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ABSTRACT: Diosgenin, a component separated from Dioscorea plants, is an important starting material for steroid hormone drugs
and semisynthetic steroids. In the work, two series of diosgenin derivatives were designed, synthesized, and evaluated for their
cellular anticancer activities. Most of the target compounds exhibited good inhibitory activities against four cell lines, Aspc-1 (human
colon adenocarcinoma cells), H358 (human nonsmall cell lung cancer cells), HCT116 (human colorectal adenocarcinoma cells),
and SW620 (human metastatic pancreatic cancer cells). Among them, the representative compound 2.2f exhibited 7.9−341.7-fold
antiproliferative activities against the above-mentioned four cell lines compared with the lead compound diosgenin.

KEYWORDS: Diosgenin, antitumor, derivatives, quaternary phosphonium salt, hydroxamic acid

Diosgenin (Figure 1) has the following properties: ability
to regulate immunity,1 antitumor,2 antihyperlipidemia,3

anti-inflammatory,4 relax blood vessels,5 protects myocardium
and cardiovascular system,6,7 anti-AIDS,8 anti-Alzheimer’s
disease,9 etc. There are also important drugs for the treatment
of lymphoid leukemia, cardiovascular diseases, meningitis, and
demyelinating diseases and in treatments for patients.10,11 In
particular, it displays certain antitumor activity against a variety
of cancer cells, making diosgenin a potential natural
medicine.12−14 However, diosgenin also has limitations, such
as high cytotoxicity, poor solubility, and low bioavailability,
which limits the application of the lead compound. Therefore,

the development of diosgenin derivatives as drugs still has
important theoretical significance and application value.
Based on the above properties of diosgenin, several research

groups modified the C-3 hydroxyl group of the diosgenin A
ring and C-26 of the diosgenin F ring.15−20 In our previous
studies, three series of nitrogen-containing derivatives were
reported for antitumor activity.21,22 So it was obvious that the
antitumor activity of the A ring derivatives is generally better
than that of the F ring derivatives. Nitrogen-containing
heterocycles and quaternary ammonium salt derivatives have
good activity, and it may be that nitrogen-containing
heterocycles have unique biological activity and low biotox-
icity, which play an important role in the structural
modification of drug molecules.23−25 Meta derivatives
appropriately introduce hydrophilic groups to increase their
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Figure 1. Structure of diosgenin.
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water solubility, so as to obtain better pharmacological
activities.26

At the moment, for cancer, histone deacetylases (HDACs)
are closely related to the pathogenesis of tumors and are one of

the main targets. It can be found from many previous studies
that the design of multitarget drugs with other activities based
on HDAC inhibition is an effective way to treat tumors.27

These molecules can not only overcome the resistance of

Scheme 1a

aReagents and conditions: (a) DMAP, EDC·HCl, 5-bromovaleric acid, CH2Cl2, rt, 3 h, yield 81%. (b) Tertiary phosphine, CH2Cl2 (2.2a), and
CH3CN (2.2b−2.2j), reflux, yield 41-87%.

Scheme 2a

aReagents and conditions: (e) DMAP, EDC·HCl, dicarboxylic acid, CH2Cl2 (2.3k−2.3o) or DMF (2.3p−2.3s), rt, 10−24 h, yield 56−95%. (f)
CDI, NH2OH(50%), CH2Cl2 (2.4k−2.4p), rt, 4−6 h, or EDC·HCl, HOBt, NH2OTHP, P-TsOH, CH2Cl2 (2.4q−2.4s), rt, 12−18 h, yield 40−
87%.
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single drug but also effectively avoid the problems caused by
drug combination.28 The pharmacodynamic structure of
HDAC inhibitors consists of three parts: (1) Zinc binding
group (ZBG) which chelates zinc ions at the bottom of the
pocket of HDAC; (2) the surface recognition region (cap
group) acting on the entrance edge of the active pocket of
HDAC; (3) linker region acting on the hydrophobic channel
of the active site and connecting Cap and ZBG.29,30 However,
the “Cap” group can accept a wider range of structural
changes; the design of multitarget molecules for HDAC usually
starts from this structure and combines or fuses with ZBG
groups (mostly isohydroxamic acid and benzoimide groups) by
introducing other active molecular fragments.31 Considering
the effect of water solubility on the activity of diosgenin
derivatives, the hydroxamic acid group with better activity was
introduced in diosgenin to obtain optimal inhibitory activity.
We used diosgenin as a starting material to synthesize a

