, metabolism, elimination, immune adverse reactions and targets. Among 

the 1,191 genes tested on the platform, 12 genes are expressed in the red cell membrane: ABCC1, 
ABCC4, ABCC5, ABCG2, CFTR, SLC16A1, SLC19A1, SLC29A1, ATP7A, CYP4F3, EPHX1 
and FLOT1. These genes represent 5 ATP-binding cassette proteins, 3 solute carrier proteins, 1 

ATP transport protein and 3 genes associated with drug metabolism and adverse drug reactions. 

Only ABCG2 and SLC29A1 encode blood group systems, JR and AUG, respectively. We propose 

red cells as an ex vivo model system to study the effect of heritable variants in genes encoding the 

transport proteins on the pharmacokinetics of drugs. Altered pharmacodynamics in red cells could 

also cause adverse reactions, such as haemolysis, hitherto unexplained by other mechanisms.
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Background

Many proteins of the red cell membrane have been recognized as blood groups. The 

currently established 36 blood group systems are encoded by 41 genes [1]. They are 

involved in various cellular functions: transport of substrates (ABCG2, ABCG6, SLC29A1, 
AQP1, AQP3, SLC14A1, SLC4A1 and XK); cellular adhesion (ACKR1, BCAM, BSG, 
CD151, CD44, ERMAP, ICAM4, MIC2 and SEMA7A); enzymatic activity (ABO, ACHE, 
ART4, GBGT1, GCNT2, KEL, FUT1 and FUT3); red cell stability (GYPC, RHAG, RHCE, 
RHD, SLC4A1 and SMIM1); viral and bacterial attachment (A4GALT, B3GALNT1, FUT3, 
GYPA, GYPB and GYPE); complement interaction (C4A, C4B, CD55, CD59 and CR1); 

and unknown function (XG) [1–4]. Several of these membrane proteins serve as transporters 

that contribute to the absorption, tissue distribution and elimination of various drugs [1, 2]. 

Moreover, drug transporters often influence homeostatic expression of a variety of genes that 

regulate drug metabolism and disposition [5, 6]. The potential for these membrane proteins 

to influence pharmacology has been poorly studied.

Transporters are classified into 2 superfamilies: ATP-binding cassette (ABC) proteins and 

solute carrier (SLC) proteins. ABC transporters are involved in the translocation of a wide 

variety of substrates including amino acids, sugars, vitamins, inorganic ions, peptides, 

hormones, large polypeptides (>100 kD) and therapeutics [7, 8]. In eukaryotes, ABC 

proteins contribute only to the ATP-dependent efflux of substrates from cells against a 

concentration gradient [9, 10]. SLC proteins mediate the cellular uptake of drugs through 

facilitated diffusion or secondary active transport [11].

Similar to ABC and SLC transporters, the ion pumps (ATPases) [12] and ion channels [13] 

transport ions, such as Na+, K+, H+, Cl− and Ca2+, across the cell membrane, utilizing 

energy from ATP hydrolysis or electrochemical gradients, respectively. Aquaporins are a 

special class of bidirectional channel proteins that are involved in the transfer of water across 

the membrane driven by the osmotic gradient [14].

Inter-individual variation in the human genome due to single-nucleotide variations (SNVs), 

small-scale insertions and deletions (InDels) and copy number variations (CNVs) may 

result in altered pharmacokinetic and pharmacodynamic characteristics of drugs leading 

to a lack of therapeutic efficacy or a risk for drug-induced toxicity [15, 16]. Variations 

in genes encoding drug transporters have been documented to affect responsiveness to 

chemotherapeutic agents [15, 17]. Rarely, sensitivity of red cells to the direct toxicity of 

the drugs can lead to drug-induced haemolytic anaemia [18–21]. Some medications bind 

to the RBC cell surface or alter RBC surface antigens resulting in immune attack [22]. Drug-

induced immune complexes can bind to RBCs [22], and alloantibody therapies that react 

with RBC antigens also cause haemolysis [23]. Lastly, oxidative injury to RBCs results from 

peroxide formation and subsequent haemolysis, particularly in populations who harbour 

deleterious variants in G6PD or haemoglobin H [24]. Drug metabolism can alter drug-

induced haemolytic anaemia [25, 26]. And drugs bound to red cell proteins, including blood 

group proteins, can bind drug-dependent antibodies [22, 27]. Such antibodies can cause 

drug-induced immune haemolytic anaemia [28]. Therefore, the potential for inter-individual 
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variation in drug binding and transport resulting from novel genetic variations should be 

explored and eventually considered to guide indications and dose recommendations.

