
Stadler and Will ﻿
Algorithms for Molecular Biology (2022) 17:10
https://doi.org/10.1186/s13015-022-00219-7

RESEARCH

Bi‑alignments with affine gaps costs
Peter F. Stadler1,2,3,4,5,6*    and Sebastian Will7 

Abstract 

Background:  Commonly, sequence and structure elements are assumed to evolve congruently, such that homolo-
gous sequence positions correspond to homologous structural features. Assuming congruent evolution, alignments
based on sequence and structure similarity can therefore optimize both similarities at the same time in a single
alignment. To model incongruent evolution, where sequence and structural features diverge positionally, we recently
introduced bi-alignments. This generalization of sequence and structure-based alignments is best understood as
alignments of two distinct pairwise alignments of the same entities: one modeling sequence similarity, the other
structural similarity.

Results:  Optimal bi-alignments with affine gap costs (or affine shift cost) for two constituent alignments can be
computed exactly in quartic space and time. Even bi-alignments with affine shift and gap cost, as well as bi-alignment
with sub-additive gap cost are optimized efficiently. Affine gap-cost bi-alignment of large proteins ( ∼ 930 aa) can be
computed.

Conclusion:  Affine cost bi-alignments are of practical interest to study shifts of protein sequences and protein struc-
tures relative to each other.

Availability:  The affine cost bi-alignment algorithm has been implemented in Python 3 and Cython. It is available as
free software from https://​github.​com/s-​will/​BiAli​gn/​relea​ses/​tag/​v0.3 and as bioconda package bialign.

Keywords:  Dynamic programming, Scoring functions, Multi-tape formal grammar, Recursion

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Incongruent evolution
While biological function is eventually encoded in a
genomic sequence, it relies on the “decoding” of the
sequence into a spatially structured RNA or protein, or
into specific interactions, such as the binding of a DNA
element by a transcription factor. Natural selection acts
to conserve function over evolutionary times and there-
fore preserves functional RNA or protein structures,
binding motifs, intron–exon boundaries, etc. Stabiliz-
ing selection on such a functional entity typically also
causes the conservation of its encoding DNA sequence.

Homologous functional units, i.e. those that share a com-
mon ancestry [1], are therefore represented by homolo-
gous sequences. As a consequence, functional elements
often can be identified based on their similarity in
sequence alignments. For RNA and proteins, this allows
the detection of consensus structures [2, 3], enables the
identification of transcription factor binding sites [4],
and the detection of conserved (non-coding) transcripts
through the conservation of splice junctions [5].

Homology of a feature or trait, however, does not
require that all its constituent parts are homologous.
Most obviously, insertions and deletions in a DNA
sequence imply that not all nucleotides trace back to a
common ancestor even if the sequence as a whole does.
Similarly, homology of a structural feature does not imply
that all its constituent contacts are preserved. There are
indeed well-documented exceptions to the by far most
common case of homologous features being produced

Open Access

Algorithms for
Molecular Biology

*Correspondence: studla@bioinf.uni-leipzig.de

1 Bioinformatics Group, Department of Computer Science,
and Interdisciplinary Center for Bioinformatics, Universität Leipzig,
Härtelstraße 16–18, 04107 Leipzig, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5016-5191
https://github.com/s-will/BiAlign/releases/tag/v0.3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-022-00219-7&domain=pdf

Page 2 of 13Stadler and Will ﻿Algorithms for Molecular Biology (2022) 17:10

from homologous sequence positions. A well-studied,
albeit apparently rare, example is intron-sliding, where
the start and end of an intron “moves” in the same direc-
tion for the same number of nucleotides [6–9]. While
the gene product is perfectly preserved, except possibly
for some changes of the amino acids encoded by the few
nucleotides involved in the sliding, both splice junctions
are now encoded by non-homologous genomic positions.
Promotors sometime exhibit a similar form of turnover,
where a short binding site pattern at one site is replaced
by the emergence of a matching sequence nearby [10].
In the context of biopolymer structures it is possible
that contacts between nucleotides or amino acids are
shifted relative to the underlying sequence in a way that
preserves most features of the ancestral structure. Such
transitions can be facilitated by the existence of kineti-
cally accessible structural alternatives [11], of which dif-
ferent variants are stabilized by subsequent mutations in
different lineages. In a preliminary survey, we recently
observed that 72 of 1181 moderate-size Rfam families
show evidence for this kind of incongruence between
sequence and structure conservation [12]. This observa-
tion suggests that incongruent evolution of sequence and
structure is relatively rare but still occurs with sufficient
frequency to be non-negligible.

To our knowledge, incongruences between conserved
protein sequence and conserved protein structures so
far have not been studied systematically. However, the
example of Fig. 1 demonstrates that (at least at the level
of secondary structures) it is not at all difficult to obtain
incongruence by performing a few mutations. Here,
we (artificially) introduced substitutions into a pep-
tide sequence such that predicted secondary structures
shifted relative to the reference sequence. The compara-
tive analysis of proteins occasionally reveals examples of
natural incongruences between sequence and second-
ary structure; moreover, it shows that the phenomenon
occurred at least occasionally in protein evolution. Fig-
ure 2(top) depicts the alignment of the extant human
CYPB1 cytochrome P450 enzyme and its reconstructed
ancestral mammalian counterpart, which was recently
crystallized (PDB: 6OYU and 6OYV) and characterized
functionally [15]. Despite the high level of similarity of
the ancestral and extant folds, the bi-alignment (Fig. 2,
bottom) reveals some differences in the extent of heli-
ces and suggests a shift of “helix D” by two amino acids,
constituting an incongruence of the considered type.
Another published example can be found in Fig. 5 of [16]:
relative to the underlying sequence, one observes sev-
eral small helix shifts in the evolution of the Pgp protein
(MDR1) between human, mouse, and rat.

Incongruences between sequence homology and
homology of structure or functional elements are

rooted in the inherent redundancy of genotype-phe-
notype maps. For both RNA and proteins, very differ-
ent sequences can encode the same fold or function
[17–19], while at the same time identical sequences can
appear in very different structural or functional contexts
[20–22]. Together, these features sometimes lead to a
sliding or migration of a functionally relevant structure
in response to a fortuitously placed mutation. The occa-
sional emergence of incongruences between sequence
conservation and the conservation of structure thus is
an expected consequence of the redundancies inherent
in the sequence/structure relationship of biopolymers.
It becomes a relevant empirical question, therefore, how
frequent this process has been throughout evolutionary
history.

Fig. 1  Two pairwise alignments and a bi-alignment of peptide
sequences and their predicted secondary structures (helix red,
turn blue, β-sheet green, coil orange). Structure are predicted
according to the Chou Fasman method [13] with CFSSP [14]. To
facilitate quick visual assessment of sequence alignment quality,
sequence mismatches are shown in bold black, sequence indels in
non-bold black, and mismatches in dark red. The upper alignment
optimizes sequence similarity, and shows the structure out of sync:
the helix is moved to left, the last β-sheet is shifted to the right by
1 position. The second alignment maximizes structural similarity
and thus shows little sequence similarity. The evolution of the two
peptides is explained much better by a bi-alignment (third panel),
which supports shift events (marked by rectangles) that can shift
either sequence against its structure to the left ( < ) or to the right
( > ). The resulting regions of shift are indicated by in general k blue
and red lines corresponding to shifts by k positions to the left or
to the right. While the shift events shown in this example delete
and insert structure of A with respect to both sequences and the
structure of B, shift alignments also support as well analogous shifts
of sequences and the second structure (which would be shown
in the bottom row). In our representation, shift events are the only
visible difference between the bi-alignment A in the third panel
and the two alignments. Nevertheless, the representation can be
mapped to our formalization of bi-alignments as alignments of two
constituent alignments U and V : U is obtained from the 2nd and
3rd bi-alignment row by removing the two all-gap columns (i.e. the
first and the 3rd-to-last column). The secondary structure alignment
V coincides with the 1st and 4th row since there is no column that
contains only gaps in these to rows

Page 3 of 13Stadler and Will ﻿Algorithms for Molecular Biology (2022) 17:10 	

Not only is incongruent evolution of interest as an
under-studied aspect of evolutionary dynamics, but
it has practical implications for data analysis. Incon-
gruences impact our ability to detect and reconstruct
consensus structures, since corresponding structural fea-
tures are formed by evolutionarily unrelated nucleotides
or amino acids, while homologous sequence positions
form disparate structural elements. This means that (in
the presence of incongruent evolution) a single multiple
sequence alignment cannot simultaneously represent the
similarities of sequence and structure. In particular, con-
served structure can no longer be represented as ‘con-
sensus structure’, i.e. as an annotation of the columns of a
sequence alignment.

