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Bi‑alignments with affine gaps costs
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Abstract 

Background:  Commonly, sequence and structure elements are assumed to evolve congruently, such that homolo-
gous sequence positions correspond to homologous structural features. Assuming congruent evolution, alignments 
based on sequence and structure similarity can therefore optimize both similarities at the same time in a single 
alignment. To model incongruent evolution, where sequence and structural features diverge positionally, we recently 
introduced bi-alignments. This generalization of sequence and structure-based alignments is best understood as 
alignments of two distinct pairwise alignments of the same entities: one modeling sequence similarity, the other 
structural similarity.

Results:  Optimal bi-alignments with affine gap costs (or affine shift cost) for two constituent alignments can be 
computed exactly in quartic space and time. Even bi-alignments with affine shift and gap cost, as well as bi-alignment 
with sub-additive gap cost are optimized efficiently. Affine gap-cost bi-alignment of large proteins ( ∼ 930 aa) can be 
computed.

Conclusion:  Affine cost bi-alignments are of practical interest to study shifts of protein sequences and protein struc-
tures relative to each other.

Availability:  The affine cost bi-alignment algorithm has been implemented in Python 3 and Cython. It is available as 
free software from https://​github.​com/s-​will/​BiAli​gn/​relea​ses/​tag/​v0.3 and as bioconda package bialign.
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Introduction
Incongruent evolution
While biological function is eventually encoded in a 
genomic sequence, it relies on the “decoding” of the 
sequence into a spatially structured RNA or protein, or 
into specific interactions, such as the binding of a DNA 
element by a transcription factor. Natural selection acts 
to conserve function over evolutionary times and there-
fore preserves functional RNA or protein structures, 
binding motifs, intron–exon boundaries, etc. Stabiliz-
ing selection on such a functional entity typically also 
causes the conservation of its encoding DNA sequence. 

Homologous functional units, i.e. those that share a com-
mon ancestry [1], are therefore represented by homolo-
gous sequences. As a consequence, functional elements 
often can be identified based on their similarity in 
sequence alignments. For RNA and proteins, this allows 
the detection of consensus structures [2, 3], enables the 
identification of transcription factor binding sites [4], 
and the detection of conserved (non-coding) transcripts 
through the conservation of splice junctions [5].

Homology of a feature or trait, however, does not 
require that all its constituent parts are homologous. 
Most obviously, insertions and deletions in a DNA 
sequence imply that not all nucleotides trace back to a 
common ancestor even if the sequence as a whole does. 
Similarly, homology of a structural feature does not imply 
that all its constituent contacts are preserved. There are 
indeed well-documented exceptions to the by far most 
common case of homologous features being produced 
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from homologous sequence positions. A well-studied, 
albeit apparently rare, example is intron-sliding, where 
the start and end of an intron “moves” in the same direc-
tion for the same number of nucleotides [6–9]. While 
the gene product is perfectly preserved, except possibly 
for some changes of the amino acids encoded by the few 
nucleotides involved in the sliding, both splice junctions 
are now encoded by non-homologous genomic positions. 
Promotors sometime exhibit a similar form of turnover, 
where a short binding site pattern at one site is replaced 
by the emergence of a matching sequence nearby [10]. 
In the context of biopolymer structures it is possible 
that contacts between nucleotides or amino acids are 
shifted relative to the underlying sequence in a way that 
preserves most features of the ancestral structure. Such 
transitions can be facilitated by the existence of kineti-
cally accessible structural alternatives [11], of which dif-
ferent variants are stabilized by subsequent mutations in 
different lineages. In a preliminary survey, we recently 
observed that 72 of 1181 moderate-size Rfam families 
show evidence for this kind of incongruence between 
sequence and structure conservation [12]. This observa-
tion suggests that incongruent evolution of sequence and 
structure is relatively rare but still occurs with sufficient 
frequency to be non-negligible.

To our knowledge, incongruences between conserved 
protein sequence and conserved protein structures so 
far have not been studied systematically. However, the 
example of Fig. 1 demonstrates that (at least at the level 
of secondary structures) it is not at all difficult to obtain 
incongruence by performing a few mutations. Here, 
we (artificially) introduced substitutions into a pep-
tide sequence such that predicted secondary structures 
shifted relative to the reference sequence. The compara-
tive analysis of proteins occasionally reveals examples of 
natural incongruences between sequence and second-
ary structure; moreover, it shows that the phenomenon 
occurred at least occasionally in protein evolution. Fig-
ure  2(top) depicts the alignment of the extant human 
CYPB1 cytochrome P450 enzyme and its reconstructed 
ancestral mammalian counterpart, which was recently 
crystallized (PDB: 6OYU and 6OYV) and characterized 
functionally [15]. Despite the high level of similarity of 
the ancestral and extant folds, the bi-alignment (Fig.  2, 
bottom) reveals some differences in the extent of heli-
ces and suggests a shift of “helix D” by two amino acids, 
constituting an incongruence of the considered type. 
Another published example can be found in Fig. 5 of [16]: 
relative to the underlying sequence, one observes sev-
eral small helix shifts in the evolution of the Pgp protein 
(MDR1) between human, mouse, and rat.

