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ABSTRACT: Lysine-specific demethylase 1 (LSD1/KDM1A) is a promising therapeutic target for the treatment of cancers. Several
derivatives of tranylcypromine (trans-2-phenylcyclopropylamine) have been developed as LSD1 inhibitors. One such derivative is
S2157; however, this compound has a high hERG channel inhibitory activity and a low microsomal stability, making it unsuitable as
a drug candidate. Here, using an in silico hERG inhibition prediction model, we designed, synthesized, and evaluated a novel series of
S2157 derivatives characterized by modifications of the benzyloxy and piperazine groups. Among the synthesized derivatives, a
compound possessing 2-fluoropyridine and 2,8-diaza-spiro[4.5]decane groups (compound 10) showed the most desirable activities,
and its eutomer, S1427, was isolated by the optical resolution of 10. In addition to potent LSD1 inhibitory activity, S1427 exhibited
desirable hERG channel inhibition and microsomal stability profiles.
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Lysine-specific demethylase 1 (LSD1 or KDM1A) is a
flavin adenine dinucleotide (FAD) dependent demethy-

lase that removes mono- and dimethylated groups at lysine 4
(H3K4) and lysine 9 (H3K9) of histone H3.1−3 Through its
dual function of targeting both H3K4 and H3K9, LSD1 plays a
pivotal role in maintaining cellular homeostasis by regulating
gene transcription.4−7 The aberrant expression of LSD1 is
present in various cancers, including T-cell acute lymphoblastic
leukemia (T-ALL), acute myeloid leukemia, and glioblastoma,
which is key in the self-renewal of cancer stem cells.8−11 The
inhibition of LSD1 through gene knockdown or the use of
small molecules has been shown to at least partially reduce the
proliferation of cancer cells.12−16

Tranylcypromine is a nonselective small-molecule inhibitor
of FAD-dependent amine oxidases, including LSD1.17−19

Tranylcypromine exerts its inhibitory activity by forming a
covalent adduct with the flavin ring of FAD.17,18 To develop a

potent LSD1-selective inhibitor, various tranylcypromine
derivatives have been synthesized by various groups, including
ours.12,20−24 Our approach has been to modify the phenyl ring
and cyclopropylamine of tranylcypromine. For example, we
reported one of the earliest LSD1-selective inhibitors, S2101,
which we synthesized by introducing an ortho-benzyloxy group
and two meta-fluorine atoms to the phenyl ring of
tranylcypromine.25 Subsequently, we identified a more potent
LSD1-selective inhibitor, S2157, which has (4-methylpiper-
azin-1-yl)ethanone as the cyclopropylamine substituent.26 We
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found that S2157 suppressed the growth of human T-ALL
cells in a xenoplanted mouse cancer model and eradicated
leukemia cells from the central nervous system as a result of
the compound’s high brain penetration.27 Furthermore, we
found that S2157 prevented the teratoma formation of
induced pluripotent stem cells in vivo.28

Although we demonstrated that S2157 has potent
pharmacological effects against T-ALL cells due to its LSD1-

inhibiting activity, there is still room for improvement in its
other properties. For instance, its liver microsomal stability and
hERG channel inhibition profile are less than optimal; the
percentage of S2157 that remains after 60 min of incubation
with human, rat, or mouse microsomes is below 10%, and the
half-maximum inhibitory concentration of the hERG channel
(hERG IC50) is approximately 10 μM (Table 1). Here, with
the help of an in silico hERG inhibition prediction model,30 we

Table 1. Optimization of the R1 Group
c

aMean values of three independent experiments. bA probability of hERG inhibitory activity >50% at 10 μM was estimated using the AMED hERG
SWC model.30 cN.D., not done.
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rationally designed, synthesized, and evaluated a series of
S2157 derivatives with improved drug metabolism, pharma-
cokinetics, and off-target activity profiles.
To help identify compounds with low hERG inhibitory

activities and high LSD1 inhibitory activities, we used a recent
in silico hERG inhibition prediction model (the AMED hERG
SVM model)29 (see the Supporting Information for details).
The two parent compounds used for virtual compound
generation are shown in Figure S1. The predicted hERG
channel inhibition probabilities of the virtual compounds
generated from compounds A and B in Figure S1 are
respectively shown in Tables S1 and S2. After considering
the results obtained with the model, as well as the drug-
likeness and the synthetic accessibility, we synthesized a series
of S2157 derivatives with modifications at one of two positions
(R1 and R2; see Tables 1 and 2, respectively, and Supporting
Information Scheme 1). The LSD1 and hERG inhibitory
activities of the derivatives were measured in vitro using the
peroxidase-coupled reaction method30 and the automated
patch-clamp assay in hERG-expressing HEK293 cells,31

respectively (see the Supporting Information for details).
The introduction of various substituents to the phenyl group

of S2157 was accomplished by subjecting 2,4-difluorophenol
to an addition−elimination reaction,25 followed by cyclo-
propanation between ethyldiazoacetate and the allyl group of
the phenyl group, hydrolysis of the ethylester, and Curtius
rearrangement; the derivatives obtained were mainly trans-2-
aryl-cyclopropyl-1-amine derivatives. All the substitutions at
the R1 and R2 positions were accomplished following a

literature procedure,25 and the conditions are summarized in
Supporting Information Scheme 1.
Early in the study (see Table S3 and the Supporting