Bi‑alignments
We recently introduced bi-alignments [12, 23] as a math-
ematically consistent way of describing incongruent evo-
lutionary relationships. Bi-alignments are motivated by
treating shifts between sequence and structure explicitly
as evolutionary events. It is important to realize that it is
not necessarily possible to find an optimal reconciliation
of sequence and structure alignments by identifying shifts
events a posteriori from a pair of sequence and structure
alignments that have been computed separately. Instead,
bi-alignments allow simultaneously predicting sequence
and structure homologies and their relation. For this pur-
pose, we define a bi-alignment to consist of two align-
ments (one based one sequence similarity, the other one

based on structure similarity) that are related by a third
alignment, which captures the shift events. All three con-
stituent alignments contribute to a common score.

While bi-alignments have similarities to combined
sequence and structure alignments (which also opti-
mize a joint score for sequence and structure similarity),
bi-alignments extend such models by supporting shift
events explicitly. Combined sequence/structure align-
ments therefore can be interpreted as the limit case of
bi-alignments where arbitrarily high shift penalties com-
pletely prohibit shift events. As important consequence,
bi-alignments overcome the requirement of a consensus
structure, which is the key assumption underlying com-
bined sequence/structure alignments.

As their main purpose, bi-alignments provide a coher-
ent framework to detect shift-like incongruences, i.e. a
local “movement” of conserved structures relative to
the underlying sequence. It is worth noting that the for-
mal concept of bi-alignments is not tied to applications
in structural biology. Instead, it can be seen as a way to
quantify the effect of differences in scoring schemes that
focus on different aspects of the same sequence. The only
requirement for bi-alignments is a position-wise one-to-
one correspondence between the two different represen-
tations of each input object.

In this contribution, we extend bi-alignments with lin-
ear costs to a more realistic model with affine gap costs.
We will illustrate our algorithmic developments using
protein sequences and their secondary structures as an

Fig. 2  Alignment (top) and Bi-alignment (bottom) of 145 N-terminal amino acids of two CYP1B1 cytochrome P450 enzymes: the extant human
enzyme (Human 1B1) and the corresponding ancestral mammalian cytochrome (N98 1B1_M). See Fig. 1 for the representation of the alignments
and secondary structure elements. Only the bi-alignment properly aligns the ’shifted’ fifth helix and explains the structural incongruence by
evolutionary shifts (two forward and two backward shifts

Page 4 of 13Stadler and Will ﻿Algorithms for Molecular Biology (2022) 17:10

example, because the position-wise annotation of a sec-
ondary structure elements fits well with the framework
of sequence alignments. The (artificial) example in Fig. 1
shows that incongruence between sequence and second-
ary structure can indeed be caused a few well-place sub-
stitutions. It also shows that bi-alignments are capable, at
least in principle, to reconcile incongruent sequence and
structure homologies and to identify shift events.

A bi-alignment is formally defined as an alignment
relating two, generally different, alignments of the same
objects.

Definition 1  A bi-alignment A ∼
= (U,V,W) consists of

two pairwise alignments U and V of the objects a and b
and an alignment W of U and V.

In Fig. 1, U is a sequence alignment (shown in the
second row with the secondary structure annota-
tion above and below the two sequences), while V is an
alignment of the two respective secondary structures
(shown in the second row with the two corresponding
sequences between them). The columns of U and V are
then aligned by W . Since the pairwise alignment of two
pairwise alignments is equivalent to a 4-way alignment,
bi-alignments can be thought of as multiple alignments
A ∼

= (U,V,W) . The input objects a and b appear twice in
A , once regarded as sequence (represented by the one-
letter amino acid codes) and once regarded as secondary
structure (shown a position-wise glyphs). Bi-alignments
therefore differ from “structure-aware” sequence align-
ments by replacing the annotation of sequence positions
with a secondary structure features by an alignment of
both the sequence and the string of structural features.
Importantly, A ∼

= (U,V,W) completely determines the
alignments of the sequences of a and b with their sec-
ondary structures (shown in the third row of Fig. 1 as
the first and last pair of rows, respectively.) These align-
ments in general contain gaps that indicate how the con-
served “consensus” structure is shifted compared to the
sequence positions.

Assuming a linear scoring model, i.e. scores for U , V ,
and W that are additively composed from single column
contributions, it can be shown that the 4-way alignment
A is scored additively as well [12, 23]. Linear bi-alignment
problems therefore can be exactly solved by dynamic
programming [24, 25] in quartic time. In this contribu-
tion we are interested in bi-alignments that are scored
with affine gap costs.

Alignments as regular multi‑tape grammars
To address this problem, it is helpful to describe the
structure of alignments by multi-tape grammars, see e.g.
[26] for a more detailed, formal discussion. In the

simplest case, sequence alignments can be represented as
regular grammars of the form A → Ac

∣

∣ ǫ . The only non-
terminal symbol A denotes a (pairwise) alignment, the
terminal ǫ is the empty alignment, and the terminal c
denotes an alignment column, which may be a (mis)

match
(

•

•

)

 , a deletion
(

•

−

)

 , or an insertion
(

−

•

)

} . Since

alignments compare extant sequences rather than an
ancestor/descendant pair, the two “indels” (insertion/
deletion) are biologically indistinguishable and hence
receive the same score. The grammar simply expresses
the fact that alignment can be constructed step-by-step
by adding a column to an alignment of prefixes. For lin-
ear scoring functions, the production A → Ac allows
adding the score of c to the previously accumulated score
of the alignment A. Denote by M(x) the optimal score of
an alignment of the prefixes a[1..x1] and b[1..x2] . As
noted e.g. in [27, 28], the index vector of the penultimate
column of the alignment is x − c , where • is interpreted
as 1 and the gap character − as 0. The Needleman–Wun-
sch recursions [29] thus can be written in compact form
(see also [24]) as

Notably, in the non-affine case, the scoring function
s(x, c) is completely determined by a single column.

Affine gap cost. While linear gap costs are not very real-
istic in sequence alignment [30], arbitrary gap costs algo-
rithmically require an additional factor O(n) in running
time [31, 32] and are difficult to parametrize in practice.
The affine gap cost model serves as a useful and conveni-
ent compromise that is most often used in practice. Here,
the opening and the extension of a gap are scored differ-
ently. It is therefore necessary to distinguish three differ-
ent non-terminal A(

•

•

) , A(

•

−

) , A(

−

•

) designating

alignments that end in a (mis)match, deletion, and inser-
tion column, respectively. Again one obtains a regular
grammar with analogous productions of the form
Ac → Ac′c

∣

∣ ǫ for the three non-terminals. Denote by
M(x; c) the optimal score of an alignment of the prefixes
a[1..x1] and b[1..x2] with end column of type c. We can
then write Gotoh’s well-known recursions [33] for pair-
wise affine gap cost alignment in the following compact
form:

with initial conditions M(0,

(

•

•

)

) = 0 ,

M

(

0,

(

−

•

))

= M

(

0,

(

•

−

))

= −∞ . In principle this

(1)
M(x) = max

c
M(x − c)+ s(x, c) with M(0) = 0 .

