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Summary.

In contrast with typical Phase III clinical trials, there is little existing methodology for determining 

the appropriate numbers of patients to enroll in adaptive Phase I trials. And, as stated by Dennis 

Lindley in a more general context, “[t]he simple practical question of ‘What size of sample should 

I take’ is often posed to a statistician, and it is a question that is embarrassingly difficult to 

answer.” Historically, simulation has been the primary option for determining sample sizes for 

adaptive Phase I trials, and although useful, can be problematic and time-consuming when a 

sample size is needed relatively quickly. We propose a computationally fast and simple approach 

that uses Beta distributions to approximate the posterior distributions of DLT rates of each dose 

and determines an appropriate sample size through posterior coverage rates. We provide sample 

sizes produced by our methods for a vast number of realistic Phase I trial settings and demonstrate 

that our sample sizes are generally larger than those produced by a competing approach that is 

based upon the nonparametric optimal design.
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1. Introduction

Phase I oncology trials of chemotherapeutic agents have had a conceptually simple goal: to 

determine which doses of an agent can be given to patients before an unacceptable fraction, 

0 < θ < 1, of patients begins to experience dose-limiting toxicities (DLTs). Statistically 

speaking, we have an unknown dose-response curve, and we assign doses to patients and use 

their data to identify the desired quantile θ on the curve while attempting to minimize the 

number subjects exposed to highly toxic doses (Rosenberger and Haines, 2002).

There are numerous approaches for designing Phase I trials; see Table 1 of Braun (2014) for 

examples. Our work focuses upon a specific design known as the Continual Reassessment 

Method (CRM) (O’Quigley et al., 1990), which adopts a parametric model f (d; β), that is 
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monotonic in d to describe how the probability of DLT is related to dose d. The logistic 

model f (d; β) = exp[3 + exp(β)d]/(1 + exp[3 + exp(β)d]) and the socalled “power” model 

f (d; β) = dexp(β) are models commonly used in the CRM. The parameter β is given a 

prior distribution with mean μ (usually μ = 0) and variance σ2 and support on the real line. 

We sequentially update the posterior distribution of β as each enrolled subject or cohort of 

subjects is observed for the occurrence of DLT. We use the resulting posterior distribution 

for the probability of DLT for each dose to determine the dose assignment for the next 

cohort; this assignment is usually the dose whose posterior probability of DLT is closest to 

θ. Final mean posterior DLT probabilities for each dose are computed once all patients have 

been observed; the MTD is often defined as the dose whose posterior mean probability is 

closest to θ, although the MTD can be defined in other ways (Babb et al., 1998).

A competitor to the CRM is the 3 + 3 design (Storer, 1989), which is an algorithm that 

determines acceptability of doses from the outcomes seen in three-patient cohorts. One of 

the appealing features of the 3 + 3 design is its pre-determined maximum sample size of 

six patients per dose. However, this sample size is simply an artifact of the design and has 

no statistical motivation. In fact, the sample size used in 3 + 3 designs is often woefully 

insufficient to provide evidence that the MTD has been correctly identified, motivating 

the recent practice of enrolling additional patients at the proposed MTD in a so-called 

“expansion cohort” (Boonstra et al., 2015; Iasonos and O’Quigley, 2016).

Certainly, there are sample size formulae for a myriad of Phase III trial designs; even Phase 

II trials using a Simon two-stage design (Simon, 1989) are provided with a sample size. 

However, the crux of these methods lies in traditional hypothesis testing, in which explicit 

null and alternative hypotheses are stated. In adaptive Phase I trials, although we certainly 

have a model parameter, our primary goal is not based in inference for that parameter. 

Instead, the model and parameter are simply used to facilitate a way to compare the 

probabilities of toxicity of each dose in order to identify the MTD. Historically, simulation 

has been the only real avenue for determining appropriate sample sizes for Phase I trials 

(Tighiouart and Rogatko, 2012), although Cheung (2013b) recently developed the first 

systematic approach to sample size determination specific to the CRM, the details of which 

will be presented in Section 2.

Our work presents an alternative to the approach of Cheung (2013b), which is based upon an 

asymptotic frequentist approximation. Instead, our approach is founded in Bayesian sample 

size estimation, for which numerous prior research exists (Pham-Gia and Turkkan, 1992; 

Joseph et al., 1995; Pham-Gia, 1997; M’Lan et al., 2008). We will describe our approach in 

Section 2 and demonstrate the results of our methods via simulation in Section 3, as well as 

compare those results to those of Cheung (2013b). We will conclude with a summary and 

discussion in Section 4.

