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Abstract

Drug resistance impacts the effectiveness of many new therapeutics. Mutations in the therapeutic 

target confer resistance, however deciphering which mutations, often remote from the enzyme 

active site, drive resistance is challenging. In a series of Pneumocystis Jirovecii dihydrofolate 

reductase variants we elucidate which interactions are key bellwethers to confer resistance to 

trimethoprim using homology modeling, molecular dynamics and machine learning. Six molecular 

features involving mainly residues that did not vary, were the best indicators of resistance.

Graphical Abstract

Introduction

Mutations in the enzymatic drug target are a common cause of drug resistance.1 Such 

mutations are observed in response to treatment with antivirals, antibiotics, antifungals 

and chemotherapeutics.2–5 In enzymatic targets mutations can occur within or outside the 
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active site. While mutations within the active site can confer resistance through steric and 

electrostatic alterations, how mutations outside the active site confer resistance is more 

difficult to ascertain.6–8 To determine how changes remote from the active site alter drug 

binding, we used molecular dynamics simulations (MD) combined with machine learning to 

identify interactions that distinguish resistant and susceptible variants. In previous studies a 

similar approach was used with HIV-1 protease variants in complex with a potent antiviral, 

darunavir.9, 10 This approach identified a sparse set of interactions that correlated strongly 

with resistance.9, 11 In this study we extend this strategy to an antifungal drug target, the 

dihydrofolate reductase (DHFR) enzyme in the fungus Pneumocystis Jirovecii.

P. Jirovecii is a fungus colonizing human lung epithelial cells. Although infections 

remains asymptomatic in healthy individuals, it is the cause of severe pneumocystis 

pneumonia in immunocompromised patients.12 Combination of the trimethoprim (TMP) and 

sulfamethoxazole are the standard for treatment for P. Jirovecii infections.13, 14 These broad-

spectrum anti-infectives target two essential enzymes, dihydrofolate reductase (DHFR) and 

dihydropteroate synthase. DHFR is an essential enzyme in all living organisms, catalyzing a 

key step in the tetrahydrofolate pathway necessary for purine biosynthesis. This makes it an 

excellent antimicrobial drug target, as disruption of thymine synthesis leads to cell death in 

many microorganisms.15 TMP selectively targets DHFR from microbial pathogens over the 

mammalian DHFR. Mutations in DHFR have been associated with TMP resistance across 

multiple microbial pathogens.16 Although the overall sequence conservation of DHFR 

is low, the structure has a conserved fold, with most differences being located in loop 

regions.17 The core of DHFR is formed by an 8 stranded β-sheet, with α-helical regions 

on either side of the central β-sheet (Fig S1). To carry out its enzymatic function, DHFR 

needs to bind to both folate and the NADH co-factor. The folate binding site, which is 

also the primary drug binding site, is in a hydrophobic pocket formed by the two most 

N-Terminal helices and the β-sheet region. The catalytic aspartic acid is located on the most 

N-terminal helix as well. (Fig. S1B) Residues surrounding the catalytic aspartic acid are 

implicated in resistance not only against TMP but also against anti-malaria drugs such as 

pyrimethamine and cycloguanil.18, 19 20 In 2013 several clinical isolates of DHFR from P. 
Jirovecii (pjDHFR) with one or two mutations were characterized (Table S1), some of which 

exhibited significantly reduced binding affinity against TMP. The experimental inhibition 

constant (Ki) ranged from 38 nM to 15 μM;21 while the majority of variants retained a level 

of susceptibility to TMP (Ki < 1 μM) three variants were highly resistant with Kis greater 

than1 μM. The mutations F36C and S31F are located proximal to the catalytic aspartic acid 

32 and lead to significant loss of TMP binding, but how distal changes confer resistance 

remained largely elusive.

Although hundreds of crystal structures of DHFR have been solved, no such structure 

has been solved for pjDHFR. In the present study a series of 20 variants of pjDHFR 

characterized by Queener et al.21 are modelled in complex with TMP, including wildtype 

and several variants with varying degrees of TMP resistance. Mutations were observed 

both within and outside the active site. Through MD simulations and machine learning we 

identified six structural features, three van der Waals (vdW) contacts and three hydrogen 

bonds, that are the bellwethers of resistance and can distinguish whether a particular variant 

exhibits significant levels of TMP resistance or not. These features could not have been 
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predicted without this strategy of MD and machine learning and their location and varied 

interactions provide insights how remote changes can confer drug resistance.