series of quaternary ammonium salts and conducted in vitro
antiproliferative activity experiments. The results showed that
the water solubility of the derivatives was higher than that of
diosgenin and that the derivatives had antitumor activity on
most cells. The antitumor activity was also better than that of
diosgenin, indicating that increasing water solubility can
effectively improve the antitumor activity of the diosgenin
derivatives.22 At the same time, the intracellular transport rate
of phosphine cations is 107−108 times higher than that of
hydrophilic sodium ions32 and quaternary phosphonium salts
also have antitumor effects.33 The hydrogen bond in the
structure of hydroxamic acid can interact with protein
molecules, combined to exert its antitumor effect but also
increase its water solubility. Therefore, we have designed and
synthesized diosgenin hydroxamic acid by modifying its
structure at the C-3 position of the diosgenin A ring to
increase the hydrophilicity of the derivative to obtain better
antitumor activity diosgenin derivatives.18,20,34

During these studies, we have synthesized diosgenin
hydroxamic acid and diosgenin quaternary phosphonium
salts. The synthetic route of diosgenin quaternary phospho-
nium salt derivatives is shown in Scheme 2. Diosgenin
introduces 5-bromovaleric acid at the C-3 position to obtain
compound 2.1 (Scheme 1). Compound 2.1 is reacted with
different tertiary phosphine compounds to obtain the
corresponding target compound diosgenin quaternary phos-
phonium salt derivatives 2.2a−2.2j35,36 (Scheme 1, Supporting
Information (SI), page S2). Next, we focused on the addition
of hydroxamic acid. Diosgenin introduces different dicarboxylic
acids at position C-3 to obtain compounds 2.3k−2.3s. Next,
compounds 2.3k−2.3o are reacted with carbonyl diimidazole
(CDI) at 25 °C for 2 h, and 50% NH2OH aqueous solution is
added to obtain compounds 2.4k−2.4o (Scheme 2, SI page
S7). Compounds 2.3p−2.3s react with o-(tetrahydro-2-hydro-
pyran-2-yl) (NH2OTHP), and then TsOH is added for
deprotection to obtain the target compounds 2.4p−2.4s
(Scheme 2, SI page S8).
To evaluate the inhibitory activity, all derivatives 2.2a−2.2j

and 2.4k−2.4s are tested using the CCK8 method. SW620
(human colon adenocarcinoma cells), H358 (human nonsmall
cell lung cancer cells), HCT-116 (human colorectal
adenocarcinoma cells) and Aspc-1 (human metastatic
pancreatic cancer cells) cell lines were tested for inhibitory
activity in vitro (Table 1, see the SI page S10). The results of
the biological tests show the IC50 values of diosgenin
derivatives 2.2a−2.2j and 2.4k−2.4s for tumor cells Aspc-1,

H358, HCT-116, and SW620, and all derivatives except 2.4n
for HCT116 cells and 2.4q for SW620 cells. The antitumor
activity of the derivatives are superior to that of diosgenin.
First, 2.2b, 2.2c, 2.2e−2.2j, 2.4l, 2.4m, and 2.4p have
inhibitory activities against Aspc-1 (IC50 are 2.265, 1.092,
respectively, 0.7281, 0.1847, 0.6483, 0.3131, 0.2905, 0.6523,
2.139, 2.307, 4.961 μM) that are equivalent to that of
doxorubicin in the control group (IC50 < 5 μM); for 2.2b,
2.2c, 2.2e−2.2j, and 2.4l versus H358, the inhibitory activities
(IC50 of 3.153, 2.18, 3.823, 4.038, 3.538, 3.515, 3.656, 1.707,
4.316 μM respectively) are equivalent to that of the control
doxorubicin (IC50 < 5 μM); the inhibition rate of all
derivatives of HCT116 are all not superior to the control
group doxorubicin; 2.2b, 2.2c, 2.2e−2.2i, 2.4l, and 2.4m
inhibit SW620 activity (IC50 are 4.388, 1.173, 1.145, 0.4483,
0.778, 0.8726, 1.159, 2.431, respectively, 1.92 μM) that is
equivalent to that of doxorubicin in the control group (IC50 <
5 μM). On the whole, the IC50 value can be analyzed; all
derivatives are stronger than diosgenin for the H358, HCT-
116, and SW620 cell lines, and the antiproliferative activity of
2.2a−2.2j quaternary phosphonium salt derivatives is generally
better than that of 2.4. The 2.4k−2.4s hydroxamic acid series
derivatives are better. The antiproliferative activity of 2.2e−
2.2j is better for the four kinds of tumor cell lines, and the
antiproliferative activity of 2.4n, 2.4q, and 2.4r is weaker than
those of the other derivatives.
To understand which structural element of diosgenin

derivatives can be responsible for binding to certain sites of
the enzyme active site, we performed molecular docking and
attempted a structure− activity relationship analysis. According
to literature review, the EGFR enzyme (epidermal growth
factor receptor) is widely distributed on the surface of
mammalian epithelial cells, fibroblasts, glial cells, keratinocytes,
etc., which inhibits proliferation, angiogenesis, tumor invasion,
metastasis, and apoptosis of EGFR and tumor cells.37,38