Incongruences between sequence homology and 
homology of structure or functional elements are 

rooted in the inherent redundancy of genotype-phe-
notype maps. For both RNA and proteins, very differ-
ent sequences can encode the same fold or function 
[17–19], while at the same time identical sequences can 
appear in very different structural or functional contexts 
[20–22]. Together, these features sometimes lead to a 
sliding or migration of a functionally relevant structure 
in response to a fortuitously placed mutation. The occa-
sional emergence of incongruences between sequence 
conservation and the conservation of structure thus is 
an expected consequence of the redundancies inherent 
in the sequence/structure relationship of biopolymers. 
It becomes a relevant empirical question, therefore, how 
frequent this process has been throughout evolutionary 
history.

Fig. 1  Two pairwise alignments and a bi-alignment of peptide 
sequences and their predicted secondary structures (helix red, 
turn blue, β-sheet green, coil orange). Structure are predicted 
according to the Chou Fasman method [13] with CFSSP [14]. To 
facilitate quick visual assessment of sequence alignment quality, 
sequence mismatches are shown in bold black, sequence indels in 
non-bold black, and mismatches in dark red. The upper alignment 
optimizes sequence similarity, and shows the structure out of sync: 
the helix is moved to left, the last β-sheet is shifted to the right by 
1 position. The second alignment maximizes structural similarity 
and thus shows little sequence similarity. The evolution of the two 
peptides is explained much better by a bi-alignment (third panel), 
which supports shift events (marked by rectangles) that can shift 
either sequence against its structure to the left ( < ) or to the right 
( > ). The resulting regions of shift are indicated by in general k blue 
and red lines corresponding to shifts by k positions to the left or 
to the right. While the shift events shown in this example delete 
and insert structure of A with respect to both sequences and the 
structure of B, shift alignments also support as well analogous shifts 
of sequences and the second structure (which would be shown 
in the bottom row). In our representation, shift events are the only 
visible difference between the bi-alignment A in the third panel 
and the two alignments. Nevertheless, the representation can be 
mapped to our formalization of bi-alignments as alignments of two 
constituent alignments U and V : U is obtained from the 2nd and 
3rd bi-alignment row by removing the two all-gap columns (i.e. the 
first and the 3rd-to-last column). The secondary structure alignment 
V coincides with the 1st and 4th row since there is no column that 
contains only gaps in these to rows
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Not only is incongruent evolution of interest as an 
under-studied aspect of evolutionary dynamics, but 
it has practical implications for data analysis. Incon-
gruences impact our ability to detect and reconstruct 
consensus structures, since corresponding structural fea-
tures are formed by evolutionarily unrelated nucleotides 
or amino acids, while homologous sequence positions 
form disparate structural elements. This means that (in 
the presence of incongruent evolution) a single multiple 
sequence alignment cannot simultaneously represent the 
similarities of sequence and structure. In particular, con-
served structure can no longer be represented as ‘con-
sensus structure’, i.e. as an annotation of the columns of a 
sequence alignment.

Bi‑alignments
We recently introduced bi-alignments [12, 23] as a math-
ematically consistent way of describing incongruent evo-
lutionary relationships. Bi-alignments are motivated by 
treating shifts between sequence and structure explicitly 
as evolutionary events. It is important to realize that it is 
not necessarily possible to find an optimal reconciliation 
of sequence and structure alignments by identifying shifts 
events a posteriori from a pair of sequence and structure 
alignments that have been computed separately. Instead, 
bi-alignments allow simultaneously predicting sequence 
and structure homologies and their relation. For this pur-
pose, we define a bi-alignment to consist of two align-
ments (one based one sequence similarity, the other one 

based on structure similarity) that are related by a third 
alignment, which captures the shift events. All three con-
stituent alignments contribute to a common score.

While bi-alignments have similarities to combined 
sequence and structure alignments (which also opti-
mize a joint score for sequence and structure similarity), 
bi-alignments extend such models by supporting shift 
events explicitly. Combined sequence/structure align-
ments therefore can be interpreted as the limit case of 
bi-alignments where arbitrarily high shift penalties com-
pletely prohibit shift events. As important consequence, 
bi-alignments overcome the requirement of a consensus 
structure, which is the key assumption underlying com-
bined sequence/structure alignments.

As their main purpose, bi-alignments provide a coher-
ent framework to detect shift-like incongruences, i.e. a 
local “movement” of conserved structures relative to 
the underlying sequence. It is worth noting that the for-
mal concept of bi-alignments is not tied to applications 
in structural biology. Instead, it can be seen as a way to 
quantify the effect of differences in scoring schemes that 
focus on different aspects of the same sequence. The only 
requirement for bi-alignments is a position-wise one-to-
one correspondence between the two different represen-
tations of each input object.

In this contribution, we extend bi-alignments with lin-
ear costs to a more realistic model with affine gap costs. 
We will illustrate our algorithmic developments using 
protein sequences and their secondary structures as an 

Fig. 2  Alignment (top) and Bi-alignment (bottom) of 145 N-terminal amino acids of two CYP1B1 cytochrome P450 enzymes: the extant human 
enzyme (Human 1B1) and the corresponding ancestral mammalian cytochrome (N98 1B1_M). See Fig. 1 for the representation of the alignments 
and secondary structure elements. Only the bi-alignment properly aligns the ’shifted’ fifth helix and explains the structural incongruence by 
evolutionary shifts (two forward and two backward shifts
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example, because the position-wise annotation of a sec-
ondary structure elements fits well with the framework 
of sequence alignments. The (artificial) example in Fig. 1 
shows that incongruence between sequence and second-
ary structure can indeed be caused a few well-place sub-
stitutions. It also shows that bi-alignments are capable, at 
least in principle, to reconcile incongruent sequence and 
structure homologies and to identify shift events.