Results and Discussion

pjDHFR variants were sorted as either susceptible or resistant depending on whether the 

measured affinity, measured Queener et al.21, diverged significantly from wild type. Of the 

20 pjDHFR variants, 11 showed a 3.5 to 400-fold loss in TMP potency and were classified 

as resistant. The remaining 8 variants and WT were labeled as susceptible (Table S1, Fig. 

S2). The term resistant in this case does not imply clinical resistance to TMP, but indicates 

mutations causing a statistically significant decrease in the TMP binding affinity (Table S1), 

whereas susceptible mutations were indistinguishable from wildtype.

Homology models of wildtype pjDHFR (Uniprot: Q9UUP5) and 19 variants bearing either 

single or double mutations were generated in complex with TMP. Without experimentally 

determined structures of pjDHFR, the DHFR structure from P. Carinii (PDB-ID: 1DYR)22 

was used as a reference structure. P. Carinii DHFR had 62% sequence identity with the 

target sequence of P. Jirovecii. For each enzyme-inhibitor complex three 100 ns MD 

simulations were performed. Analysis of the carbon-alpha root mean squared deviation 

(RMSD) indicated that the simulated systems did not undergo major structural changes (Fig. 

S2). The distance between the center of mass of pjDHFR and TMP, even in the weakest 

binding variant (PJQ6: F36C/L65P; Ki=15.1 μM), remained stable in all simulations, 

indicating that TMP remained within the active site (Fig. S4). Thus, the simulations appear 

to be reasonable representations of the pjDHFR-TMP complexes.

Compared with wild type, all variants showed significantly more fluctuations (Fig. 1B, 

upper panel, Fig. S5). However, these changes did not correlate with binding affinity. Major 

differences were confined to loop regions outside of the active site. Strikingly, the F36C 

active site mutation (PJQ4) led to a significant increase in the fluctuations of the D100-V120 

loop, a change that was not observed in any other variant. This increase in fluctuations was 

not observed in the more resistant double mutant variant F36C/L65P (ID: PJQ6). Thus, there 

is not a simple correlation between binding affinity and the RMSF of the backbone in the 

simulations.

To investigate the changes in molecular interactions and dynamics that correlate with loss 

of binding affinity, physical features were calculated from the MD simulations. These 

included van der Waals interactions, hydrogen bonds and RMSF. To evaluate whether 

resistant and susceptible variants could be distinguished by concerted changes in dynamics 

and molecular interactions, principal component analysis was performed on these features. 

The first two principal components showed a significant separation between resistant and 

susceptible variants (Fig. 2A). To quantify this effect, a logistic regression model was trained 

on these principal components. The model was able to distinguish resistant variants with 

85% accuracy. The coefficients of the regression model were βPC1= 0.036 and βPC2=0.093, 

corroborating that the separation of resistant and susceptible variants was driven by the 

distribution of variants along the second principal component. One outlier, PJQ7, was 

identified; this variant has a single amino acid substitution, S37T, close to the active site 
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and the catalytic aspartic acid 32 (Fig. 1) and is more susceptible to TMP than the WT. 

The inclusion of additional principal components did not improve the segregation between 

resistant and susceptible variants, suggesting that the first and second principal components 

capture most of the changes that correlated with TMP resistance. PCA and regression 

performed better than comparable models trained on the interactions or a subset thereof 

directly (Table S2), suggesting that TMP resistance is not caused by changes in a specific set 

of interactions, but by concerted changes in multiple sites of the enzyme.

To evaluate which interactions drive the separation of variants, the loading of the second 

principal component was examined. 3 protein-protein van der Waals (vdW) interactions and 

3 hydrogen bonds interactions contribute most to the distribution on the second principal 

component. They include vdW interactions between R140 and V176, W180 and V181 and 

the variable residue S/F31 and M34. The hydrogen bonds are formed between the backbone 

of R38 and S41, the sidechain of Q172 and R140 and the backbone of V176 and A179. (Fig. 

2) PCA is agnostic to the labels of the input features, nevertheless we found that four out 

of six interactions showed significant differences between wildtype and susceptible variants. 