Mutations in the EGFR kinase domain are a common cause of

Table 1. Antiproliferative Activities of Diosgenin
Derivatives

IC50 (μM)

compds Aspc-1 H358 HCT116 SW620

2.2a 7.435 13.57 10.06 9.594
2.2b 2.625 3.513 5.001 4.388
2.2c 1.092 2.18 3.994 1.173
2.2d 7.627 27.11 31.4 29.02
2.2e 0.7281 3.823 4.164 1.415
2.2f 0.1847 4.038 4.001 0.4483
2.2 g 0.6483 3.538 4.25 0.778
2.2h 0.3131 3.515 4.148 0.8726
2.2i 0.2905 3.657 4.224 1.159
2.2j 0.6523 1.707 4.318 6.805
2.4k 7.994 7.473 31.81 5.217
2.4l 2.139 4.316 32.51 2.431
2.4m 2.307 12.6 38.77 1.92
2.4n 22.86 23.11 >40 11.07
2.4o 15 10.37 33.41 23.37
2.4p 4.961 9.541 34.41 6.8
2.4q 9.291 35.51 35.79 >40
2.4r 11.36 36.84 39.02 16.85
2.4s 7.799 15.22 32.8 10.74
diosgenin 63.11 >40 31.41 >40
adriamycin <5 <5 >1.25 <5
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non-small cell lung cancer (NSCLC), and NSCLC is the main
subtype of lung cancer. Gifitinib is an epidermal growth factor
receptor tyrosine kinase inhibitor (EGFR-TKI) and the first
NSCLC targeted drug with the most mature research. In our
previous studies, we tested the enzyme activity of derivatives
with better inhibitory activity and lower biotoxicity.21 The
EGFR enzyme was used to investigate the survival rate of cells
at different concentrations, and the corresponding IC50 value
was calculated to further verify the good activity of the
derivatives. Therefore, the enzyme activity test was not
repeated. We used Autodock molecular docking software to
establish a molecular docking model to compare the binding of
compound 2.2f, gifitinib, and EGFR (SI, page S11). As shown
in Table 2, we can find from the predicted binding energy that
the binding energy between compound 2.2f and EGFR is
stronger than that of gefitinib. The further interaction mode
analysis results are shown in Figure 2. From the point of view
of the binding site, the binding region and occupancy site of
compound 2.2f and EGFR are partly the same as the binding
site of gifitinib, Ala743, Lys745, Cys775, Arg776, Leu777,
Leu788, Met790, Thr854, and Asp855, and other binding sites
are basically the same. The hydrogen bond between 2.2f and
EGFR is expected to reduce a group of gefitinib, but the
hydrophobic interaction between 2.2f and the pocket is
significantly stronger than that of gefitinib, which further
enhances the affinity between compound 2.2f and EGFR. It
may be the main reason for its enhanced binding energy with
EGFR.
In summary, diosgenin hydroxamic acids and diosgenin

quaternary phosphonium salts were designed and synthesized
for the purpose of improving the structure of diosgenin to
increase the hydrophilicity of its derivatives and obtaining
better antitumor activity. For two novel series of diosgenin
derivatives, in vitro antitumor activity experiments were carried
out to investigate the cell activities of SW620, H358, HCT-
116, and Aspc-1 cell lines. The experimental results show that
the antitumor activity of most of the diosgenin derivatives is
better than that of the lead compound, the antitumor activity
of some derivatives is equivalent to that of adriamycin, and the
antitumor activity of the quaternary phosphonium salt
derivatives is overall better than that of hydroxyl oxamic acid

derivatives. Close attention to the introduction of hydrophilic
groups in the C-3 position of the A ring, in particular the
hydrophilic groups (such as nitrogenous group, amide group,
salt group, hydroxamic acid, etc.), led to compounds with
better pharmacological activity. Moreover, the limitations of in
vivo bioactivity, pharmacokinetics, and potential toxicity will
also be the focus of our future studies.
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