Information for details), compound 1 was found to exhibit a
slightly improved microsomal stability (liver microsome
stability at 60 min; 5.1%, 13%, and 4.7% remaining in
human, rat, and mouse microsomes, respectively) compared to
that of S2157 (1.3%, 0.7%, and 0.7%), albeit with an
approximately twofold reduction of its LSD1-inhibiting
potency (Ki = 1.3 ± 0.43 μM versus 0.75 ± 0.26 μM,
respectively; kinact/Ki = 2800 M−1 s−1 versus 6000 M−1 s−1,
respectively; see Table 1). We therefore decided to start our
structural modifications using 1. Table 1 summarizes our
optimization of the R1 group, where the R2 group was fixed as
N-methoxyethyl piperazine.
As compared with 1, extending the methylene linkage

between the phenyl and aryl groups in compounds 2 and 3 did
not reduce the hERG inhibitory activity. In contrast,
substituting 2-fluoropyridine at the R1 position (4) resulted
in a marked reduction in the hERG inhibitory activity without
a reduction in the LSD1 inhibitory activity. Compound 6 with
a pyrazole at R1 showed an overall profile that was comparable
to that of 4, but mild degradation was observed during high-
performance liquid chromatography analysis. Overall, a
correlation (R2 = 0.54) was observed between the predicted
and measured hERG channel inhibitory activities (Figure S2).
Thus, this prediction may be useful for compound screening,
but the actual measurement of the hERG inhibitory activities
of the selected compounds is still necessary.

Table 2. Optimization of the R2 Group

aMean values of three independent experiments.

ACS Medicinal Chemistry Letters pubs.acs.org/acsmedchemlett Letter

https://doi.org/10.1021/acsmedchemlett.2c00120
ACS Med. Chem. Lett. 2022, 13, 848−854

850

https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.2c00120/suppl_file/ml2c00120_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.2c00120/suppl_file/ml2c00120_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.2c00120/suppl_file/ml2c00120_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.2c00120/suppl_file/ml2c00120_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.2c00120/suppl_file/ml2c00120_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.2c00120/suppl_file/ml2c00120_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.2c00120/suppl_file/ml2c00120_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.2c00120/suppl_file/ml2c00120_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.2c00120/suppl_file/ml2c00120_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.2c00120/suppl_file/ml2c00120_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.2c00120/suppl_file/ml2c00120_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.2c00120/suppl_file/ml2c00120_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.2c00120?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.2c00120?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.2c00120?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.2c00120?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.2c00120?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.2c00120?fig=tbl2&ref=pdf
pubs.acs.org/acsmedchemlett?ref=pdf
https://doi.org/10.1021/acsmedchemlett.2c00120?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Considering that the introduction of 2-fluoropyridine at the
R1 position resulted in a reduction of the hERG channel
inhibitory activity, we analyzed the binding modes of
compounds 4 and 5 (both of which possessed a 2-
fluoropyridine group) toward LSD1 by X-ray crystallography.
To understand the binding modes of 4 and 5 toward LSD1, we
determined their cocrystal structures at 2.94 and 2.91 Å,
respectively (Table S4). The electron density maps for 4
(Figure 1A) and 5 (Figure S3-A) revealed that the N-

methoxyethyl piperazine portions (R2) of 4 and 5 were lacking
in the crystal structures, which was consistent with
observations for other N-alkylated derivatives, including
S2157 (PDB ID 6KGP).26

Interestingly, the adducts formed between FAD and these
derivatives were different from that formed between FAD and
S2157.26 First, the covalent bond-forming carbon atom in the
cyclopropane of the derivatives was different. In the FAD−
S2157 adduct, a carbonyl carbon of S2157 was bonded to N5
of FAD, whereas in the adducts with 4 or 5 a carbon attached
to the phenyl ring that was bonded to FAD. Second, in the
FAD−S2157 adduct, the benzyloxy group of S2157 extended
toward the opening of the catalytic cavity. In contrast, in the
FAD adducts with 4 and 5, the fluoropyridine groups of 4 and
5 extended toward a side pocket in the catalytic cavity formed
by Met332, Trp695, Leu706, and Lys661 (Figure 1B and C,
respectively). In addition, atoms in the benzyloxy group of
S2157 did not interact with the side-chain nitrogen atom of
Lys661, whereas the fluorine and nitrogen atoms of the
fluoropyridine ring of 4 and the fluorine atom of 5 did interact
with that atom (Figures 1C and S3B). Furthermore, due to the
steric hindrance caused by the fluoropyridine ring, the
conformations of the Met332 side-chain in the structures of
LSD1−4 (Figure 1C) and LSD1−5 (Figure S3B) were
different from that in LSD1−S2157. We attribute these
differences to the interactions of the different R1 moieties with
the surrounding residues, including Lys661, and the effects of
the different R2 moieties on the position of the derivative with
respect to the FAD structure before the formation of the
covalent bond.
Table 2 summarizes our optimization of the R2 group, where