A bi-alignment is formally defined as an alignment 
relating two, generally different, alignments of the same 
objects.

Definition 1  A bi-alignment A ∼
= (U,V,W) consists of 

two pairwise alignments U and V of the objects a and b 
and an alignment W of U and V.

In Fig.  1, U is a sequence alignment (shown in the 
second row with the secondary structure annota-
tion above and below the two sequences), while V is an 
alignment of the two respective secondary structures 
(shown in the second row with the two corresponding 
sequences between them). The columns of U and V are 
then aligned by W . Since the pairwise alignment of two 
pairwise alignments is equivalent to a 4-way alignment, 
bi-alignments can be thought of as multiple alignments 
A ∼

= (U,V,W) . The input objects a and b appear twice in 
A , once regarded as sequence (represented by the one-
letter amino acid codes) and once regarded as secondary 
structure (shown a position-wise glyphs). Bi-alignments 
therefore differ from “structure-aware” sequence align-
ments by replacing the annotation of sequence positions 
with a secondary structure features by an alignment of 
both the sequence and the string of structural features. 
Importantly, A ∼

= (U,V,W) completely determines the 
alignments of the sequences of a and b with their sec-
ondary structures (shown in the third row of Fig.  1 as 
the first and last pair of rows, respectively.) These align-
ments in general contain gaps that indicate how the con-
served “consensus” structure is shifted compared to the 
sequence positions.

Assuming a linear scoring model, i.e. scores for U , V , 
and W that are additively composed from single column 
contributions, it can be shown that the 4-way alignment 
A is scored additively as well [12, 23]. Linear bi-alignment 
problems therefore can be exactly solved by dynamic 
programming [24, 25] in quartic time. In this contribu-
tion we are interested in bi-alignments that are scored 
with affine gap costs.

Alignments as regular multi‑tape grammars
To address this problem, it is helpful to describe the 
structure of alignments by multi-tape grammars, see e.g. 
[26] for a more detailed, formal discussion. In the 

simplest case, sequence alignments can be represented as 
regular grammars of the form A → Ac

∣

∣ ǫ . The only non-
terminal symbol A denotes a (pairwise) alignment, the 
terminal ǫ is the empty alignment, and the terminal c 
denotes an alignment column, which may be a (mis)

match 
(

•

•

)

 , a deletion 
(

•

−

)

 , or an insertion 
(

−

•

)

} . Since 

alignments compare extant sequences rather than an 
ancestor/descendant pair, the two “indels” (insertion/
deletion) are biologically indistinguishable and hence 
receive the same score. The grammar simply expresses 
the fact that alignment can be constructed step-by-step 
by adding a column to an alignment of prefixes. For lin-
ear scoring functions, the production A → Ac allows 
adding the score of c to the previously accumulated score 
of the alignment A. Denote by M(x) the optimal score of 
an alignment of the prefixes a[1..x1] and b[1..x2] . As 
noted e.g. in [27, 28], the index vector of the penultimate 
column of the alignment is x − c , where • is interpreted 
as 1 and the gap character − as 0. The Needleman–Wun-
sch recursions [29] thus can be written in compact form 
(see also [24]) as

Notably, in the non-affine case, the scoring function 
s(x, c) is completely determined by a single column.

Affine gap cost. While linear gap costs are not very real-
istic in sequence alignment [30], arbitrary gap costs algo-
rithmically require an additional factor O(n) in running 
time [31, 32] and are difficult to parametrize in practice. 
The affine gap cost model serves as a useful and conveni-
ent compromise that is most often used in practice. Here, 
the opening and the extension of a gap are scored differ-
ently. It is therefore necessary to distinguish three differ-
ent non-terminal A(

•

•

) , A(

•

−

) , A(

−

•

) designating 

alignments that end in a (mis)match, deletion, and inser-
tion column, respectively. Again one obtains a regular 
grammar with analogous productions of the form 
Ac → Ac′c

∣

∣ ǫ for the three non-terminals. Denote by 
M(x; c) the optimal score of an alignment of the prefixes 
a[1..x1] and b[1..x2] with end column of type c. We can 
then write Gotoh’s well-known recursions [33] for pair-
wise affine gap cost alignment in the following compact 
form:

with initial conditions M(0,

(

•

•

)

) = 0 , 

M

(

0,

(

−

•

))

= M

(

0,

(

•

−

))

= −∞ . In principle this 

(1)
M(x) = max

c
M(x − c)+ s(x, c) with M(0) = 0 .

(2)M(x; c) = max
c′

M(x − c; c′)+ s(x, c′, c)
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formulation accommodates any scoring function s(x, c′, c) 
for which the column score depends on the gap pattern 
of the previous column. For instance, we could also score 
the closing of a gap separately.