The DMET Plus array, launched in 2012, scans 1936 variations (1931 SNVs and 5 CNVs) 

in 231 absorption, distribution, metabolism and elimination (ADME)-related genes [29, 

30]. The PharmacoScan Solution array, an updated version of DMET Plus launched in 

2016, scans 4627 variations in 1191 genes of known or suspected pharmacogenomic 

consequences. PharmacoScan incorporated all 231 genes from DMET Plus and nearly all of 

its variations but scans many additional variations and genes not present on DMET Plus.

The NIH Clinical Center has implemented a clinical decision support (CDS) for patients 

who are on medications where SNVs may assist with optimal dose or prediction of 

adverse events [31, 32]. In this pharmacogenomics approach, we have been screening HLA 

antigens by nucleotide sequencing to avoid exposure of patient with distinct HLA alleles 

to drugs associated with severe allergic reactions (e.g. allopurinol and carbamazepine) [31]. 

Nucleotide variations affecting proteins with transporter and metabolic functions have been 

determined by the DMET Plus microarray platform to adjust drug dose in patients with 

variants of high, intermediate or low activity [32].

We review the involvement of blood group proteins and other red cell membrane proteins 

and their potential applications to provide mechanistic insights in pharmacogenomics. As 

red cells are easily accessible, we propose an approach of using human red cells with 

variants of drug transport proteins, naturally occurring among blood donors and other 

healthy individuals. They can serve as an ex vivo model systems to study the kinetics of 

drug transport, as it may be affected by the protein variants.

Data search criterion and Methods

The exact number of genes expressed in the red cell membrane with drug transport function 

is unknown. We examined the blood group genes with drug transport function in red cells 

and represented on a commercial genotyping platform: the PharmacoScan array (Thermo-

Fisher Scientific). The Clinical Pharmacogenetics Implementation Consortium (CPIC) is 

an international consortium that provides genotype-based drug guidelines to optimize drug 

therapy [33]. The CPIC drug–gene pairs table includes a total of 363 drug–gene interactions 

(DGIs), representing 214 unique drugs and 127 unique genes [33]. Among the 1,191 genes 

present on the 2 arrays, only 113 gene–drug pairs are covered by the CPIC guidelines. One 

CPIC gene FCGR3A is present on red cell membrane (with low confidence [34]) but not 

present on any of the arrays. The remaining 13 genes in CPIC (ABL2, ASL, HPRT1, NAGS, 
SERPINC1, CYP2A7P1, CYB5R1, CYB5R2, CYB5R4, MT-RNR1, PROS1, TMEM43 and 
YEATS4) are not present on red cell membrane and thus irrelevant for the current approach 

[34]. By searching the published literature and public databases [34], we retrieved the genes 

that are present on the PharmacoScan array and also expressed on red cell membranes.

Flegel et al. Page 3

Vox Sang. Author manuscript; available in PMC 2022 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Red cell membrane genes among the PharmacoScan and CPIC drug–gene 

pairs

We found 12 red cell membrane genes that met our search criterion (Table 1). Apart from 

the ABC (ABCC1, ABCC4, ABCC5, ABCG2 and CFTR), SLC (SLC16A1, SLC19A1 
and SLC29A1) and ATP transporters (ATP7A), 3 additional genes associated with drug 

metabolism (CYP4F3 and EPHX1) and adverse drug reactions (ADRs; rs3909184 in 

FLOT1) were identified. Hegedus et al. [34] associated each gene with a confidence level to 

evaluate the potential validity of its protein’s presence in the red cell membrane: high level if 

the protein was present in at least two mass spectrometry studies or was an established blood 

group or CD marker; medium level if the protein was present in at least 1 mass spectrometry 

study; and low level if the protein was identified only semi-automatically from reviews 

[34]. We summarized the clinical interpretation of drug-gene pairs, based on the PharmGKB 

Clinical Annotations tables.