2. Methods

2.1. Notation

We have a set of J clinical doses, D1 < D2 < . . . < DJ, and wish to determine which of the 

doses has a DLT rate closest to the targeted DLT rate θ. We let pj denote the DLT rate for 
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dose j = 1,2, . . . J and assume that the pj can be modeled with a one-parameter function of 

dose, f (Ej; β), in which β is the unknown parameter and Ej is a modified value of Dj to 

encourage better model fit of f (·). The values E1, E2, . . . , EJ are based upon a vector of 

a priori values known as the skeleton. Although there are a variety of ways of selecting a 

skeleton and methods for averaging results over multiple skeletons (Yin and Yuan, 2009b), 

we will use the methods of Lee & Cheung (Lee and Cheung, 2009) to define our skeleton, 

which are implemented in the function getprior in the dfcrm library (Cheung, 2013a) created 

for the statistical package R (R, 2016). In both the power model and the logistic model, the 

parameter β is allowed to take any value on the real line. Thus, it is standard to assume 

that the prior distribution for β, which we denote g (β), is Gaussian with mean zero and 

variance σ2, with the value of σ2 treated as a design parameter whose value is fixed at a 

specific value. Methods for determining appropriate values of σ2 have been proposed (Lee 

and Cheung, 2011; Zhang et al., 2006).

Although the CRM was first proposed to assign the first patient at the a priori MTD defined 

by the skeleton, it is now more accepted that the first subject be assigned to the lowest dose 

to avoid concerns of overdosing early in the trial. The dose assigned to each new subject 

i = 2, 3, . . . N is determined from the data collected on all previously enrolled subjects. 

We let E[k] , k = 1, 2 . . . , i − 1 denote the dose assignment for enrolled subject k, which 

is among the values E1, E2, . . . , EJ, and let Yk = 1 and Yk = 0 indicate respectively that 

subject k has or has not had a DLT. Before subject i is enrolled, we have a likelihood 

Li − 1(β ∣ Y , E) = ∏k = 1
i − 1 f E[k]; β Yk 1 − f E[k]; β 1 − Yk, from which we can compute the 

posterior distribution

ℎi − 1(β ∣ Y , E) =
Li − 1(β ∣ Y , E)g(β)

∫−∞
∞ Li − 1(β ∣ Y , E)g(β)dβ

,

in which Y = {Y1, Y2, . . . , Yi−1} and E = {E[1], E[2], . . . , E[i−1]}. We then use h (β | Y, 

E) to compute μi − 1, the posterior mean of β, from which we obtain pij = f Ej; μi − 1 , the 

posterior estimate of the probability of DLT for dose j. Patient i is then assigned to the dose 

with pij closest to the target DLT rate θ, subject to possible dose assignment restrictions. We 

now describe methods for determining how large N should be before terminating the trial.

2.2. Sample Size via Cheung (2013b)

For Phase I trials using the CRM, Cheung (2013b) determined a lower bound for the 

sample size based on theoretic properties of what is known as the nonparametric optimal 

design (NOD) (O’Quigley et al., 2002). The NOD is a simulation-based approach in which 

potential DLT outcomes are generated for every patient for every dose, which contrasts with 

an actual trial in which a single DLT outcome is observed for each patient at a specific 
dose. For a given sample size N, the NOD estimates pj for each dose j from the observed 

proportion of DLTs in the N simulated outcomes. Given that the NOD determines DLT rates 

using JN observations, as well as the unbiased and minimum variance properties of sample 

proportions, the performance of the NOD is viewed as a benchmark for the performance 

of any CRM design that determines DLT rates from N observations. Thus, any sample size 

Braun Page 3

Biometrics. Author manuscript; available in PMC 2022 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



determined from the nonparametric optimal design is seen as a lower bound for the needed 

sample size of any CRM design.

As a result, using the asymptotic properties of the estimators used in the NOD, Cheung 

(2013b) developed his sample size lower bound as follows. For a given number of doses J 
and a targeted DLT rate θ, we first specify J vectors of hypothetical DLT rates P1, P2 , . . . 