(2)M(x; c) = max
c′

M(x − c; c′)+ s(x, c′, c)

Page 5 of 13Stadler and Will ﻿Algorithms for Molecular Biology (2022) 17:10 	

formulation accommodates any scoring function s(x, c′, c)
for which the column score depends on the gap pattern
of the previous column. For instance, we could also score
the closing of a gap separately.

Both the Needleman–Wunsch algorithm and the
Gotoh algorithm run in O(n2) space and time. Recur-
sion Eq. (1) also describes the dynamic programming
algorithm for k-ary alignments [24, 25, 34, 35], which
requires O(nk) space and time. The situation is more
complicated, however, for affine gap costs. Sum-of-pairs
scoring functions simply sum over the scores of all pair-
wise alignments contained in a given multiple alignment.
Surprisingly, computing the optimal alignment of align-
ments with affine gap costs under the sum-of-pairs-
model is NP-complete unless the number of sequences in
the constituent alignments is bounded [36]. On the other
hand, scoring models of the form of Eq. (2) are of practi-
cal interest in particular for k = 3 [37–39].

In this contribution we show that the bi-alignment
model with affine gap costs for the constituent align-
ments can be solved in polynomial time by dynamic pro-
gramming. As we shall see, the recursions are of the form
of Eq. (2) but require a subtle re-definition of M(x; c).

Theory
Bi‑alignments
Recall that we define a bi-alignment as an alignment of
alignments (Def. 1). It is well known that an alignment of
alignments can be represented again as an alignment.
This compositional structure of alignments is discussed
formally in [40]. In our case, A is a 4-way alignment from
which U (and V ) are obtained as “projections”, i.e. by
extracting the corresponding pair of rows and removing
all columns consisting of a pair of gap characters. The
alignment W , on the other hand, is obtained by consider-
ing each column in U and V as a single letter; and moreo-

ver interpreting the columns of the form
(

−

−

)

 (i.e. the

ones that are removed in the projections to U and V ) as
gap characters.

The Bi-Alignment Problem for two input sequences
a and b consists in optimizing

with given scoring functions u, v, and w. The special case
where u, v, and w are linear scoring functions has been
discussed in [12, 23].

The alignment W of U and V describes the shifts distin-
guishing U and V in the following manner. First, consider
a match column α of W . It consists of a pair of columns
with gap patterns c(α) and d(α) , respectively. Using their
numerical interpretation, we observe that

(3)score(A) = u(U)+ v(V)+ w(W)

measures whether none, one, or both input sequences are
shifted relative to each other (Fig. 3). Insertions and dele-

tions in W correspond to inserting an all-gap column
(

−

−

)

into U or V , respectively, and always lead to incongruences.
We note, furthermore, that there is a one-to-one corre-
spondence between the columns of W and the columns of
the 4-way alignment A . Thus we can count the number of
shifts s(A) =

∑

α∈A s(α) . The alignment A contains sub-
alignments A(aa) and A(bb) of the first and second input
sequence with itself. Let us denote the number of indels in
these two projected alignments by δa and δb , respectively.

Lemma 2  If A ∼
= (U,V,W) is a bi-alignment of a and b,

then s(A) = δa + δb.

Proof  For column α of A we write
δa(α) := |c1(α)− d1(α)| and δb(α) := |c2(α)− d2(α)| .
Thus δa(α) = 1 if α is an indel column in the projected
self-alignment of a , and δa(α) = 0 if α is a (mis)match
column. Note that all-gap columns are omitted in the
projection and thus do not contribute to the indel count.
Thus δa =

∑

α∈A δa(α) correctly counts the indels in
A
(aa) . An analogous equality holds for δb . A comparison

with Eq. (4) completes the proof. �

A natural scoring function for W is thus to penalize the
total number of shifts, setting w(A) = −�s(A) . This
amounts to computing the shift contribution for

each column
(

c
d

)

 of A as shift(c, d) = −�|c − d|

= −�(|c1 − d1| + |c2 − d2|).

Bi‑alignments with affine gaps costs
Lemma 2 provides an alternative interpretation in terms
of a simple linear score for A(aa) and A(bb) . We can

(4)s(α) := |c1(α)− d1(α)| + |c2(α)− d2(α)|

b
a
b
a

V

UU

V

Fig. 3  Shifts in a bi-alignment. The bi-alignment consists of two
alignments U or V (colored horizontal boxes) of the pair of objects a
and b that are aligned with each other two different ways i.e. w.r.t. to
two different objective functions. Since the actual letters in a and b
are irrelevant for definition of shifts, we distinguish only letters (filled
circles) and gaps (dashes). Note that a and b may be represented
by different alphabets in U and V . Insertions and deletions in the
alignment of alignments W , i.e. the alignment of the columns of U
with the columns of W , are (highlighted by darker colors) correspond
to all-gap columns in either U or V . Aligned columns in W are shifts
if the gap patterns in the upper pair and the lower pair differ. Colored
outlines distinguish single (blue) and double shifts (red)

Page 6 of 13Stadler and Will ﻿Algorithms for Molecular Biology (2022) 17:10

therefore think of Eq. (3) as a restricted sum-of-pairs
model in which only four of the six pairwise alignments
in A contribute. In this picture it is natural to assume that
the constituent alignments U and V are scored with affine
gap costs. In the light of the NP-hardness result of [36] it
is not at all obvious, however, that the bi-alignment prob-
lem with affine gap costs can be solved in polynomial
time.

In order to address this problem, we first recall the
language of multi-way alignments. The following state-
ment is “folklore”, see e.g. [40]: every column of the 4-way
alignment A is uniquely determined by

	 i.	 a four-dimensional index (x, y) identifying the pre-
fixes a[1..x1] , b[1..x2] , a[1..y1] , and b[1..y2] that are
aligned up to the focal column.

	 ii.	 a gap pattern (c, d) = ((c1, c2), (d1, d2)) specifying
whether the entry in a column is a letter or a gap
character.

The language of 4-way alignments is generated by the

regular language A → A

(

c
d

)

∣

∣ ǫ , where the non-termi-

nal A denotes a bi-alignment and the terminals
(

c
d

)

 cor-

respond to one of the 15 possible gap patterns in a
column of elements (excluding the all-gap column). Note

that c =
(

−

−

)

 and d =

(

−

−

)

 respectively correspond to

an insertion and deletion in W , while c, d =

(

−

−

)

 corre-

sponds to a match in W . This regular language is suffi-
cient for linear gap cost models [12, 23].

In order to handle affine gap costs for U and V , we need
to keep track of the gap patterns of the preceding align-
ment column in U and V . This is not the same as consid-
ering the preceding column of A because gap patterns of

the form





�

−

−

�

d



 and





c
�

−

−

�



 correspond to all-gap col-

umns, which are removed in U or V . Thus, we introduce
a new notion of column type to address these ’preceding’
gap patterns of the sub-alignments.

Definition 3  The end column type (p, q) of a bi-align-
ment A ∼

= (U,V,W) consists of the gap pattern p of the
last column of U and the gap pattern q of the last column
of V . The end column type of the empty alignment is left
arbitrary.

The definition is illustrated in Fig. 4. Note that by con-
struction, neither p nor q consist only of gaps.

Now, we define a column-wise scoring function that
captures the alignment score with affine gap cost. It

scores a single column of a bi-alignment A , characterized

by
(

x
y

)

 and
(

c
d

)

 , depending on the end column type
(

c′

d′

)

of the previous column. This function has the form

Since score(x, c′, 0) and score(y, d′, 0) , respectively, corre-
spond to all-gap columns in U and V , we observe that the

sum of the score
((

x
y

)

,

(

c′

d′

)

,

(

c
d

))

 over all columns of

A equals

Thus, Eq. (5) correctly scores the bi-alignment with gen-
eral affine gap costs for both U and V.