Only 2 of the 12 genes define blood group systems

Variations in the proteins of the red cell membrane are the hallmark and requirement for 

defining blood group systems. However, only 2 of the 12 genes from the present search are 

defined as blood group systems. The ABCG2 gene encodes the JR (ISBT 032) [35, 36], and 

the SLC29A1 gene encodes the AUG blood group system (ISBT 036; Table 2) [37].

JR blood group system

The high prevalence Jra antigen was first reported in 1970. JR was defined as a blood 

group system in 2012 [38]. The dbSNP database lists 341 non-synonymous or frame shift 

variants in the ABCG2 gene. Until today, however, all individuals who developed anti-Jra 

lack the whole JR protein from their red cell membranes. The antibody can cause haemolytic 

transfusion reactions and severe haemolytic disease of the foetus and newborn (HDFN) [35, 

36, 39].

AUG blood group system

The high prevalence Ata antigen was first identified in 1967. AUG was defined as a blood 

group system in 2015 [37]. The dbSNP database lists 351 non-synonymous or frame shift 

variants in the SLC29A1 gene. Only 3 variants encoding 4 antigens in the AUG system 

are known. Individuals carrying these variants developed alloantibodies, which can cause 

haemolytic transfusion reactions and mild HDFN [40, 41].

Other blood group systems

In addition to ABCG2 and SLC29A1, the 4 blood group system genes ABO (ABO; ISBT 

001), BCAM (LU; ISBT 005), ACKR1 (FY; ISBT 008) and CR1 (KN; ISBT 022) are also 

represented on the PharmacoScan array. Some resources consider them having impact in 

pharmacogenomics [42]. We do not review these 4 blood groups because CPIC did not 

identify a drug-gene pair for them.
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Protein structural feature of the 12 genes

As expected for membrane transporters, 9 proteins are multi-pass transmembrane proteins 

(Table 3). Another 2 proteins, EPHX1 and LTB4H, are single-pass transmembrane proteins. 

Only 1 protein, FLOT1, is inserted in the inner leaflet of the plasma membrane of the red 

cell but does not traverse it. None of the 12 proteins identified were GPI-anchored [43–45]. 

The 12 proteins are involved in the transport of a wide variety of drugs in humans (Table 4).

Disease association of the 12 genes

Gene variants (alleles) of any of the 12 genes have been associated with various diseases. 

Variations can occur at the genetic level, involve changes of the mRNA and protein 

expression, and affect the localization of the proteins in cellular compartments. The number 

of such variants is growing, and their tabulation is basic for pharmacogenomics (Table S1).

ABCC1

ABCC1 is the first identified member of the ABCC subgroup and is ubiquitously expressed 

in almost all human tissues [46]. Increased MRP1 protein or mRNA concentrations or both 

were found in many haematologic and solid malignancies as predictor of poor chemotherapy 

response [47]. A number of variations in ABCC1 were associated with therapeutic response, 

cancer prognosis, drug toxicity and disease susceptibility [48, 49].

ABCC4

Increased MRP4 membrane localization and retention were associated with drug resistance 

in acute myeloid leukaemia [50]. Expression changes caused by an intronic CNV in ABCC4 
correlated with an increased risk for oesophageal squamous cell carcinoma in the Chinese 

Han population [51]. A large number of SNVs in ABCC4 altered the affinity for the 

protein’s substrate drugs [49, 52, 53].

ABCC5

ABCC5 variants were associated with tumour response to gemcitabine-based 

chemoradiotherapy and survival in patients with pancreatic cancer [54]. Increased ABCC5 
mRNA concentrations were reported in lung, colon, pancreatic and breast cancer [49].