PJ, in which Pk = {p1k, p2k, . . . , pJk} and pjk is the probability of DLT for dose j = 1, 2, . . . , 

J in vector k = 1, 2, . . . J. Each Pk is defined such that

pjk = θ if j = k
pj + 1, k

1 − pj + 1, k
= R

pjk
1 − pjk

if j > k
pjk

1 − pjk
= R

pj − 1, k
1 − pj − 1, k

if j < k

for a given odds ratio R ≥ 1. In other words, we have J settings, dose k is the true MTD 

in setting k, and neighboring doses in each setting have DLT rates that differ from each 

other through an odds ratio R. For each setting k, defined by Pk, we could run simulations 

to compute PCSk, an estimate for the probability of correct selection (PCS) of the MTD 

when dose k is the MTD. We denote the metric AN(θ, J, R) = ∑k = 1
J PCSk/K, which is the 

average PCS over all the settings examined. Typically, we select N over a grid search of 

possible values until AN (θ, J, R) reaches a desired threshold.

To avoid the need for simulation, Cheung (2013b) demonstrated that

AN(θ, J, R) ≈ 1
J + 1 − 1

J 2Φ w1(θ, R, N) + w2(θ, R, N) − 1 ,

in which Φ {·} is the CDF of a standard normal distribution and

w1(θ, R, N) = N
2

θ − α1 + 0.5N−1

θ(1 − θ) + α1 1 − α1 + 2α1(1 − θ)

w2(θ, R, N) = N
2

α2 − θ − 0.5N−1

θ(1 − θ) + α2 1 − α2 + 2θ 1 − α2
α1 = θ

θ + R − Rθ
α2 = Rθ

1 − θ + Rθ

Thus, for a given desired probability of correct selection, AN (θ, J, R), number of doses, 

J, and variation in DLT rates, R, the corresponding sample size can be determined. As 

expected, the necessary sample size will increase with increases in AN (θ, J, R) and J, 

and will decrease with increases in R. Such a calculation is provided by the function getn 
in the dfcrm library (Cheung, 2013a) created for the statistical package R (R , 2016). We 

emphasize that this function is for a design in which the DLT rates are modeled via the 

power model, with a prior variance of 1.34 for the model parameter, and assumes that the 

first subject is assigned to the median dose value. We will use the sample sizes produced 
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by this function in Section 3 as a comparator for the sample sizes produced by our method, 

which we describe next.

2.3. Bayesian Sample Size Determination

Recall that the CRM uses a one-parameter model pj = f (Ej; β) for the DLT rate of each dose 

j and a prior distribution is placed on β. This prior distribution leads to a prior distribution 

for each pj that often lacks a closed-form expression. We denote this prior distribution 

as ℱ mj, vj  with prior mean mj and prior variance vj. Because each pj is a binomial 

parameter, an obvious simplification is to approximate ℱ mj, vj  with a Beta distribution with 

parameters

aj = mj
m 1 − mj

vj
− 1 (1)

bj = 1 − mj
m 1 − mj

vj
− 1 . (2)

The values of mj and vj can be approximated either through sampling directly from the prior 

of β and computing the resulting means and variances of each pj or by using a Taylor series 

expansion. With N subjects receiving dose j, in whom we see Y DLTs, we know that pj has a 

posterior Beta distribution with parameters aj + Y and bj + (N − Y); we denote this posterior 

distribution as fj (p | Y, N). See Morita et al. (2010) & Morita et al. (2012) for use of this 

approximation in other settings.

For a vector of true DLT rates π = {π1, π2, . . . πJ} and the targeted DLT rate θ, we define 

jθ as the index of the dose whose DLT rate is closest to θ, that is, dose jθ is the true 

MTD among the doses being studied. Note that in the methods of Cheung (2013b), π is 

determined directly from the odds ratio R and one of the doses is specified to have DLT 

exactly equal to θ. Our methods are applicable to any general vector of DLT rates, although 

certainly an approximate odds ratio could be determined from a given vector of DLT rates in 

order to apply the methods of Cheung (2013b).

We will use the location and spread of fjθ (p | Y, N) to help determine when N is “large 

enough,” somewhat related to the stopping rule proposed by Ishizuka and Ohashi (2001). 

Intuitively, as N grows larger, the posterior mean of pjθ will get closer to πjθ and the 

posterior variance of pjθ will continually shrink. Likewise, the posterior distributions of the 

DLT rates of all other doses will become more peaked around their respective true DLT 

rates. Thus, as the sample size N increases, the posterior distributions will have less and less 

overlap with each other, allowing for the determination of the MTD, which is dose jθ, with 

more and more precision.