In order to derive a dynamic programming algorithm
that solves the bi-alignment problem with this type of
scoring function, we consider a decomposition of the
search space in grammar form. The non-terminals A(p,q)
correspond to bi-alignment with end column type (p, q).
The terminals are the 15 possible column types of a 4-way

alignment, which we write as
(

p
q

)

 , with p, q =

(

−

−

)

 as

well as
(

−

q

)

(

q
−

)

 where the − in the latter is a shorthand

for
(

−

−

)

 . In addition, we write ǫ for the empty 4-way

column.

Lemma 4  The language of bi-alignments with fixed end
column type is generated by the productions

(5)

score

((

x
y

)

,

(

c′

d′

)

,

(

c
d

))

= scoreU(x, c
′

, c)

+ scoreV(y, d
′

, d)

+ shift(c, d)withscore(x, c′, 0)

= score(y, d′, 0) = 0

(6)

∑

(x,c)∈U

scoreU(x, c
′

, c)+
∑

(y,d)∈V

scoreV(y, d
′

, d)

+

∑

(c,d)∈W

shift(c, d)

= u(U)+ v(V)+ shift(A)

(7)

A(p,q) → A(p′,q′)

(

p
q

)

∣

∣ A(p,q′)

(

−

q

)

∣

∣ A(p′,q)

(

p
−

)

∣

∣ ǫ

p=

q=b
a
b
a

Fig. 4  The end column type of an bi-alignment is defined by the last
column of each of the constituent pairwise alignments of a and b
that is not an all-gap column

Page 7 of 13Stadler and Will ﻿Algorithms for Molecular Biology (2022) 17:10 	

Proof  Consider an alignment A with last column (c, d)
and end column type (p, q), and denote by A′ the align-

ment without the last column. If c, d =

(

−

−

)

 , i.e. the

(mis)match case in W , then p = c and q = d and A′ may

have any end-column type. If c =
(

−

−

)

 , corresponding to

the insertion case in W , A inherits the first component c
of its end column type from the previous alignment A′ .
The other component is given by the second part of the
last column, i.e. d = q . Thus the second component of

the end column type of A′ is arbitrary. The case d =

(

−

−

)

 ,

deletion in W analogously yields d = q and an end col-
umn type (p′, q) for the A′ . �

Note that this grammar would allow terminating with
any end column type. This is undesirable since we would
like the first column to be scored as it was preceded by
a match column in both U and V . This is easily imple-
mented by an appropriate initialization for x = y = 0 ,
however.

Definition 5  Let Mp,q(x, y) denote the optimal score of
a 4-way alignment with end column type (p, q).

In order to enforce that empty alignment is treated as

having end column type
((

•

•

)

,

(

•

•

))

 , we set

M((

•

•

)

,

(

•

•

))(0, 0) = 0 and M(c,d)(0, 0) = −∞ for

(c, d) =

((

•

•

)

,

(

•

•

))

.

Theorem 6  The matrices Mp,q satisfy the recursion

(8)
M(p,q)(x, y) = max







































max
p′ �= 0

q′ �= 0

M(p′,q′)(x − p, y− q)+ score

��

x
y

�

,

�

p′

q′

�

,

�

p
q

��

max
p′ �=0

M(p′,q)(x − p, y)+ score

��

x
y

�

,

�

p′

q

�

,

�

p
0

��

max
q′ �=0

Mp,q′(x, y− q)+ score

��

x
y

�

,

�

p
q′

�

,

�

0

q

��

Proof  We first note that every column of A is either a
(mis)match or an indel column w.r.t. W . These correspond
to the first three alternative productions in Eq. (7), and

cover all alternatives. Since score

((

x
y

)

,

(

c′

d′

)

,

(

c
d

))

depends only on the current column and the end column
type, we obtain the optimal score of an alignment A with
end column type (p, q) and last column (c, d) as the opti-
mal score of an alignment A′ with any of the matching col-

umn type plus the score score
((

x
y

)

,

(

c′

d′

)

,

(

c
d

))

 for the

last column. The grammar in Eq. (7) specifies which end
column types match. Furthermore, we note that, in the
match case, the indices (x′, y′) of the last column of the
alignment to the left are given by x − p and x − q , where
(p, q) is gap pattern on the last column of A . Correspond-
ingly we have (x′, y′) = (x − p, y) for the insertion case and
(x′, y′) = (x, y′ − q) in the insertion case. Taken together,
this established the correctness of the recursion. �

As an immediate consequence we have

Corollary 7  The bi-alignment problem with affine gap
cost models for the two constituent alignments can be
solved in O(n4) time and space.

Affine shift costs
While bi-alignment with affine gap cost and linear shift
costs may be of the most obvious practical relevance, we
also discuss two variations with affine shift costs. First of
all, we clarify how to attribute affine shift cost in our bi-
alignment scoring model.

Page 8 of 13Stadler and Will ﻿Algorithms for Molecular Biology (2022) 17:10

Let’s take a step back to our original definition of the
bi-alignment score (Eq. 3) and our previous suggestion
to define the “shift” score component w(A) as −�s(A) ,
i.e. as a multiple of s(A) . Since the latter was defined
as the number of gap columns in the alignments A(aa)
and A(bb) , this amounts to scoring shifts in a linear cost
model, where every shift has a cost of � per column.

For affine shift costs, we take the view that every con-
secutive run of gap symbols in the pairwise alignments of
the two copies of a and b represents one shift. This shift
is scored in the same way as gaps are scored under affine
gap cost, i.e. based on the shift opening cost �o plus the
shift extension cost � times the length of the shift (num-
ber of shift columns).

We first consider affine shift cost and non-affine (i.e.
linear) gap cost. Since affine shifts are scored exactly in
the same way as affine gaps, this situation is symmetric
to the case of affine gap cost combined with linear shift
cost. The corresponding bi-alignment problem can thus
be solved efficiently by applying exactly the same idea as
in our previous algorithm (Theorem 6), only now keep-
ing track by p and q of the gap patterns in the respec-
tive alignments of rows 1&3 and 2&4 . We immediately
obtain

Corollary 8  The bi-alignment problem with affine shift
cost models (and linear gap cost) can be solved in O(n4)
time and space.

Combining affine gap and shift costs
More remarkably, we can even solve the general case of
affine gap cost and affine shift cost in polynomial time by
dynamic programming. Essentially, we combine the ideas
of the above two algorithms. Our algorithm follows a
grammar with general decomposition

In order to evaluate affine gaps and affine shifts cor-
rectly at the same time, we need to know the last non-
gap-only gap patterns of all four pairwise alignments of
rows 1&2 , 1&3 , 2&4 , and 3&4 ; thus, we utilize non-termi-
nals Ap , for all p that encode the respective gap patterns
p = (p12, p13, p24, p34) . By the same argument as before,
we can show this information to be sufficient to score
shifts and gaps correctly in affine cost models for every
possible last column c.

One keeps track of the correct gap patterns for all of
the relevant pairwise alignments by setting the entries of
p′ as

(9)Ap → Ap′c

for ij ∈ {12, 13, 24, 34} , depending on p and c in Eq. (9).
For termination, we add the grammar rule:

for p0 :=
((

•

•

)

,

(

•

•

)

,

(

•

•

)

,

(

•

•

))

 . This allows implicit

accounting for gap and shift openings of respective gaps
and shifts at the left end of alignment strings.

Remarks about generalizations and complexity Note
that the existence of an efficient algorithm for general aff-
ine bi-alignment does not contradict the general hard-
ness of multiple alignment with affine gap costs, even if it
suggests the following generalization: Multiple (k-way)
alignment with affine gap costs can be computed by
dynamic programming following the above idea of keep-
ing track of the right-most non-gap-only gap-patterns in

all pairwise alignments. This requires considering
(

k
2

)

many pairwise gap patterns, each out of three possibili-

ties
(

•

•

)

,

(

•

−

)

,

(

−

•

)

 . The resulting DP-algorithm for k-

way alignment thus needs exponentially many matrices
in k.