ABCG2

Increased ABCG2 protein concentrations were associated with poor outcome in large 

B-cell lymphoma [55] and acute myeloid leukaemia [56]. Increased ABCG2 protein 

expression correlated with reduced survival of patients with small cell and non-small cell 

lung cancers [57]. A genome-wide association study (GWAS)-associated ABCG2 alleles 

with hyperuricaemia and gout [58–60]. ABCG2 variations were associated with various 

malignancies including colorectal cancer, lymphoma and leukaemia [61]. The ABCG2 
variant (rs2231142, Gln141Ly) causes reduction of transport activity [62] and increased 

drug concentrations leading to drug-induced toxicity [63]. Alloimmunizations occurred, 

complicated transfusions and caused HDFN disease (see JR blood group).
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SLC16A1

MCT1 protein was overexpressed in cancer cells and involved in pH regulation [64]. The 

SLC16A1 variant (rs1049434, Asp490Glu) correlated with survival rates in patients with 

non-small cell lung [65] and colorectal cancers [66]. SLC16A1 promoter mutations were 

implicated in hereditary exercise-induced hyperinsulinism and hypoglycaemia [67] and 

ketoacidosis [68].

SLC19A1

SLC19A1 variants affected methotrexate toxicity and outcome in leukaemia [69]. A 

recent meta-analysis suggested a role of SLC19A1 rs1051266 variant in haematopoietic 

malignancies [70].

SLC29A1

Decreased ENT1 protein expression correlated with recurrence and poor outcome in patients 

with hepatocellular carcinoma after surgery [71]. Expression of SLC29A1 mRNA and 

ENT1 protein in tumour tissues was a predictive marker of outcome in cancer patients 

receiving gemcitabine [72]. SLC29A1 promoter region variants altered gene expression and 

gemcitabine chemosensitivity [73]. The SLC29A1 variant (rs45573936, Ile216Thr) may 

increase the risk for seizures during alcohol withdrawal [74]. Alloimmunizations occurred, 

complicated transfusions and caused HDFN disease (see AUG blood group).

CYP4F3

CYP4F3 variants were associated with the risk of ulcerative colitis [75] and lung cancer 

[76].

CFTR

Absence, reduced concentration, or malfunction of the CFTR protein resulted in cystic 

fibrosis [77, 78] and cystic fibrosis-associated diseases, including bronchiectasis [79], 

chronic pancreatitis [80] and congenital bilateral absence of the vas deferens [81].

FLOT1

The FLOT1 gene is located 620 kb upstream of the HLA-B gene on the short arm of 

chromosome 6. A FLOT1 variant (rs3909184) was identified as a tagging SNV for the 

HLA-B* 15:02 allele, associated with carbamazepine-induced Stevens–Jonson syndrome 

and toxic epidermal necrolysis in the Asian population [31, 82, 83]. A recent study identified 

FLOT1 variants affecting FLOT1 mRNA expression as susceptibility risk factor for major 

depressive disorder [84]. Upregulation of FLOT1 mRNA or FLOT1 protein expression may 

promote oesophageal squamous cell [85], colorectal [86], breast [87] and hepatocellular 

cancer [88].

ATP7A

ATP7A variants caused various copper transport disorders, such as Menkes disease [89], 

occipital horn syndrome [90] and the ATP7A-related distal motor neuropathy [91].
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EPHX1

The low-activity genotype of the EPHX1 exon 3 variant (rs1051740, Tyr113His) was 

associated with a decreased risk for lung cancer in Caucasians [92]. Functional variants were 

also associated with susceptibility to various cancers, such as lung [93], upper aerodigestive 

tract [94–96], colorectal [97], bladder [98] and breast cancer [99].

Advantages of red cells in pharmacologic studies

Previous studies, using site-directed mutagenesis, have been applied in cell cultures, such as 

human embryonic kidney-293 [100] and Madin–Darby canine kidney cells [101] or oocytes 

from Xenopus laevis [102]. However, these methods and cellular assays can be artificial, 

expensive, laborious and time-consuming. Proteomic analysis of the red cells, the most 

abundant cells in human body [103], has identified multiple transporter proteins in their 

membrane. Several of these proteins are known to be involved in the influx or efflux of 

clinically important drugs [34].