Our desired level of precision will be defined by two parameters ϕ and γℓ. We define an 

interval ℐ* = θ ± ϕ of acceptable DLT rates around the target θ. Intuitively, as ϕ gets larger 

(smaller), the necessary sample size should decrease (increase). We propose that the value 

for ϕ should be the average distance between the true DLT rates of adjacent doses, that is, if 
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all the DLT rates differ from the doses directly adjacent to them by an average of 10 points, 

then ϕ = 0.10. This metric is obviously related to the odds ratio R used by Cheung (2013b), 

although we focus on the absolute differences between the true DLT rates rather than the 

absolute difference of the log-odds of the true DLT rates.

The sample size formula of Cheung (2013b) varies with the number of doses J; our 

approach also will reflect the number of doses implicitly through the definition of ϕ. For 

example, suppose, we are studying five doses, and we assume the doses have true DLT rates 

of π = {0.05, 0.12, 0.20, 0.30, 0.45}; currently ϕ would be equal to 0.10. If the study were 

expanded to include a sixth dose, the value of ϕ will possibly change to reflect the location 

of the DLT rate of this sixth dose relative to the original five doses. If the sixth dose had a 

DLT rate of 0.55, then ϕ would remain at 0.10, which makes sense because this dose is even 

further from the MTD than the fourth and fifth doses, so that few, if any patients would be 

assigned to this dose and little additional information would be gleaned from including this 

dose. In contrast, if the sixth dose had a true DLT of 0.35, we now have ϕ = 0.06, which 

would lead to a much larger sample size because correctly identifying the MTD would 

require more information than that required by the original five doses. We can consider our 

parameter ϕ analogous to the parameter α, which is the false positive, or Type I error, rate 

considered in traditional sample size calculations.

Given the interval ℐ*, we can compute γ(N, Y ) = ∫ℐ*fjθ(p ∣ Y , N)dp, which is a posterior 

interval probability (PIP) for dose jθ, specifically the amount of posterior mass for pjθ in the 

interval ℐ*. Since this PIP is conditional upon the observed number of DLTs Y out of N 

subjects, we compute γ(N) = ∑y = 0
y = N γ(N, y)Bin N, pjθ , which is a weighted average of PIP 

values over the density of Y, which has a binomial distribution with parameters N and pjθ. 

Our second parameter, γℓ defines the minimum amount of PIP we desire at the true MTD, 

and is analogous to power, or the true positive rate, used in traditional sample sizes.

Thus, our sample size algorithm is as follows:

1. Select J, the number of doses to be studied, θ, the targeted DLT rate, the dose-

toxicity model f (Ej; β) with corresponding skeleton values E1, E2, . . . EJ, and 

σ2, the prior variance for β;

2. Determine the parameters of each beta distribution defined in equations (1) and 

(2);

3. Select a vector of true DLT rates π = (π1, π2, . . . , πJ) which then determines 

ϕ = ∑j = 1
J − 1 πj + 1 − πJ /(J − 1);

4. Select a value for γℓ , the minimum desired amount of mass in 

ℐ* = (θ − ϕ, θ + ϕ) for the posterior distribution of DLT rates for the MTD;

5. Select a vector of possible sample sizes N, and for each value N ∈ N, compute 

the resulting value of γ(N);

6. Find the smallest value of N such that γ(N) ≥ γℓ.
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As a practical example, suppose we have five doses under study and our targeted DLT 

rate is θ = 0.30. We will use the power model with the model parameter β having a prior 

variance of σ2 = 1.34. We have a vector of skeleton DLT rates {0.06, 0.16, 0.30, 0.45, 

0.59} so that the middle dose is the a priori MTD. The prior distribution for β places a 

prior mean and variance on the DLT rates for each dose; we find the parameters of a beta 

distribution that correspond to each mean and variance. For example, the prior mean and 

variance for the DLT rate of the first dose are 0.17 and 0.05, respectively, which correspond 

to beta distribution parameters a1 = 0.33 and b1 = 1.58 from equations (1) and (2). Similar 

computations are made for the remaining four doses.