In bi-alignments of two sequences, we need to consider
only four gap patterns, two for the two alignments and
two for the shifts between the sequence copies. That is,
there are (at most) 34 = 81 combinations, which have to
be represented by different matrices for the DP algo-
rithm. This gets a little more practical, since many of
these combinations cannot occur in valid bi-alignments.

For example, having gap patterns
(

•

•

)

 for both alignments

of a and b , rules out all patterns for the alignments of the

copies that contradict having last columns







•

•

•

•






,







•

•

−

−






 , or







−

−

•

•






 . Consequently, we find only 51 consistent gap pat-

tern combinations, while we can proof 30 combinations
inconsistent due to an analogous argument as sketched
above.

Sub‑additive gap costs
The affine gap cost model, despite its algorithmic con-
venience, has been criticized because empirical gap

(10)p′ij :=







pij ci = − and cj = −
�

ci
cj

�

otherwise

(11)Ap0 → ǫ

Page 9 of 13Stadler and Will ﻿Algorithms for Molecular Biology (2022) 17:10 	

length distributions usually are power laws thus sug-
gesting a logarithmic gap costs [41]. However, gap costs
of the form w(ℓ) = a+ bℓ+ c ln ℓ seem to yield better
alignments in practice [42]. Pairwise alignments with
subadditive gap costs can be computed by dynamic pro-
gramming, considering insertions and deletions of arbi-
trary length:

This idea does not seem to generalize to bi-alignments. It
is possible, however, to generalize the end column type.

Instead of only distinguishing
(

1

1

)

 ,
(

1

0

)

 ,
(

0

1

)

 , we can

make each of them length dependent. This allows us to
write the end column types 〈p, ℓ〉 , where ℓ ≥ 1 is the
length of the run of columns of type p at the end of the
alignment. With this notation we can write

with initial condition M�p,0�(0) = 0 . Here d(x, p, ℓ) equals

the match score s(x) for p =

(

•

•

)

 . For deletions,

p =

(

•

−

)

 , we have

d(x, p, ℓ) = w(a[x1 − ℓ+ 1..x1])− w(a[x1 − ℓ+ 1..x1 − 1]) . The exten-
sions of an insertion is scored by an analogous expres-
sion. The auxiliary entries M〈p,0〉(x) are used to correctly
score alignments in which the last column is different
from the previous end gap pattern. This recursion runs in
cubic time, but also requires cubic space (instead of
quadratic space). For our purposes, however, it has the
advantage that the score is again defined column-wise
albeit at the expense of having to keep track of a linear
instead of a constant number of end gap types. It general-
izes to a recursion with four indices to compute the opti-
mal bi-alignment.

Computational results
We implemented the bi-alignment algorithm with affine
gap cost (Corollary 7) in Python 3. For improved perfor-
mance, we adapted time-critical parts of the code to the
Python C-extension Cython with some carefully chosen
static typing. The new implementation was based on our
previous implementation for RNA bi-alignment with
linear gap cost [12, 23]. Like the earlier version, it allows
the user to limit the number of positions either sequence
can be shifted to the left or right against its own struc-
ture by a constant � . The restricted recursions, following

(12)M(x1, x2) = max







M(x1 − 1, x2 − 1)+ s(x1, x2)
maxℓ≥1M(x1 − ℓ, x2)+ w(a[x1 − ℓ+ 1..x1])
maxℓ≥1M(x1, x2 − ℓ)+ w(b[x2 − ℓ+ 1..x2])

(13)
M�p,ℓ�(x) = M�p,ℓ−1�(x)+ d(x, p, ℓ) for ℓ ≥ 1

M�p,0�(x) = max
p′ �=p

M
�p′,ℓ�(x)

in essence the idea of [34, 35], have time complexity of
O(n2�2) instead of the unrestricted, but often impractical
complexity O(n4) . In addition to efficient bi-alignment
with affine gap cost, new features have been added to the
software:

1.	 Protein sequences may be scored with an arbitrary,
user-defined similarity matrix. The BLOSUM62
matrix [43, 44] is supplied as default.

2.	 Protein secondary structures are scored using a sim-
ple bonus (here, 800) for matched secondary struc-
ture.

3.	 The dynamic programming matrices are stored as
sparse matrices to to limit space consumption to
O(n2�2) (compared to O(n4) space complexity of a
hypothetical non-sparse implementation).

4.	 In case of ambiguity, simpler shifts are preferred (For
example the bi-alignment of Fig 1 has co-optima with
shift events in both sequences or shift events that
shift longer sub-sequences).

5.	 Improved graphical output of bi-alignments. Fig-
ures 1 and 5 were produced using a Jupyter notebook
that is included in the software distribution.

6.	 A flexible command line and Python interface is
included.

As a proof of concept we generated optimal bi-align-
ments of DNA Polymerase I from Escherichia (length
928) and Xanthomonas hortorum (length 933), while
allowing shifts of sequence against structure by up to
two positions to the left or to the right in either protein
( � = 2 ). On an Intel(R) Core(TM) i7-10810U CPU, this
(single-threaded) computation took 37 min. Note that
a simple banding strategy on insertions and deletions
could dramatically speed up such computations, typi-
cally without sacrificing alignment quality. The analogous
computation allowing only one shift positions ( � = 1 )
was performed in 10.5 min. Due to filling 9 dynamic pro-
gramming matrices and considering 15 recursion cases
per entry, the same implementation still takes 26 s, if
shifts are completely forbidden ( � = 0).

Figure 5 shows the resulting bi-alignment for � = 2 . For
comparison, the results from � = 1 and � = 0 are given in
Additional file 1. We chose a rather moderate shift cost
� = −210 , compared to a bonus of 800 per structure
match as well as gap extension and gap opening costs of

Page 10 of 13Stadler and Will ﻿Algorithms for Molecular Biology (2022) 17:10

Fig. 5  Bi-alignment of the proteins DNA Polymerase I of Escherichia (WP_016262675.1) and Xanthomonas hortorum (WP_095575020.1). We
use the same representation as in Fig. 1

Page 11 of 13Stadler and Will ﻿Algorithms for Molecular Biology (2022) 17:10 	

−50 and −200 , respectively. While we suspect that this
parameter choice is too generous, it serves here to dem-
onstrate that the algorithm readily predicts shifts that
improve the compromise between primary and second-
ary structure alignment. The estimation of realistic shift
costs is a non-trivial problem beyond the scope of this
contribution.

Concluding remarks
We have shown here that bi-alignments with affine gap
cost models for both constituent alignments and linear
shift costs can be computed in quartic time by dynamic
programming. Moreover, limiting the number of shifts to
a constant reduces the cost to quadratic space and time.
This makes the detection of locally-confined shifts com-
putationally feasible for sequences of with length of real-
istic proteins or mRNAs. While we have illustrated our
algorithmic innovations here using amino acid sequences
and protein secondary structures as an example, the
algorithm and its implementation is applicable to any
linear representation of monomer-wise features along a
biopolymer. In can be used, for instance, directly as an
extension of the linear-gap-cost bi-alignments of RNAs
described in [12].

We have focused here on the analysis of optimization
problem and development of the algorithm. In addition
to cost models for the constituent alignments U and V ,
a bi-alignment problem also requires the specification of
the shift costs, i.e. the scoring model for W . Even though
the scoring systems for U and V are borrowed from
other studies, the choice of appropriate shift parameters
remains an open problem for future work. This is a dif-
ficult problem for two reasons: (i) There is, at present, no
collection of test cases with known shifts of sequences
versus secondary structure for either proteins or RNAs
that could be used to optimize the parameters. (ii) A bio-
logically sound survey of proteins should presumably use
a more elaborate scoring model for secondary structure
elements that distinguishes amino acid positions depend-
ing on the distance from the element’s ends. It stands to
reason that the choice of the scoring model for the sec-
ondary structures would substantially influence estimates
of the shift costs. Here, we are therefore content with a
solution of algorithmic issues and a reference implemen-
tation. This provides the necessary tools for an in-depth
empirical study of incongruent evolution of protein sec-
ondary structures in the future.