Both the Needleman–Wunsch algorithm and the 
Gotoh algorithm run in O(n2) space and time. Recur-
sion Eq. (1) also describes the dynamic programming 
algorithm for k-ary alignments [24, 25, 34, 35], which 
requires O(nk) space and time. The situation is more 
complicated, however, for affine gap costs. Sum-of-pairs 
scoring functions simply sum over the scores of all pair-
wise alignments contained in a given multiple alignment. 
Surprisingly, computing the optimal alignment of align-
ments with affine gap costs under the sum-of-pairs-
model is NP-complete unless the number of sequences in 
the constituent alignments is bounded [36]. On the other 
hand, scoring models of the form of Eq. (2) are of practi-
cal interest in particular for k = 3 [37–39].

In this contribution we show that the bi-alignment 
model with affine gap costs for the constituent align-
ments can be solved in polynomial time by dynamic pro-
gramming. As we shall see, the recursions are of the form 
of Eq. (2) but require a subtle re-definition of M(x; c).

Theory
Bi‑alignments
Recall that we define a bi-alignment as an alignment of 
alignments (Def. 1). It is well known that an alignment of 
alignments can be represented again as an alignment. 
This compositional structure of alignments is discussed 
formally in [40]. In our case, A is a 4-way alignment from 
which U (and V ) are obtained as “projections”, i.e. by 
extracting the corresponding pair of rows and removing 
all columns consisting of a pair of gap characters. The 
alignment W , on the other hand, is obtained by consider-
ing each column in U and V as a single letter; and moreo-

ver interpreting the columns of the form 
(

−

−

)

 (i.e. the 

ones that are removed in the projections to U and V ) as 
gap characters.

The Bi-Alignment Problem for two input sequences 
a and b consists in optimizing

with given scoring functions u, v, and w. The special case 
where u, v, and w are linear scoring functions has been 
discussed in [12, 23].

The alignment W of U and V describes the shifts distin-
guishing U and V in the following manner. First, consider 
a match column α of W . It consists of a pair of columns 
with gap patterns c(α) and d(α) , respectively. Using their 
numerical interpretation, we observe that

(3)score(A) = u(U)+ v(V)+ w(W)

measures whether none, one, or both input sequences are 
shifted relative to each other (Fig. 3). Insertions and dele-

tions in W correspond to inserting an all-gap column 
(

−

−

)

 

into U or V , respectively, and always lead to incongruences. 
We note, furthermore, that there is a one-to-one corre-
spondence between the columns of W and the columns of 
the 4-way alignment A . Thus we can count the number of 
shifts s(A) =

∑

α∈A s(α) . The alignment A contains sub-
alignments A(aa) and A(bb) of the first and second input 
sequence with itself. Let us denote the number of indels in 
these two projected alignments by δa and δb , respectively.

Lemma 2  If A ∼
= (U,V,W) is a bi-alignment of a and b, 

then s(A) = δa + δb.

Proof  For column α of A we write 
δa(α) := |c1(α)− d1(α)| and δb(α) := |c2(α)− d2(α)| . 
Thus δa(α) = 1 if α is an indel column in the projected 
self-alignment of a , and δa(α) = 0 if α is a (mis)match 
column. Note that all-gap columns are omitted in the 
projection and thus do not contribute to the indel count. 
Thus δa =

∑

α∈A δa(α) correctly counts the indels in 
A
(aa) . An analogous equality holds for δb . A comparison 

with Eq. (4) completes the proof. �

A natural scoring function for W is thus to penalize the 
total number of shifts, setting w(A) = −�s(A) . This 
amounts to computing the shift contribution for  

each column 
(

c
d

)

 of A as shift(c, d) = −�|c − d|

= −�(|c1 − d1| + |c2 − d2|).

Bi‑alignments with affine gaps costs
Lemma 2 provides an alternative interpretation in terms 
of a simple linear score for A(aa) and A(bb) . We can 

(4)s(α) := |c1(α)− d1(α)| + |c2(α)− d2(α)|

b
a
b
a

V

UU

V

Fig. 3  Shifts in a bi-alignment. The bi-alignment consists of two 
alignments U or V (colored horizontal boxes) of the pair of objects a 
and b that are aligned with each other two different ways i.e. w.r.t. to 
two different objective functions. Since the actual letters in a and b 
are irrelevant for definition of shifts, we distinguish only letters (filled 
circles) and gaps (dashes). Note that a and b may be represented 
by different alphabets in U and V . Insertions and deletions in the 
alignment of alignments W , i.e. the alignment of the columns of U 
with the columns of W , are (highlighted by darker colors) correspond 
to all-gap columns in either U or V . Aligned columns in W are shifts 
if the gap patterns in the upper pair and the lower pair differ. Colored 
outlines distinguish single (blue) and double shifts (red)
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therefore think of Eq. (3) as a restricted sum-of-pairs 
model in which only four of the six pairwise alignments 
in A contribute. In this picture it is natural to assume that 
the constituent alignments U and V are scored with affine 
gap costs. In the light of the NP-hardness result of [36] it 
is not at all obvious, however, that the bi-alignment prob-
lem with affine gap costs can be solved in polynomial 
time.

In order to address this problem, we first recall the 
language of multi-way alignments. The following state-
ment is “folklore”, see e.g. [40]: every column of the 4-way 
alignment A is uniquely determined by 

	 i.	 a four-dimensional index (x, y) identifying the pre-
fixes a[1..x1] , b[1..x2] , a[1..y1] , and b[1..y2] that are 
aligned up to the focal column.

	 ii.	 a gap pattern (c, d) = ((c1, c2), (d1, d2)) specifying 
whether the entry in a column is a letter or a gap 
character.