The membrane structure of the red cell is arguably the best studied of all human cell types 

[104], which enables us to draw worthwhile conclusions [105]. Red cells can be haemolysed 

and later resealed to regain limited permeability [106]. This technical feature is rather 

unique for red cells. No wonder that several studies utilized resealed human erythrocyte 

membranes, dubbed ghosts, as model system for drug transport studies [107, 108]. Use of 

ghosts circumvented the interference from proteins and enzymes present in the erythrocyte 

cytoplasm [109].

Study topics for pharmacogenomics with red cells

Clinical syndromes: haemolysis

The SLC28A3, a drug transporter gene not expressed on the red cell membrane, is 

tested on both the DMET and PharmacoScan arrays. A SLC28A3 variant (rs10838138) 

was associated with a lower incidence of severe haemolytic anaemia in patients with 

chronic hepatitis C receiving pegylated interferon and ribavirin [110]. Haemolytic events 

may however remain undetected until the haemolysis becomes rather severe. Haemolysis 

by drugs can be caused by 2 mechanisms: (1) non-immune mediated, and (2) immune 

mediated.

Haemolysis, non-immune mediated

Non-immune-mediated drug-induced haemolytic anaemia is due to direct toxicity through 

irreversible damage of red cells [18–21, 25, 26, 28]. Various other factors such as 

red cell enzymopathy, infections, uraemia, diabetic ketoacidosis, deficient of vitamin 

E and low levels of glucose can increase the haemolytic effect of a drug [28]. 

Drugs, such as phenylhydrazine [111] cause haemolysis in all subjects in relatively 

low concentrations; while primaquine, acetanilid, nitrofurantoin, p-aminosalicylic acid, 

naphthalene, phenylsemicarbazide, sulphonamides and sulphones cause haemolysis in 

normal subjects only in high concentrations [28, 112, 113]. Genetic variants in drug 
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transport or drug metabolism genes may determine the intracellular concentration of the 

drug and its impact on haemolysis.

Haemolysis, immune mediated

Although underdiagnosed, an incidence of approximately 1 per million per year [114, 

115] has been proposed for drug-induced immune haemolytic anaemia, a rare but 

severe hypersensitivity reaction to drug administration [116, 117]. It is caused by 

warm autoantibodies against red cells induced by many antibiotic, anti-inflammatory and 

chemotherapy drugs [118, 119]. A large and growing list of drugs have been associated with 

drug-induced immune haemolytic anaemia, and the most common are piperacillin, cefotetan 

and ceftriaxone [118]. Platinum-based chemotherapeutic agents such as oxaliplatin, cisplatin 

and carboplatin are also known to induce drug-induced immune haemolytic anaemia in 

rare cases [25, 118, 120, 121]. While drug-induced immune haemolytic anaemia is often 

diagnosed by excluding alternative causes rather than by direct evidence, genetic variants of 

red cell membrane proteins, other than blood group proteins, are not routinely considered.

We wonder how many clinical haemolytic events are not properly attributed to be caused by 

variants of membrane proteins? Each protein variant is rare, but a large fraction of patients 

may carry one of the host of such variants.

Reservoir or sink for a drug

Red cells may function as a reservoir or sink. Their effectiveness can vary if protein variants 

are involved. Drug transporter proteins can bind drugs to the red cell surface or transport 

the drug into the red cell cytoplasm. Either way, the drug’s plasma concentration may be 

reduced, delaying or preventing efficient delivery of therapeutics to target tissues. The role 

of red cell membrane proteins has been studied extensively in drug transport or drug binding 

[122]. The effect of these proteins’ variants has not been systematically evaluated so far.

Drug delivery

Resealed red cells have been manufactured for in vivo drug delivery [123]. They have a long 

life span, excellent biocompatibility, complete biodegradability and low immunogenicity 

[124]. Protein variants may be a lesser concern when allogeneic red cells are manufactured. 

In an autologous setting, the variant of a red cell membrane protein in the patient would 

matter.

Drugs can be targeted to red cells in two ways, such as encapsulation and conjugation. 