The formal framework of bi-alignments, Eq. (3), is
much more general than the position-wise scoring
models corresponding to regular multi-tape grammars.
These were studied here because the corresponding

optimization problems can be solved exactly by means of
relatively simple dynamic programming algorithms. In a
more general setting, one may want to consider V as an
alignment of contact structures [45] or as an alignment
of ordered sequences of 3D points, e.g. scored in terms of
euclidean distances [46, 47]. This is of increasing practi-
cal interest as recent advances in protein folding [48, 49]
provide access to high quality 3D structure predictions.
The availability of accurately predicted protein structures
of course also yields secondary structures, e.g. with the
help of DSSP [50], which could be used for a systematic
survey of incongruences in protein secondary struc-
tures. Alternatively, it seems promising to modify exist-
ing solutions to the protein structure alignment problems
[51] to the corresponding bi-alignment problems. It is
not obvious whether such a joint sequence and struc-
ture alignment problem implicitly contains a sequence-
to-structure threading problem, which is known to be
NP-complete [52]. In another forthcoming study, we are
considering the corresponding problem for RNA second-
ary structures. In this case, the bi-alignment problem is
amenable to a DP approach related to Sankoff’s algorithm
for the simultaneous folding and alignment of RNAs [53].

In [12] we further generalized bi-alignments to poly-
alignments comprising k > 2 pairwise alignments U(i) ,
1 ≤ i ≤ k ≥ 2 that are connected by a k-way alignment
W . Each of the alignments U(i) then describes one par-
ticular aspect of the sequence. In addition to the individ-
ual amino acids and secondary structure elements, these
may represent comparisons of profiles of physico-chemi-
cal parameters. It is not difficult to see that the grammar
Eq. (7) generalizes to this case by defining end gap types

(p1, p2, . . . pk) with pi =
(

−

−

)

 . The corresponding gram-

mar then needs to consider all 2k gap patterns for the last
column of the k-way alignment W . Optimal poly-align-
ments comprising k pairwise alignments with affine gap
costs and additive cost contributions for the shifts
between each pair of constituent alignments thus can be
computed exactly in O(n2k) space and time. Complemen-
tarily, one may consider alignments U and V of more
than two sequences and their corresponding structures.
The scoring of W then must accommodate more complex
shift patterns, whose total number again increases expo-
nentially in k. It is unlikely, therefore, that exact dynamic
programming algorithms for these generalized problems
will be practical. This begs the question whether poly-
alignment problems can be approximated e.g. by progres-
sive alignment schemes in a manner that is satisfactory
from an applications point of view.

Page 12 of 13Stadler and Will ﻿Algorithms for Molecular Biology (2022) 17:10

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13015-​022-​00219-7.

Additional file 1. Bi-alignments with different choices of λ. Bi-alignments
of the same data as in Fig. 5 using a more restrictive value (λ = 1) and a
shift-free alignment (λ = 0). The latter corresponds to regular protein align-
ment with scores augmented by (mis)matches of the predicted secondary
structure.

Acknowledgements
We thank Christian Höner zu Siederdissen for stimulating discussions and
Verena Bender and Leonie Preker for preliminary work as part of the course
Advanced Methods in Bioinformatics in 2020.

Author contributions
Both authors contributed to deriving the mathematical results, the inter-
pretation of results and the writing of the manuscript. SW implemented the
algorithms. Both authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was
supported in part by the German Research Foundation (DFG) as part of the
Collaborative Research Centre 1423 “Structural Dynamics of GPCR Activation
and Signal Transduction” (SFB 1423/1 421152132).

Availability of data and materials
Implementations of the algorithms used in this contribution are available
as free software from https://​github.​com/s-​will/​BiAli​gn/​relea​ses/​tag/​v0.3.
For easy installation, we provide packages bialign on the Conda channel
bioconda and the Python Package Index PyPI, respectively.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Bioinformatics Group, Department of Computer Science, and Interdisciplinary
Center for Bioinformatics, Universität Leipzig, Härtelstraße 16–18, 04107 Leip-
zig, Germany. 2 Competence Center for Scalable Data Services and Solutions
Dresden/Leipzig, Interdisciplinary Center for Bioinformatics, German Centre
for Integrative Biodiversity Research (iDiv), and Leipzig Research Center
for Civilization Diseases, Universität Leipzig, Augustusplatz 12, 04107 Leipzig,
Germany. 3 Max Planck Institute for Mathematics in the Sciences, Inselstraße
22, 04109 Leipzig, Germany. 4 Department of Theoretical Chemistry, University
of Vienna, Währinger Straße 17, 1090 Vienna, Austria. 5 Facultad de Cien-
cias, Universidad National de Colombia, Sede Bogotá, Ciudad Universitaria,
111321 Bogotá, D.C., Colombia. 6 Santa Fe Institute, 1399 Hyde Park Rd., Santa
Fe, NM 87501, USA. 7 AMIBio, Laboratoire d’Informatique de l’École Polytech-
nique (LIX), Institute Polytechnique de Paris (IP Paris), Batiment Turing, 1 rue
d’Estienne d’Orves, 91120 Palaiseau, France.

Received: 18 November 2021 Accepted: 1 May 2022

References
	1.	 Wagner GP. Homology, genes, and evolutionary innovation. Princeton:

Princeton Univ. Press; 2014.

	2.	 Hofacker IL, Fekete M, Stadler PF. Secondary structure prediction for
aligned RNA sequences. J Mol Biol. 2002;319:1059–66. https://​doi.​org/​10.​
1016/​S0022-​2836(02)​00308-X.

	3.	 Marks DS, Hopf TA, Sander C. Protein structure prediction from sequence
variation. Nat Biotechnol. 2012;30:1072–80. https://​doi.​org/​10.​1038/​nbt.​
2419.

	4.	 Chapman MA, Donaldson IJ, Gilbert J, Grafham D, Rogers J, Green AR,
Göttgens B. Analysis of multiple genomic sequence alignments: a web
resource, online tools, and lessons learned from analysis of mammalian
SCL loci. Genome Res. 2004;14:313–8. https://​doi.​org/​10.​1101/​gr.​17590​
04.

	5.	 Hiller M, Findeiß S, Lein S, Marz M, Nickel C, Rose D, Schulz C, Backofen
R, Prohaska SJ, Reuter G, Stadler PF. Conserved introns reveal novel
transcripts in Drosophila melanogaster. Genome Res. 2009;19:1289–300.
https://​doi.​org/​10.​1101/​gr.​090050.​108.

	6.	 Stoltzfus A, Logsdon JM Jr, Palmer JD, Ford DW. Intron “sliding’’ and the
diversity of intron positions. Proc Natl Acad Sci USA. 1997;94:10739–44.
https://​doi.​org/​10.​1073/​pnas.​94.​20.​10739.

	7.	 Lehmann J, Eisenhardt C, Stadler PF, Krauss V. Some novel intron positions
in conserved Drosophila genes are caused by intron sliding or tandem
duplications. BMC Evol Biol. 2010;10:156. https://​doi.​org/​10.​1186/​
1471-​2148-​10-​156.

	8.	 Bocco S, Csűrös M. Splice sites seldom slide: intron evolution in oomy-
cetes. Genome Biol Evol. 2016;8:2340–50. https://​doi.​org/​10.​1093/​gbe/​
evw157.

	9.	 Fekete E, Flipphi M, Ág N, Kavalecz N, Cerqueira G, Scazzocchio C, Karaffa
L. A mechanism for a single nucleotide intron shift. Nucleic Acids Res.
2017;45:9085–92. https://​doi.​org/​10.​1093/​nar/​gkx520.