The language of 4-way alignments is generated by the 

regular language A → A

(

c
d

)

∣

∣ ǫ , where the non-termi-

nal A denotes a bi-alignment and the terminals 
(

c
d

)

 cor-

respond to one of the 15 possible gap patterns in a 
column of elements (excluding the all-gap column). Note 

that c =
(

−

−

)

 and d =

(

−

−

)

 respectively correspond to 

an insertion and deletion in W , while c, d  =

(

−

−

)

 corre-

sponds to a match in W . This regular language is suffi-
cient for linear gap cost models [12, 23].

In order to handle affine gap costs for U and V , we need 
to keep track of the gap patterns of the preceding align-
ment column in U and V . This is not the same as consid-
ering the preceding column of A because gap patterns of 

the form 





�

−

−

�

d



 and 





c
�

−

−

�



 correspond to all-gap col-

umns, which are removed in U or V . Thus, we introduce 
a new notion of column type to address these ’preceding’ 
gap patterns of the sub-alignments.

Definition 3  The end column type (p, q) of a bi-align-
ment A ∼

= (U,V,W) consists of the gap pattern p of the 
last column of U and the gap pattern q of the last column 
of V . The end column type of the empty alignment is left 
arbitrary.

The definition is illustrated in Fig. 4. Note that by con-
struction, neither p nor q consist only of gaps.

Now, we define a column-wise scoring function that 
captures the alignment score with affine gap cost. It 

scores a single column of a bi-alignment A , characterized 

by 
(

x
y

)

 and 
(

c
d

)

 , depending on the end column type 
(

c′

d′

)

 

of the previous column. This function has the form

Since score(x, c′, 0) and score(y, d′, 0) , respectively, corre-
spond to all-gap columns in U and V , we observe that the 

sum of the score
((

x
y

)

,

(

c′

d′

)

,

(

c
d

))

 over all columns of 

A equals

Thus, Eq. (5) correctly scores the bi-alignment with gen-
eral affine gap costs for both U and V.

In order to derive a dynamic programming algorithm 
that solves the bi-alignment problem with this type of 
scoring function, we consider a decomposition of the 
search space in grammar form. The non-terminals A(p,q) 
correspond to bi-alignment with end column type (p, q). 
The terminals are the 15 possible column types of a 4-way 

alignment, which we write as 
(

p
q

)

 , with p, q  =

(

−

−

)

 as 

well as 
(

−

q

)

 
(

q
−

)

 where the − in the latter is a shorthand 

for 
(

−

−

)

 . In addition, we write ǫ for the empty 4-way 

column.

Lemma 4  The language of bi-alignments with fixed end 
column type is generated by the productions

(5)

score

((

x
y

)

,

(

c′

d′

)

,

(

c
d

))

= scoreU(x, c
′

, c)

+ scoreV(y, d
′

, d)

+ shift(c, d)withscore(x, c′, 0)

= score(y, d′, 0) = 0

(6)

∑

(x,c)∈U

scoreU(x, c
′

, c)+
∑

(y,d)∈V

scoreV(y, d
′

, d)

+

∑

(c,d)∈W

shift(c, d)

= u(U)+ v(V)+ shift(A)

(7)

A(p,q) → A(p′,q′)

(

p
q

)

∣

∣ A(p,q′)

(

−

q

)

∣

∣ A(p′,q)

(

p
−

)

∣

∣ ǫ

p=

q=b
a
b
a

Fig. 4  The end column type of an bi-alignment is defined by the last 
column of each of the constituent pairwise alignments of a and b 
that is not an all-gap column
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Proof  Consider an alignment A with last column (c, d) 
and end column type (p, q), and denote by A′ the align-

ment without the last column. If c, d  =

(

−

−

)

 , i.e. the 

(mis)match case in W , then p = c and q = d and A′ may 

have any end-column type. If c =
(

−

−

)

 , corresponding to 

the insertion case in W , A inherits the first component c 
of its end column type from the previous alignment A′ . 
The other component is given by the second part of the 
last column, i.e. d = q . Thus the second component of 

the end column type of A′ is arbitrary. The case d =

(

−

−

)

 , 

deletion in W analogously yields d = q and an end col-
umn type (p′, q) for the A′ . �

Note that this grammar would allow terminating with 
any end column type. This is undesirable since we would 
like the first column to be scored as it was preceded by 
a match column in both U and V . This is easily imple-
mented by an appropriate initialization for x = y = 0 , 
however.

Definition 5  Let Mp,q(x, y) denote the optimal score of 
a 4-way alignment with end column type (p, q).

In order to enforce that empty alignment is treated as 

having end column type 
((

•

•

)

,

(

•

•

))

 , we set 

M((

•

•

)

,

(

•

•

))(0, 0) = 0 and M(c,d)(0, 0) = −∞ for 

(c, d)  =

((

•

•

)

,

(

•

•

))

.