The sample size is now a function of the actual DLT rates of the five doses and the desired 

value of γℓ, the posterior coverage level. Suppose the vector of true DLT rates for the five 

doses is {0.05, 0.16, 0.28, 0.39, 0.50}, so that the average difference between adjacent DLT 

rates is ϕ = 0.11. This defines an interval of ℐ* = (θ − ϕ, θ + ϕ) = (0.19, 0.41). Suppose, we 

now wish to find a sample size that supports a PIP of γℓ = 0.70 in the interval (0.19, 0.41). 

We simply iteratively examine a range of sample sizes until we find the smallest sample size 

that achieves the desired PIP level. In this example, we obtain a sample size of N = 37. R 

code for this calculation can be found in the Web Supplement.

If we were to change the true DLT rates to {0.10, 0.20, 0.30, 0.40, 0.50}, we now have a 

value ϕ = 0.10, which results in a larger sample size of N = 45 because the value of ϕ is 

now smaller than before. We could also return to our original setting and instead reduce the 

prior variance of β in half to be σ2 = 0.67, which leads to smaller sample size of N = 35. 

Alternatively, we could leave the prior variance unchanged at σ2 = 1.34, and instead change 

the skeleton to be {0.00, 0.01, 0.06, 0.16, 0.30}, leading to a sample size of N = 37. These 

two sample size values are practically identical to the original sample size of N = 37 and 

demonstrate that the choices of prior variance and skeleton have much less impact on the 

sample size than does the vector of true DLT rates.

3. Numerical Studies

We now compare and contrast the sample sizes produced by our method and by the method 

of Cheung (2013b). We have J ∈ {4, 5, 6} doses under study and the targeted DLT rate 

equal to θ ∈ {0.20, 0.25, 0.30}. We use the empiric model with a prior variance of 1.34 for 

the model parameter, which is the default value in the R function crmsim. Skeleton values 

were determined via the R function getprior (Lee and Cheung, 2011) using a half-width of 

θ/4, as recommended in Cheung (2013b). The skeleton was computed assuming the third 

dose was the MTD. True DLT rates are equally spaced from a value pmin ∈ {0.05, 0.10, 

0.15, 0.20} to a value pmax ∈ {0.3, 0.4, 0.5, 0.6, 0.7}, which combined with the selected 

values of J and θ, determine the location of the MTD. Each of the settings defined by a 

combination of J, θ, pmin, and pmax results in a value of ϕ for our proposed methods, as well 

as an approximate odds ratio R necessary for the methods of Cheung (2013b). The value of 

R was approximated as exp{logit(θ + ϕ) − logit(θ)}, where logit(x) = log(x) − log(1 − x).

For each setting, we computed the necessary sample size using our methods for values 

of the desired minimum posterior coverage γℓ ∈ {0.6, 0.7, 0.8, 0.9}. We then ran 1000 
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simulations of Phase I trials designed with the CRM using each of the resulting sample 

sizes in order to compute both the posterior distribution of the model parameter β as well 

as the dose identified as the MTD at the end of the study. From these 1000 simulations, 

we computed the average posterior mass of the interval θ ± ϕ and PCS, the proportion 

of simulations in which the MTD was correctly identified. We computed these values 

separately for studies assigning the median dose to the first subject, which was used in 

the methods of Cheung (2013b), and for studies assigning the lowest dose to the first 

subject, which is more commonly used in practice. We then used the value of PCS from 

each approach in the R function getn in order to compute the suggested sample size from 

the methods of Cheung (2013b). Code for generating the simulation results is available in 

the Web Supplement, although an R library is being generated and will be made publicly 

available at the Comprehensive R Archive Network (CRAN) when completed.

Due to space limitations, results for a subset of all the settings are presented in four tables 

that can be found in the Web Supplement. There is one table for each for the four possible 

values of γℓ, and each table contains results for 24 settings. The same 24 settings are 

summarized in each of the four tables so that corresponding rows in each table can be 

directly compared to each other to observe how the sample size increases with γℓ.

Figure 1 provides a visual summary of the results when γℓ = 0.60 (left panels) and γℓ = 0.70 

(right panels). Each of the six panels provides a range of a sample sizes produced using 

our proposed method, as well as a corresponding range of sample sizes computed using the 

method of Cheung (2013b) that have the same probability of correct selection (PCS) as our 

method. Each panel also provides the actual average coverage rate produced by the sample 

size from our method. For example, the upper left-hand plot in Figure 1 demonstrates that 

with four doses, our method produces sample sizes ranging from 13 to 18 subjects, with an 

actual coverage rate of 0.70 and PCS = 0.44. The corresponding sample sizes from Cheung’s 

method range from 5–6 subjects.