Only one of these interactions involves a variable residue, S31F, the remaining interactions 

did not include variable residues. These interactions form a contiguous region on the enzyme 

structure (Fig. 2C). This region consists of two alpha helices. The first helix. Formed by 

residues K30-S41 is part of the active site. This helix includes the catalytic D32 (Fig. 2C). 

The second alpha helix is formed by residues Q172-V181, remote from the active site, but 

forms contacts with the first alpha helix. Except for the backbone hydrogen bond between 

residues R38 and S41, five of the interactions showed significant differences between TMP 

susceptible and resistant variants. One of these interactions is in the first alpha helix and the 

rest are within the remote alpha helix, indicating that changes in features remote from the 

active site can be indicative bellwethers of levels of resistance.

To evaluate the predictive performance of the regression model, a stratified cross validation 

procedure was used. The dataset was split 50:50 into training and test sets, conserving the 

ratio of resistant and susceptible variants. The descriptors of the training set were normalized 

by subtracting the mean and dividing by their standard deviation. Principal component 

analysis was performed, and the logistic regression model was fit to the two components 

with the highest explained variance. This split was performed 50 times on randomized 

train/test splits. Resistant and susceptible variants were labeled correctly in 64% and 66% 

of the cases, respectively (Fig. S6). Overall, the predictions performed significantly better 

than random chance with an area under the curve value of 0.7 for the receiver operating 

characteristic curve (Fig. S7).

Conclusion

DHFR is a key target for the antimicrobial drug TMP, however mutations in DHFR often 

lead to resistance. In this study homology modeling, molecular dynamics and machine 

learning was used on a series of P. Jirovecii DHFR variants to investigate the molecular 

mechanisms of TMP resistance. Analysis of the eigenvector used in PCA indicated, 

that changes in intra-molecular interactions surrounding the catalytic residue contribute 

significantly to the separation of resistant and susceptible variants. This analysis specifically 
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revealed six molecular features (3 hydrogen bonds and 3 van der Waal interactions) that 

were bellwethers of resistance. These features localized on two proximal helices (residues 

K30-S41 and Q172-V181). Helix K30-S41 is part of the active site and contains that 

catalytic aspartic acid. Its amino acid composition is relatively conserved across different 

species (Fig S1A), whereas helix Q172-V181 showed little sequence conservation, only 

present in P. Jirovecii and closely related organisms. Our findings are supported by mass 

spectroscopy studies of TMP resistant DHFR from pathogenic Escherichia Coli where drug 

resistance mutations modulate the structural integrity of helix K30-S41.23 We demonstrate, 

that most drug resistance mutations alter interactions with TMP by impacting these two 

alpha helices, demonstrating the tremendous utility of molecular dynamics for establishing 

relationships between an enzyme’s structure and its interaction with a drug.

Supplementary Material
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Figure 1. 
Mutant Variants of pjDHFR. A) Homology model of pjDHFR in complex with NADPH and 

TMP. Amino acid substitutions that lead to a minor (<10 fold) decrease in TMP binding 

are highlighted in light blue. Substitutions that lead to a >10 fold decrease in TMP binding 

are labeled and highlighted in orange. B) Heatmap of pjDHFR C-alpha root-mean-squared 

fluctuations and vdW interactions with TMP calculated from the MD simulations. Rows 

presents variants, columns residues, darker colors indicate higher fluctuations and stronger 

vdW interactions. Variants are sorted by TMP Ki in descending order. Sites of mutations are 

marked by stars.
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Figure 2. 
PCA of the molecular interactions distinguishes susceptible versus resistant pjDHFR A) 
Distribution of susceptible and resistant DHFR variants on the first and second principal 

components. Classification probabilities are indicated by blue-white-red color gradient. B) 
Boxplot comparing the distribution of the 6 interactions with the largest loading of PC2 for 

susceptible and resistant variants. Interactions are sorted based on their absolute loading, 

from highest (left) to lowest (right). C) Spatial distribution of the 6 interactions with the 

largest loading in PC2. Amino acids contributing to the interactions are shown in purple. 

Sites of mutations are shown as light blue spheres, the major mutations F36C, R59G, L65P, 

A67V are emphasized in orange. TMP and the NADPH cofactor are shown in green.
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