Theorem 6  The matrices Mp,q satisfy the recursion

(8)
M(p,q)(x, y) = max







































max
p′ �= 0

q′ �= 0

M(p′,q′)(x − p, y− q)+ score

��

x
y

�

,

�

p′

q′

�

,

�

p
q

��

max
p′ �=0

M(p′,q)(x − p, y)+ score

��

x
y

�

,

�

p′

q

�

,

�

p
0

��

max
q′ �=0

Mp,q′(x, y− q)+ score

��

x
y

�

,

�

p
q′

�

,

�

0

q

��

Proof  We first note that every column of A is either a 
(mis)match or an indel column w.r.t. W . These correspond 
to the first three alternative productions in Eq. (7), and 

cover all alternatives. Since score

((

x
y

)

,

(

c′

d′

)

,

(

c
d

))

 

depends only on the current column and the end column 
type, we obtain the optimal score of an alignment A with 
end column type (p, q) and last column (c, d) as the opti-
mal score of an alignment A′ with any of the matching col-

umn type plus the score score
((

x
y

)

,

(

c′

d′

)

,

(

c
d

))

 for the 

last column. The grammar in Eq. (7) specifies which end 
column types match. Furthermore, we note that, in the 
match case, the indices (x′, y′) of the last column of the 
alignment to the left are given by x − p and x − q , where 
(p, q) is gap pattern on the last column of A . Correspond-
ingly we have (x′, y′) = (x − p, y) for the insertion case and 
(x′, y′) = (x, y′ − q) in the insertion case. Taken together, 
this established the correctness of the recursion. �

As an immediate consequence we have

Corollary 7  The bi-alignment problem with affine gap 
cost models for the two constituent alignments can be 
solved in O(n4) time and space.

Affine shift costs
While bi-alignment with affine gap cost and linear shift 
costs may be of the most obvious practical relevance, we 
also discuss two variations with affine shift costs. First of 
all, we clarify how to attribute affine shift cost in our bi-
alignment scoring model.
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Let’s take a step back to our original definition of the 
bi-alignment score (Eq.  3) and our previous suggestion 
to define the “shift” score component w(A) as −�s(A) , 
i.e.  as a multiple of s(A) . Since the latter was defined 
as the number of gap columns in the alignments A(aa) 
and A(bb) , this amounts to scoring shifts in a linear cost 
model, where every shift has a cost of � per column.

For affine shift costs, we take the view that every con-
secutive run of gap symbols in the pairwise alignments of 
the two copies of a and b represents one shift. This shift 
is scored in the same way as gaps are scored under affine 
gap cost, i.e. based on the shift opening cost �o plus the 
shift extension cost � times the length of the shift (num-
ber of shift columns).

We first consider affine shift cost and non-affine (i.e. 
linear) gap cost. Since affine shifts are scored exactly in 
the same way as affine gaps, this situation is symmetric 
to the case of affine gap cost combined with linear shift 
cost. The corresponding bi-alignment problem can thus 
be solved efficiently by applying exactly the same idea as 
in our previous algorithm (Theorem 6), only now keep-
ing track by p and q of the gap patterns in the respec-
tive alignments of rows 1&3 and 2&4 . We immediately 
obtain

Corollary 8  The bi-alignment problem with affine shift 
cost models (and linear gap cost) can be solved in O(n4) 
time and space.

Combining affine gap and shift costs
More remarkably, we can even solve the general case of 
affine gap cost and affine shift cost in polynomial time by 
dynamic programming. Essentially, we combine the ideas 
of the above two algorithms. Our algorithm follows a 
grammar with general decomposition

In order to evaluate affine gaps and affine shifts cor-
rectly at the same time, we need to know the last non-
gap-only gap patterns of all four pairwise alignments of 
rows 1&2 , 1&3 , 2&4 , and 3&4 ; thus, we utilize non-termi-
nals Ap , for all p that encode the respective gap patterns 
p = (p12, p13, p24, p34) . By the same argument as before, 
we can show this information to be sufficient to score 
shifts and gaps correctly in affine cost models for every 
possible last column c.

One keeps track of the correct gap patterns for all of 
the relevant pairwise alignments by setting the entries of 
p′ as

(9)Ap → Ap′c

for ij ∈ {12, 13, 24, 34} , depending on p and c in Eq. (9). 
For termination, we add the grammar rule:

for p0 :=
((

•

•

)

,

(

•

•

)

,

(

•

•

)

,

(

•

•

))

 . This allows implicit 

accounting for gap and shift openings of respective gaps 
and shifts at the left end of alignment strings.

Remarks about generalizations and complexity Note 
that the existence of an efficient algorithm for general aff-
ine bi-alignment does not contradict the general hard-
ness of multiple alignment with affine gap costs, even if it 
suggests the following generalization: Multiple (k-way) 
alignment with affine gap costs can be computed by 
dynamic programming following the above idea of keep-
ing track of the right-most non-gap-only gap-patterns in 

all pairwise alignments. This requires considering 
(

k
2

)

 

many pairwise gap patterns, each out of three possibili-

ties 
(

•

•

)

,

(

•

−

)

,

(

−

•

)

 . The resulting DP-algorithm for k-

way alignment thus needs exponentially many matrices 
in k.

In bi-alignments of two sequences, we need to consider 
only four gap patterns, two for the two alignments and 
two for the shifts between the sequence copies. That is, 
there are (at most) 34 = 81 combinations, which have to 
be represented by different matrices for the DP algo-
rithm. This gets a little more practical, since many of 
these combinations cannot occur in valid bi-alignments. 