	10.	 Hare EE, Peterson BK, Iyer VN, Meier R, Eisen MB. Sepsid even-skipped
enhancers are functionally conserved in Drosophila despite lack of
sequence conservation. PLoS Genet. 2008;4:1000106. https://​doi.​org/​10.​
1371/​journ​al.​pgen.​10001​06.

	11.	 Flamm C, Fontana W, Hofacker I, Schuster P. RNA folding kinetics at
elementary step resolution. RNA. 2000;6:325–38. https://​doi.​org/​10.​1017/​
s1355​83820​09921​61.

	12.	 Waldl M, Will S, Wolfinger MT, Hofacker IL, Stadler PF. Bi-alignments as
models of incongruent evolution of RNA sequence and secondary
structure. In: Cazzaniga P, Besozzi D, Merelli I, Manzoni L, editors. Compu-
tational intelligence methods for bioinformatics and biostatistics (CIBB
2019)q, vol. 12313. Lecture notes in computer science. Cham: Springer;
2020. p. 159–70. https://​doi.​org/​10.​1007/​978-3-​030-​63061-4_​15.

	13.	 Chou PY, Fasman GD. Prediction of protein conformation. Biochemistry.
1974;13:222–45. https://​doi.​org/​10.​1021/​bi006​99a002.

	14.	 Ashok Kumar T. CFSSP: Chou and Fasman secondary structure prediction
server. Wide Spectr Res J. 2013;1:15–9. https://​doi.​org/​10.​5281/​zenodo.​50733.

	15.	 Bart AG, Harris KL, Gillam EMJ, Scott EE. Structure of an ancestral mam-
malian family 1B1 cytochrome P450 with increased thermostability. J Biol
Chem. 2020;295:5640–53. https://​doi.​org/​10.​1074/​jbc.​RA119.​010727.

	16.	 Dong M, Ladavière L, Penin F, Deléage G, Baggetto LG. Secondary struc-
ture of P-glycoprotein investigated by circular dichroism and amino acid
sequence analysis. Biochim Biophys Acta Biomembr. 1998;1371:317–34.
https://​doi.​org/​10.​1016/​S0005-​2736(98)​00032-7.

	17.	 Schuster P, Fontana W, Stadler PF, Hofacker IL. From sequences to shapes
and back: a case study in RNA secondary structures. Proc R Soc Lond B.
1994;255:279–84. https://​doi.​org/​10.​1098/​rspb.​1994.​0040.

	18.	 Babajide A, Hofacker IL, Sippl MJ, Stadler PF. Neutral networks in protein
space: a computational study based on knowledge-based potentials
of mean force. Fold Des. 1997;2:261–9. https://​doi.​org/​10.​1016/​S1359-​
0278(97)​00037-0.

	19.	 Bornberg-Bauer E. How are model protein structures distributed in
sequence space? Biophys J. 1997;73:2393–403. https://​doi.​org/​10.​1016/​
S0006-​3495(97)​78268-7.

	20.	 Kabsch W, Sander C. On the use of sequence homologies to predict
protein structure: identical pentapeptides can have completely different
conformations. Proc Natl Acad Sci USA. 1984;81:1075–8. https://​doi.​org/​
10.​1073/​pnas.​81.4.​1075.

	21.	 Schultes EA, Bartel DP. One sequence, two ribozymes: implications for
the emergence of new ribozyme folds. Science. 2000;289(5478):448–52.
https://​doi.​org/​10.​1126/​scien​ce.​289.​5478.​448.

https://doi.org/10.1186/s13015-022-00219-7
https://doi.org/10.1186/s13015-022-00219-7
https://github.com/s-will/BiAlign/releases/tag/v0.3
https://doi.org/10.1016/S0022-2836(02)00308-X
https://doi.org/10.1016/S0022-2836(02)00308-X
https://doi.org/10.1038/nbt.2419
https://doi.org/10.1038/nbt.2419
https://doi.org/10.1101/gr.1759004
https://doi.org/10.1101/gr.1759004
https://doi.org/10.1101/gr.090050.108
https://doi.org/10.1073/pnas.94.20.10739
https://doi.org/10.1186/1471-2148-10-156
https://doi.org/10.1186/1471-2148-10-156
https://doi.org/10.1093/gbe/evw157
https://doi.org/10.1093/gbe/evw157
https://doi.org/10.1093/nar/gkx520
https://doi.org/10.1371/journal.pgen.1000106
https://doi.org/10.1371/journal.pgen.1000106
https://doi.org/10.1017/s1355838200992161
https://doi.org/10.1017/s1355838200992161
https://doi.org/10.1007/978-3-030-63061-4_15
https://doi.org/10.1021/bi00699a002
https://doi.org/10.5281/zenodo.50733
https://doi.org/10.1074/jbc.RA119.010727
https://doi.org/10.1016/S0005-2736(98)00032-7
https://doi.org/10.1098/rspb.1994.0040
https://doi.org/10.1016/S1359-0278(97)00037-0
https://doi.org/10.1016/S1359-0278(97)00037-0
https://doi.org/10.1016/S0006-3495(97)78268-7
https://doi.org/10.1016/S0006-3495(97)78268-7
https://doi.org/10.1073/pnas.81.4.1075
https://doi.org/10.1073/pnas.81.4.1075
https://doi.org/10.1126/science.289.5478.448

Page 13 of 13Stadler and Will ﻿Algorithms for Molecular Biology (2022) 17:10 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	22.	 Alexander PA, He Y, Chen Y, Orban J, Bryan PN. A minimal sequence code
for switching protein structure and function. Proc Natl Acad Sci USA.
2009;106:21149–54. https://​doi.​org/​10.​1073/​pnas.​09064​08106.

	23.	 Waldl M, Will S, Wolfinger ML, Hofacker IL, Stadler PF. Bi-alignments as
models of incongruent evolution and RNA sequence and structure. In:
Cazzaniga P, Besozzi D, Merelli I, editors. CIBB’19 proceedings. 2019. p. 6.
https://​doi.​org/​10.​1101/​631606.

	24.	 Sankoff D. Minimal mutation trees of sequences. SIAM J Appl Math.
1975;28:35–42. https://​doi.​org/​10.​1137/​01280​04.

	25.	 Sankoff D. The early introduction of dynamic programming into compu-
tational biology. Bioinformatics. 2000;16:41–7. https://​doi.​org/​10.​1093/​
bioin​forma​tics/​16.1.​41.

	26.	 Höner zu Siederdissen C, Hofacker IL, Stadler PF. Product grammars for
alignment and folding. IEEE/ACM Trans Comp Biol Bioinf. 2015;12:507–19.
https://​doi.​org/​10.​1109/​TCBB.​2014.​23261​55.

	27.	 Setubal JC, Meidanis J. Introduction to computational molecular biology.
Boston: PWS Publishing Co.; 1997.

	28.	 Retzlaff N, Stadler PF. Partially local multi-way alignments. Math Comp Sci.
2018;12:207–34. https://​doi.​org/​10.​1007/​s11786-​018-​0338-4.

	29.	 Needleman SB, Wunsch CD. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol Biol.
1970;48:443–53. https://​doi.​org/​10.​1016/​0022-​2836(70)​90057-4.

	30.	 Vingron M, Waterman MS. Sequence alignment and penalty choice:
review of concepts, case studies and implications. J Mol Biol. 1994;235:1–
12. https://​doi.​org/​10.​1016/​S0022-​2836(05)​80006-3.

	31.	 Waterman MS, Smith TF, Beyer WA. Some biological sequence metrics.
Adv Math. 1976;20:367–87. https://​doi.​org/​10.​1016/​0001-​8708(76)​
90202-4.

	32.	 Dewey TG. A sequence alignment algorithm with an arbitrary gap pen-
alty function. J Comp Biol. 2001;8:177–90. https://​doi.​org/​10.​1089/​10665​
27013​00312​931.