The drugs are encapsulated inside the ghosts, which reduces the possibility of an immune 

reaction and protects the drug from inactivation [125]. Molecular variants of transport 

proteins may alter the entrapment and eventual release of the drug. By chemical or genetic 

means, drugs can be physically conjugated to lectins and other ligands that bind to distinct 

red cell membrane proteins [126]. For example, single-chain variable region fragment (scFv) 

of TER-119, a monoclonal antibody to the mouse analogue of human glycophorin A (GPA), 

was genetically attached to complement-regulating proteins including decay-accelerating 

factor (DAF) which protected the mouse red cells against lysis by complement [127]. Of 
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course, molecular variants of red cell surface proteins can alter the binding affinity of the 

drug-ligand conjugates and affect the bioavailability of the drug.

Limitations

Red cells recapitulate the in vivo condition where the expression of a transporter protein 

and presence of multiple transporters for same drug are accounted for. Studying the kinetics 

of drug transport using red cells harbouring naturally occurring variants of drug transport 

proteins may allow direct insight in pharmacokinetics for red cells. Such results may 

be carefully extrapolated to other cell types that express any of the 12 genes in their 

cell membranes. However, using ghosts as model systems has its limitations: the protein 

isoforms and the amount of protein expressed may differ between red cells and other tissues; 

also, the membrane lipid composition, cytoskeleton proteins and interacting proteins differ 

among cell types.

Transplant and iatrogenic chimeras

Peripheral blood, routinely used for pharmacogenetic analysis, would reflect the genotype 

of the donor after a hematopoietic stem cell transplantation. Chronic transfused patients 

and patients with solid organ transplants are known to accept donor granulocytes and 

lymphocytes even with leucoreduced donor blood [128, 129]. Being an emerging field, there 

is a dearth of information on the relevance of donor or recipient genotype to pharmacologic 

outcome, and both the donor and recipient genetic backgrounds and their discrepancies 

should be taken into account.

Therapeutics with potentially important RBC pharmacogenomics 

relationships

Methotrexate

Methotrexate polyglutamates accumulate within erythrocytes in a dose-dependent fashion, 

significantly influencing long-term methotrexate plasma concentrations [130]. One study 

evaluated the relationship between ABCC1 variants and methotrexate concentrations in 

erythrocytes, finding that rs35592 was associated with lower methotrexate polyglutamate 

concentrations and rs3784862 was associated with higher concentrations [131]. Other 

studies have identified genetic variants in the folate transporter (SLC19A1, FOLT and 

RFC1) that are associated with erythrocyte folate concentrations [132,133]. Although 

controversial [134], RBC methotrexate polyglutamate concentrations are associated with 

genetic variants in SLC19A1 [135]. SLC19A1 loss results in reduced methotrexate 

uptake and methotrexate resistance in erythroleukaemia cells [136]. Variants in RBC 

transporters have also been associated with methotrexate plasma concentrations [137], 

and RBC folate concentrations have been associated with methotrexate outcomes [138]. 

Although methotrexate likely targets white cells, methotrexate polyglutamates in circulating 

RBCs may be associated with clinical efficacy of methotrexate, determining both dose 

and therapeutic selection [139]. Such relationships may underlie the association between 

variants in ABCC1, SLC19A1 and other polymorphisms with methotrexate efficacy. Thus, 

understanding how allelic variants in RBC transporters influence this relationship may 
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increase the likelihood of developing precision use of methotrexate. This field remains in its 

infancy.

Mercaptopurines

Located in a variety of tissues, including erythrocytes, thiopurine methyl transferase (TPMT) 

is the major metabolic detoxification route for mercaptopurines. Red blood cells may act 

as a reservoir for mercaptopurine metabolites, and low erythrocyte TPMT activity is a 

marker for mercaptopurine toxicity [140] and lower risk of relapse [141]. Both MRP4 and 

MRP5 transport mercaptopurine out of red blood cells, whereas ENT1 is a mercaptopurine 

uptake transporter associated with mercaptopurine sensitivity [142–144]. The rs3765534 

polymorphism in ABCC4 impairs membrane localization and is associated with significant 

mercaptopurine sensitivity [145, 146]. One study determined that variants in SLC29A1 were 

associated with erythrocyte concentrations of thiopurines in patients receiving azathioprine 

for neuromyelitis optica spectrum disorders [147]; however, the genetic influences of 

erythrocyte transport and its implications on the pharmacology of mercaptopurines are rather 

poorly studied.