In all six panels of Figure 1, we can draw some general conclusions. First, we see that 

for a given probability of correct selection, our method suggests that the sample sizes of 

Cheung (2013b) are too small, which we expect. Second, the actual coverage rates are a bit 

higher than the desired value, but are generally close enough to suggest the beta distributions 

provide a good approximation. Third, the sample size from our method is (a) relatively 

invariant to the targeted DLT rate θ, (b) increases when the desired coverage rate increases, 

and (c) increases slightly as the number of doses increases. Last, there are suggestions that a 

desired coverage rate of γℓ corresponds to a probability of correct selection that is about 20 

points lower, that is, γℓ = 0.60 corresponds roughly to PCS = 0.40.

Figure 2 provides a visual summary of the results when γℓ = 0.80 (left panels) and γℓ = 90 

(right panels) and supports the conclusions reached from Figure 1. We do see in Figure 2 

that there is a smaller difference between the sample sizes produced by our method and by 

Cheung (2013b) than seen in Figure 1, although the sample sizes of Cheung (2013b) remain 

lower than what is needed for the given value of PCS. From the sample size values in Figure 

2, we also see that a desired coverage rate of 0.80 or higher requires a sample size larger 

than what is actually used in most trials.
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4. Discussion

Our work supports the growing body of research demonstrating the superiority of adaptive 

designs to algorithmic ones (Iasonos et al., 2008; Jaki et al., 2013) and suggests that the 

sample sizes used in actual Phase I trials are likely insufficient for finding a chemotherapy 

dose that will be used in future Phase II trials. We note that, for a resulting sample size N, 

our methods have implicitly assumed that all N subjects have been treated at the true MTD, 

with no patients treated at the other doses. This contrasts to the actual design of an adaptive 

trial, in which roughly 50% of patients would be treated at the MTD, with fewer patients 

treated at doses directly above and below the MTD and even fewer patients treated at all 

other doses. The two designs, however, have very similar levels of efficiency for identifying 

the MTD.

Although our methods have not assumed a “greedy” dose-assignment algorithm, in which 

each patient or cohort of patients is assigned to the dose currently believed to be the MTD, 

our methods do require that the CRM will be consistent (Cheung and Chappell, 2002; Shen 

and O’Quigley, 1996). In other words, dose assignments cannot get “stuck” at a non-MTD 

dose ad infinitum, so that correctly identifying the MTD does not improve with sample size 

(Azriel et al., 2011; Oron and Hoff, 2013). We did examine our methods with settings in 

which the CRM has been shown to not be consistent, and found that the resulting sample 

sizes, which were unusually large (in the range of 300 to 500 subjects), led to a much 

smaller coverage rate than that desired. Thus, when our method suggests that hundreds of 

subjects will be necessary, there is a warning that non-consistency of the CRM could be an 

issue, which can be determined easily with the methods of Cheung and Chappell (2002).

We would like to expand our methods to other designs, such as combination trials of two 

agents (Yin and Yuan, 2009a; Braun and Jia, 2013; Mander and Sweeting, 2015) and partial 

follow-up of toxicity outcomes (Cheung and Chappell, 2000; Yuan and Yin, 2011). We 

hope that our methods provide a springboard from which appropriate sample sizes can be 

determined for these more complex and contemporary adaptive Phase I trial designs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Ranges of sample sizes produced by proposed method (Braun) and that of Cheung (2013b), 

for studies of four doses (row 1), five doses (row 2), and six doses (row 3), with desired 

coverage rates of γℓ = 0.60 (column 1) and γℓ = 0.70 column 2). The value above the 

ranges for Braun’s method is the actual coverage rate, while the value above the ranges for 

Cheung’s method is the actual probability of correct selection (PCS).
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Figure 2. 
Ranges of sample sizes produced by proposed method (Braun) and that of Cheung (2013b), 

for studies of four doses (row 1), five doses (row 2), and six doses (row 3), with desired 

coverage rates of γℓ = 0.80 (column 1) and γℓ = 0.90(column 2). The value above the 

ranges for Braun’s method is the actual coverage rate, while the value above the ranges for 

Cheung’s method is the actual probability of correct selection (PCS).
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