R1 was fixed as the moiety used in compound 4. The
substitution of spiro-fused pyrrolo-piperidines at the R2
position (9 and 10) resulted in improvements in the LSD1-
inhibitory activity (kinact/Ki = 7500 and 6300 M−1 s−1,
respectively) and the liver microsomal stability as compared
with those of 4 and S2157, although the hERG-inhibitory
activity of the derivatives was sensitive to the position of the
pyrrole nitrogen. The substitution of bicyclic piperazine and
piperidine at the R2 position (11 and 12, respectively) also
resulted in a low hERG-inhibitory activity, but the liver
microsomal stability was poor. With these findings in mind,
compound 10 was selected for enantiomeric characterization.
As a class, S2157 derivatives contain a chiral structural motif at
the 1,2-trans-substituted cyclopropyl group. Therefore, the

Figure 1. Crystal structure analysis of LSD1 complexed with 4. (A)
Electron density map of the FAD−4 adduct. The mFo−DFc map at
+2.5 σ, which was calculated without the compound portion of the
adduct, is shown as a green mesh. (B) Superimposition of the
structures of the FAD−4 and FAD−S2157 adducts. The FAD−4 and
FAD−S2157 adducts are shown as magenta and cyan sticks,
respectively. The nitrogen, oxygen, and fluorine atoms are shown in
dark blue, red, and light blue, respectively. (C) Interactions of the
FAD−4 adduct. The adduct is shown as in panel B, and the protein
residues are shown as orange sticks.

Table 3. Summary of the Activities of the Enantiomers of 10

compound
chiral
form

LSD1 IC50
(μM)a kinact (s

−1)a Ki (μM)a
kinact/Ki
(M−1 s−1)

liver microsomal stability (% remaining
after 60 min, human/rat/mouse)

hERG inhibition
IC50 (μM)a

10a
(S1427)

(−) 0.39 ± 0.0040 0.0014 ± 3.0 × 10−4 0.080 ± 0.046 18 000 38/62/62 >30

10b
(S1428)

(+) 28 ± 0.0019 0.00076 ± 1.1 × 10−4 4.5 ± 1.8 170 45/55/73 >30

aMean values of three independent experiments.
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optical resolution of 10 was achieved by chiral column
separation to afford 10a (S1427) and 10b (S1428) with >95%
enantiomeric excess. Despite several attempts, we were unable
to successfully determine the absolute stereochemistry.
Table 3 summarizes the in vitro activities of enantiomers 10a

(S1427) and 10b (S1428). S1427 showed a value for kinact/Ki
against LSD1 more than 100× higher than that of S1428, but
both enantiomers exhibited similar liver microsomal stabilities
and hERG inhibition profiles. In addition to S2157,26 both
S1427 and S1428 exhibited selectivity for LSD1 over
monoamine oxidase (MAO)-A and MAO-B, and their Ki
values for MAO-A and MAO-B were both above 250 μM
(Table S5). X-ray crystallography confirmed that S1427
formed an adduct with FAD (Figure 2 and Table S4) in a
manner almost identical to that of 4 (Figure 1C), suggesting
that differences at the R2 position did not affect the adduct
structure.

Subsequently, we conducted a mouse pharmacokinetics
study using S1427 and S2157 (Table 4). Significantly more

exposure (area under the concentration−time curve from 0 to
the last measurement; AUC0−∞), a higher maximum serum
concentration, and a longer serum half-life were observed for
S1427 compared with S2157 (Table 4). Finally, we treated
human T-ALL Jurkat cells with S1427 or S1428 and examined
their effects on LSD1-dependent transcriptional regulation. As
expected, the expression of NOTCH3, which is one of the
genes downregulated in Jurkat cells by the chemical inhibition
of LSD1,27 was significantly reduced by treatment with S1427,
as was observed with S2157 (Figure 3). However, the effect of
the less-active enantiomer, S1428, was comparable with that of
the control (DMSO-treated cells).

In conclusion, a systematic SAR study that used an in silico
hERG channel inhibition prediction model and started from
the tranylcypromine derivative S2157 led to the identification
of the novel LSD1 inhibitor S1427. Compared with the parent
compound, S1427 had triple the kinact/Ki value against LSD1
(kinact/Ki = 18,000 vs 6000 M−1 s−1), a lower hERG-inhibitory
activity (IC50 > 30 μM vs 10 μM), and a significantly better
liver microsomal stability in vitro. Together with the newly
obtained cocrystal X-ray structures, the accumulated knowl-
edge of the SARs and off-target profiles of the tranylcypromine
derivatives is expected to offer valuable insights for the future
development of LSD1 inhibitors as therapeutic agents.
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