For example, having gap patterns 
(

•

•

)

 for both alignments 

of a and b , rules out all patterns for the alignments of the 

copies that contradict having last columns 







•

•

•

•






,







•

•

−

−






 , or 







−

−

•

•






 . Consequently, we find only 51 consistent gap pat-

tern combinations, while we can proof 30 combinations 
inconsistent due to an analogous argument as sketched 
above.

Sub‑additive gap costs
The affine gap cost model, despite its algorithmic con-
venience, has been criticized because empirical gap 

(10)p′ij :=







pij ci = − and cj = −
�

ci
cj

�

otherwise

(11)Ap0 → ǫ
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length distributions usually are power laws thus sug-
gesting a logarithmic gap costs [41]. However, gap costs 
of the form w(ℓ) = a+ bℓ+ c ln ℓ seem to yield better 
alignments in practice [42]. Pairwise alignments with 
subadditive gap costs can be computed by dynamic pro-
gramming, considering insertions and deletions of arbi-
trary length:

This idea does not seem to generalize to bi-alignments. It 
is possible, however, to generalize the end column type. 

Instead of only distinguishing 
(

1

1

)

 , 
(

1

0

)

 , 
(

0

1

)

 , we can 

make each of them length dependent. This allows us to 
write the end column types 〈p, ℓ〉 , where ℓ ≥ 1 is the 
length of the run of columns of type p at the end of the 
alignment. With this notation we can write

with initial condition M�p,0�(0) = 0 . Here d(x, p, ℓ) equals 

the match score s(x) for p =

(

•

•

)

 . For deletions, 

p =

(

•

−

)

 , we have 

d(x, p, ℓ) = w(a[x1 − ℓ+ 1..x1])− w(a[x1 − ℓ+ 1..x1 − 1]) . The exten-
sions of an insertion is scored by an analogous expres-
sion. The auxiliary entries M〈p,0〉(x) are used to correctly 
score alignments in which the last column is different 
from the previous end gap pattern. This recursion runs in 
cubic time, but also requires cubic space (instead of 
quadratic space). For our purposes, however, it has the 
advantage that the score is again defined column-wise 
albeit at the expense of having to keep track of a linear 
instead of a constant number of end gap types. It general-
izes to a recursion with four indices to compute the opti-
mal bi-alignment.

Computational results
We implemented the bi-alignment algorithm with affine 
gap cost (Corollary 7) in Python 3. For improved perfor-
mance, we adapted time-critical parts of the code to the 
Python C-extension Cython with some carefully chosen 
static typing. The new implementation was based on our 
previous implementation for RNA bi-alignment with 
linear gap cost [12, 23]. Like the earlier version, it allows 
the user to limit the number of positions either sequence 
can be shifted to the left or right against its own struc-
ture by a constant � . The restricted recursions, following 

(12)M(x1, x2) = max







M(x1 − 1, x2 − 1)+ s(x1, x2)
maxℓ≥1M(x1 − ℓ, x2)+ w(a[x1 − ℓ+ 1..x1])
maxℓ≥1M(x1, x2 − ℓ)+ w(b[x2 − ℓ+ 1..x2])

(13)
M�p,ℓ�(x) = M�p,ℓ−1�(x)+ d(x, p, ℓ) for ℓ ≥ 1

M�p,0�(x) = max
p′ �=p

M
�p′,ℓ�(x)

in essence the idea of [34, 35], have time complexity of 
O(n2�2) instead of the unrestricted, but often impractical 
complexity O(n4) . In addition to efficient bi-alignment 
with affine gap cost, new features have been added to the 
software: 

1.	 Protein sequences may be scored with an arbitrary, 
user-defined similarity matrix. The BLOSUM62 
matrix [43, 44] is supplied as default.

2.	 Protein secondary structures are scored using a sim-
ple bonus (here, 800) for matched secondary struc-
ture.

3.	 The dynamic programming matrices are stored as 
sparse matrices to to limit space consumption to 
O(n2�2) (compared to O(n4) space complexity of a 
hypothetical non-sparse implementation).

4.	 In case of ambiguity, simpler shifts are preferred (For 
example the bi-alignment of Fig 1 has co-optima with 
shift events in both sequences or shift events that 
shift longer sub-sequences).

5.	 Improved graphical output of bi-alignments. Fig-
ures 1 and 5 were produced using a Jupyter notebook 
that is included in the software distribution.

6.	 A flexible command line and Python interface is 
included.

As a proof of concept we generated optimal bi-align-
ments of DNA Polymerase  I from Escherichia (length 
928) and Xanthomonas hortorum (length 933), while 
allowing shifts of sequence against structure by up to 
two positions to the left or to the right in either protein 
( � = 2 ). On an Intel(R) Core(TM) i7-10810U CPU, this 
(single-threaded) computation took 37  min. Note that 
a simple banding strategy on insertions and deletions 
could dramatically speed up such computations, typi-
cally without sacrificing alignment quality. The analogous 
computation allowing only one shift positions ( � = 1 ) 
was performed in 10.5 min. Due to filling 9 dynamic pro-
gramming matrices and considering 15 recursion cases 
per entry, the same implementation still takes 26 s, if 
shifts are completely forbidden ( � = 0).