	33.	 Gotoh O. An improved algorithm for matching biological sequences. J
Mol Biol. 1982;162:705–8. https://​doi.​org/​10.​1016/​0022-​2836(82)​90398-9.

	34.	 Carrillo H, Lipman D. The multiple sequence alignment problem in biol-
ogy. SIAM J Appl Math. 1988;48:1073–82. https://​doi.​org/​10.​1137/​01480​
63.

	35.	 Lipman DJ, Altschul SF, Kececioglu JD. A tool for multiple sequence align-
ment. Proc Natl Acad Sci USA. 1989;86:4412–5. https://​doi.​org/​10.​1073/​
pnas.​86.​12.​4412.

	36.	 Kececioglu J, Starrett D. Aligning alignments exactly. In: Bourne PE,
Gusfield D, editors. Proceedings of the 8th ACM conference on research
in computational molecular biology (RECOMB). New York: ACM; 2004. p.
85–96. https://​doi.​org/​10.​1145/​974614.​974626.

	37.	 Gotoh O. Alignment of three biological sequences with an efficient trace-
back procedure. J Theor Biol. 1986;121:327–37. https://​doi.​org/​10.​1016/​
S0022-​5193(86)​80112-6.

	38.	 Konagurthu AS, Whisstock J, Stuckey PJ. Progressive multiple alignment
using sequence triplet optimization and three-residue exchange costs.
J Bioinf Comp Biol. 2004;2:719–45. https://​doi.​org/​10.​1142/​S0219​72000​
40008​31.

	39.	 Kruspe M, Stadler PF. Progressive multiple sequence alignments
from triplets. BMC Bioinform. 2007;8:254. https://​doi.​org/​10.​1186/​
1471-​2105-8-​254.

	40.	 Berkemer SJ, Höner zu Siederdissen C, Stadler PF. Compositional proper-
ties of alignments. Math Comp Sci. 2021;15:609–30. https://​doi.​org/​10.​
1007/​s11786-​020-​00496-8.

	41.	 Gonnet GH, Cohen MA, Benner SA. Exhaustive matching of the entire
protein sequence database. Science. 1992;256:1443–5. https://​doi.​org/​10.​
1126/​scien​ce.​16043​19.

	42.	 Cartwright RA. Logarithmic gap costs decrease alignment accuracy. BMC
Bioinform. 2006;7:527. https://​doi.​org/​10.​1186/​1471-​2105-7-​527.

	43.	 Eddy SR. Where did the BLOSUM62 alignment score matrix come from?
Nat Biotechnol. 2004;22:1035–6. https://​doi.​org/​10.​1038/​nbt08​04-​1035.

	44.	 Styczynski MP, Jensen KL, Rigoutsos I, Stephanopoulos G. BLOSUM62 mis-
calculations improve search performance. Nat Biotechnol. 2008;26:274–5.
https://​doi.​org/​10.​1038/​nbt03​08-​274.

	45.	 Stadler PF. Alignments of biomolecular contact maps. Interface Focus.
2021;11:20200066. https://​doi.​org/​10.​1098/​rsfs.​2020.​0066.

	46.	 Poleksic A. Algorithms for optimal protein structure alignment. Bioinfor-
matics. 2009;25:2751–6. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btp530.

	47.	 Li SC. The difficulty of protein structure alignment under the RMSD.
Algorithms Mol Biol. 2013;8:1. https://​doi.​org/​10.​1186/​1748-​7188-8-1.

	48.	 ...Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O,
Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer
C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R,
Adler J, Beck T, Petersen S, Reimann D, Clancy E, Zielinski M, Steinegger
M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior
AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure
prediction with AlphaFold. Nature. 2021. https://​doi.​org/​10.​1038/​
s41586-​021-​03819-2.

	49.	 ...Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR,
Wang J, Cong QC, Kinch LN, Schaeffer RD, Millán C, Park HP, Adams C,
Glassman CR, DeGiovanni A, Pereira JH, Rodrigues AV, van Dijk AA, Ebre-
cht AC, Opperman DJ, Sagmeister T, Buhlheller C, Pavkov-Keller T, Rathi-
naswamy MK, Dalwadi U, Yip CKY, Burke JE, Garcia KC, Grishin NV, Adams
PD, Read RJ, Baker D. Accurate prediction of protein structures and
interactions using a three-track neural network. Science. 2021;373:871–6.
https://​doi.​org/​10.​1126/​scien​ce.​abj87​54.

	50.	 Kabsch W, Sander C. Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers.
1983;22:2577–637. https://​doi.​org/​10.​1002/​bip.​36022​1211.

	51.	 Daniluk P, Lesyng B. Theoretical and computational aspects of protein
structural alignment. 2014;1:557–98. https://​doi.​org/​10.​1007/​978-3-​642-​
28554-7_​17.

	52.	 Lathrop RH. The protein threading problem with sequence amino acid
interaction preferences is NP-complete. Protein Eng Des Sel. 1994;7:1059–
68. https://​doi.​org/​10.​1093/​prote​in/7.​9.​1059.

	53.	 Sankoff D. Simultaneous solution of the RNA folding, alignment and
protosequence problems. SIAM J Appl Math. 1985;45:810–25. https://​doi.​
org/​10.​1137/​01450​48.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1073/pnas.0906408106
https://doi.org/10.1101/631606
https://doi.org/10.1137/0128004
https://doi.org/10.1093/bioinformatics/16.1.41
https://doi.org/10.1093/bioinformatics/16.1.41
https://doi.org/10.1109/TCBB.2014.2326155
https://doi.org/10.1007/s11786-018-0338-4
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/S0022-2836(05)80006-3
https://doi.org/10.1016/0001-8708(76)90202-4
https://doi.org/10.1016/0001-8708(76)90202-4
https://doi.org/10.1089/106652701300312931
https://doi.org/10.1089/106652701300312931
https://doi.org/10.1016/0022-2836(82)90398-9
https://doi.org/10.1137/0148063
https://doi.org/10.1137/0148063
https://doi.org/10.1073/pnas.86.12.4412
https://doi.org/10.1073/pnas.86.12.4412
https://doi.org/10.1145/974614.974626
https://doi.org/10.1016/S0022-5193(86)80112-6
https://doi.org/10.1016/S0022-5193(86)80112-6
https://doi.org/10.1142/S0219720004000831
https://doi.org/10.1142/S0219720004000831
https://doi.org/10.1186/1471-2105-8-254
https://doi.org/10.1186/1471-2105-8-254
https://doi.org/10.1007/s11786-020-00496-8
https://doi.org/10.1007/s11786-020-00496-8
https://doi.org/10.1126/science.1604319
https://doi.org/10.1126/science.1604319
https://doi.org/10.1186/1471-2105-7-527
https://doi.org/10.1038/nbt0804-1035
https://doi.org/10.1038/nbt0308-274
https://doi.org/10.1098/rsfs.2020.0066
https://doi.org/10.1093/bioinformatics/btp530
https://doi.org/10.1186/1748-7188-8-1
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1126/science.abj8754
https://doi.org/10.1002/bip.360221211
https://doi.org/10.1007/978-3-642-28554-7_17
https://doi.org/10.1007/978-3-642-28554-7_17
https://doi.org/10.1093/protein/7.9.1059
https://doi.org/10.1137/0145048
https://doi.org/10.1137/0145048

	Bi-alignments with affine gaps costs
	Abstract
	Background:
	Results:
	Conclusion:
	Availability:

	Introduction
	Incongruent evolution
	Bi-alignments
	Alignments as regular multi-tape grammars

	Theory
	Bi-alignments
	Bi-alignments with affine gaps costs
	Affine shift costs
	Combining affine gap and shift costs
	Sub-additive gap costs

	Computational results
	Concluding remarks
	Acknowledgements
	References