Antiretrovirals

Low erythrocyte inosine triphosphatase (ITPA) activity is associated with the development 

of adverse events during antiretroviral therapy [148, 149] and metabolizes purine analogues 

used in HIV treatment [149]. Since ITPA activity is decreased in individuals infected with 

HIV [150], factors influencing ITPA metabolism in erythrocytes may be of significant 

importance. Several studies have identified variants in transporters that are associated 

with the pharmacokinetics or clinical outcome of antiretrovirals [151–158]. However, to 

our knowledge, no study has yet determined whether these variants are associated with 

intra-erythrocyte concentration of these medications, and therefore, the availability of 

antiretroviral substrates to erythrocyte ITPA.

Nucleoside analogues

SLC29A1 (encoding ENT1) is involved in the pharmacology of many nucleoside analogues 

(e.g. cytarabine, gemcitabine, 5FU, pentostatin, zidovudine, ribavirin, dipyridamole and 

draflazine) [159]. Interestingly, we did not find a single study that has evaluated whether 

RBC ENT1 uptake effects the pharmacology of these medications. Since ribavirin is known 

to cause dose-limiting haemolytic anaemia [160], variants in this transporter should be 

studied to determine whether a population of individuals is at particular risk of haemolytic 

anaemia during ribavirin therapy.

ABCG2 substrates

ABCG2 transports a very wide variety of medications from different classes, and genetic 

variants in ABCG2 have been associated with the pharmacokinetics and outcomes of 

numerous therapeutics (Table S1). The implications of erythrocyte ABCG2 expression 

remain poorly characterized. Yet, changes in the expression of ABCG2 resulting from 

genetic variation are reflected in the red cell membrane [161]. One study discovered a novel 

ABCG2 variant (ABCG2-M71V; rs148475733) after noting that certain patients had very 
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low (50% of average) ABCG2 erythrocyte membrane expression levels [162]. Thus, RBC 

transporter expression can be used to identify potentially important variants affecting the 

expression or function of transporters. Further study is warranted on ABCG2 expression in 

red cell membranes and the implications of such expression in pharmacology.

CFTR potentiators

Erythrocytes are representative of the CFTR status of patients [163]. Membrane preparations 

from erythrocytes are already used to study CFTR structure, function and density [164–

166]. Numerous genetic variants are associated with CFTR potentiators (Table S1). Thus, 

erythrocyte membrane preparations may be useful for non-invasive diagnostic purposes, 

developing novel CFTR potentiators, or understanding unusual clinical outcomes [167, 168]. 

Such approaches do not appear to be prevalent in the literature.

Summary

Red cells are easily accessible for pharmacologic studies. The DMET and more recently 

the PharmacoScan arrays are increasingly used worldwide for clinical pharmacogenetic 

decision-making. A thorough search of literature identified 12 genes that are scanned by 

the arrays and also expressed in the red cell membrane. We propose red cells as an ex 
vivo model system to study the effect of variants of these 12 membrane proteins on the 

pharmacokinetics of drugs.
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Table 1

Genes present in the red cell membrane and routinely tested in pharmacogenomics.

Gene Red cell membrane confidence threshold*

Pharmacogenomics platform

DMET PharmacoScan

ABCC1 High Yes Yes

ABCC4 High Yes Yes

ABCC5 High Yes Yes

ABCG2 High Yes Yes

SLC16A1 High Yes Yes

SLC19A1 Medium Yes Yes

SLC29A1 High Yes Yes

CYP4F3 Medium Yes Yes

CFTR High No Yes

FLOT1 High No Yes

ATP7A High Yes Yes

EPHX1 High Yes Yes

*
High = identified in at least 2 mass spectrometry-based studies, an established blood group, or a CD marker for red cells; Medium = identified in 

only 1 mass spectrometry-based study [34].
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