Figure 5 shows the resulting bi-alignment for � = 2 . For 
comparison, the results from � = 1 and � = 0 are given in 
Additional file 1. We chose a rather moderate shift cost 
� = −210 , compared to a bonus of 800 per structure 
match as well as gap extension and gap opening costs of 
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Fig. 5  Bi-alignment of the proteins DNA Polymerase I of Escherichia (WP_016262675.1) and Xanthomonas hortorum (WP_095575020.1). We 
use the same representation as in Fig. 1
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−50 and −200 , respectively. While we suspect that this 
parameter choice is too generous, it serves here to dem-
onstrate that the algorithm readily predicts shifts that 
improve the compromise between primary and second-
ary structure alignment. The estimation of realistic shift 
costs is a non-trivial problem beyond the scope of this 
contribution.

Concluding remarks
We have shown here that bi-alignments with affine gap 
cost models for both constituent alignments and linear 
shift costs can be computed in quartic time by dynamic 
programming. Moreover, limiting the number of shifts to 
a constant reduces the cost to quadratic space and time. 
This makes the detection of locally-confined shifts com-
putationally feasible for sequences of with length of real-
istic proteins or mRNAs. While we have illustrated our 
algorithmic innovations here using amino acid sequences 
and protein secondary structures as an example, the 
algorithm and its implementation is applicable to any 
linear representation of monomer-wise features along a 
biopolymer. In can be used, for instance, directly as an 
extension of the linear-gap-cost bi-alignments of RNAs 
described in [12].

We have focused here on the analysis of optimization 
problem and development of the algorithm. In addition 
to cost models for the constituent alignments U and V , 
a bi-alignment problem also requires the specification of 
the shift costs, i.e. the scoring model for W . Even though 
the scoring systems for U and V are borrowed from 
other studies, the choice of appropriate shift parameters 
remains an open problem for future work. This is a dif-
ficult problem for two reasons: (i) There is, at present, no 
collection of test cases with known shifts of sequences 
versus secondary structure for either proteins or RNAs 
that could be used to optimize the parameters. (ii) A bio-
logically sound survey of proteins should presumably use 
a more elaborate scoring model for secondary structure 
elements that distinguishes amino acid positions depend-
ing on the distance from the element’s ends. It stands to 
reason that the choice of the scoring model for the sec-
ondary structures would substantially influence estimates 
of the shift costs. Here, we are therefore content with a 
solution of algorithmic issues and a reference implemen-
tation. This provides the necessary tools for an in-depth 
empirical study of incongruent evolution of protein sec-
ondary structures in the future.

The formal framework of bi-alignments, Eq.  (3), is 
much more general than the position-wise scoring 
models corresponding to regular multi-tape grammars. 
These were studied here because the corresponding 

optimization problems can be solved exactly by means of 
relatively simple dynamic programming algorithms. In a 
more general setting, one may want to consider V as an 
alignment of contact structures [45] or as an alignment 
of ordered sequences of 3D points, e.g. scored in terms of 
euclidean distances [46, 47]. This is of increasing practi-
cal interest as recent advances in protein folding [48, 49] 
provide access to high quality 3D structure predictions. 
The availability of accurately predicted protein structures 
of course also yields secondary structures, e.g. with the 
help of DSSP [50], which could be used for a systematic 
survey of incongruences in protein secondary struc-
tures. Alternatively, it seems promising to modify exist-
ing solutions to the protein structure alignment problems 
[51] to the corresponding bi-alignment problems. It is 
not obvious whether such a joint sequence and struc-
ture alignment problem implicitly contains a sequence-
to-structure threading problem, which is known to be 
NP-complete [52]. In another forthcoming study, we are 
considering the corresponding problem for RNA second-
ary structures. In this case, the bi-alignment problem is 
amenable to a DP approach related to Sankoff’s algorithm 
for the simultaneous folding and alignment of RNAs [53].

In [12] we further generalized bi-alignments to poly-
alignments comprising k > 2 pairwise alignments U(i) , 
1 ≤ i ≤ k ≥ 2 that are connected by a k-way alignment 
W . Each of the alignments U(i) then describes one par-
ticular aspect of the sequence. In addition to the individ-
ual amino acids and secondary structure elements, these 
may represent comparisons of profiles of physico-chemi-
cal parameters. It is not difficult to see that the grammar 
Eq. (7) generalizes to this case by defining end gap types 

(p1, p2, . . . pk) with pi  =
(

−

−

)

 . The corresponding gram-

mar then needs to consider all 2k gap patterns for the last 
column of the k-way alignment W . Optimal poly-align-
ments comprising k pairwise alignments with affine gap 
costs and additive cost contributions for the shifts 
between each pair of constituent alignments thus can be 
computed exactly in O(n2k) space and time. Complemen-
tarily, one may consider alignments U and V of more 
than two sequences and their corresponding structures. 
The scoring of W then must accommodate more complex 
shift patterns, whose total number again increases expo-
nentially in k. It is unlikely, therefore, that exact dynamic 
programming algorithms for these generalized problems 
will be practical. This begs the question whether poly-
alignment problems can be approximated e.g. by progres-
sive alignment schemes in a manner that is satisfactory 
from an applications point of view.
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The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13015-​022-​00219-7.

Additional file 1.  Bi-alignments with different choices of λ. Bi-alignments 
of the same data as in Fig. 5 using a more restrictive value (λ = 1) and a 
shift-free alignment (λ = 0). The latter corresponds to regular protein align-
ment with scores augmented by (mis)matches of the predicted secondary 
structure.
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