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A B S T R A C T   

Since the previous two years, a new coronavirus (COVID-19) has found a major global problem. The speedy 
pathogen over the globe was followed by a shockingly large number of afflicted people and a gradual increase in 
the number of deaths. If the survival analysis of active individuals can be predicted, it will help to contain the 
epidemic significantly in any area. In medical diagnosis, prognosis and survival analysis, neural networks have 
been found to be as successful as general nonlinear models. In this study, a real application has been developed 
for estimating the COVID-19 mortality rates in Italy by using two different methods, artificial neural network 
modeling and maximum likelihood estimation. The predictions obtained from the multilayer artificial neural 
network model developed with 9 neurons in the hidden layer were compared with the numerical results. The 
maximum deviation calculated for the artificial neural network model was − 0.14% and the R value was 0.99836. 
The study findings confirmed that the two different statistical models that were developed had high reliability.   

Introduction 

The COVID-19 epidemic has captivated the world and global health 
industry in the previous two years. Several researchers have attempted 
to compare epidemic tendencies in different regions. Zhao et al. [1] 
examined the COVID-19 pandemic dynamics of two Asian neighbours, 
Iran and Pakistan, and formed a novel statistical distribution to describe 
data on COVID-19 daily deaths in both countries. Alghamdi et al. [2], 
Anastassopoulou et al. [3], Langemann et al. [4] Giordano et al. [5], 
Naik et al. [6] and Musa et al. [7] have all attempted to predict the 
disease’s dynamics. Further studies, such as Atangana and Araz [8], 
Hassan et al. [9], Shafiq et al. [10], Atangana [11] and Ibrahim et al. 
[12] examined modelling for Covid-19 dissemination. Nesteruk [13] 
compared the trends of the epidemic in Ukraine and adjacent nations. 
There have also been various attempts to model disease dynamics using 
machine learning. Nadler et al. [14] employed a neural susceptible- 
infected-recovered (SIR) model to forecast confirmed infections in 
industrialized and underdeveloped countries, as well as analyze future 

trends. To anticipate the pandemic peak in Japan, Kuniya [15] used the 
SEIR (Susceptible, Exposed, Infected, and Removed) model. For several 
infection rates, they calculated the peak value. By including a neural 
network into the SIR model, Dandekar et al. [16] enhanced the model. 
Data from China, South Korea, the United States, and Italy were exam
ined. For approximately 500 cases, they calculated the quarantine in
tensity and efficient recurrence number. Anderez et al. [17] explored the 
connection between the number of deaths and the number of vulnerable 
patients. The latest COVID-19 pandemic situation both in and out of 
China was anticipated by Huang et al. [18] till March 7, 2020. For 
Jordan, [19] simulated the COVID-19 curve’s path. During the 
epidemic, they examined the impact of non-pharmaceutical measures. 
Another study [20] predicted the novel coronavirus’s propagation and 
developed a more accurate SEIR model. Two additional sections were 
added to replace the removed one: death and cure. 

Assume that every actual phenomenon in the statistical literature is 
governed by a model. We can completely assess our challenge after we 
understand the model. Several models were formed by extending other 
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popular models; using various ways to produce new models from pre
vious ones, read, for instance, [21], Cordeiro et al. [22], Abouammoh 
and Kayid [23], Mansour et al. [24], Tahir et al. [25], Maurya et al. [26] 
and Chen [27]. 

Nevertheless, statisticians provide a significant influence in under
standing and modelling Covid-19 infections, thus they needed to 
develop a statistical model capable of fitting and modelling Covid-19 
infections, regardless it be continuous or discrete random variables. 
Various authors developed statistical model for Covid-19 mortality data, 
for further information, please refer to [28,29], Sindhu et al. [30–32], 
Wang [33], Lalmuanawma et al. [34], Lone et al. [35,36], Shafiq et al. 
[37] and Bullock et al. [38]. 

By providing an ideal statistical model to assess the COVID-19 
mortality rate, Almongy et al. [39] established a new distribution 
called extended odd Weibull Rayleigh (EOWR) to model the COVID-19 
mortality rates in Italy. They put a lot of effort into this paper to make 
acceptable comparison by using different approaches to model mortality 
rates in Italy using EOWR distribution. 

Artificial intelligence algorithms have been used frequently in the 
modeling of complex functions where traditional mathematical methods 
are insufficient. Artificial neural networks (ANNs) are one of the artifi
cial intelligence (AI) methods that have the ability to perform high- 
accuracy simulations with powerful learning algorithms and training 
capabilities. After the COVID-19 epidemic, ANN models were used to 
construct various simulation models. Ayyildiz et al. [40] proposed a 
prediction model to facilitate in the creation of an effective COVID-19 
blood supply chain mechanism. In this study, firstly, the number of in
dividuals recovering from COVID-19 was estimated utilizing the ANN 
model to identify potential defensive plasma donor’s therapy of COVID- 
19. This estimate was applied to clearly demonstrate feasibility of ANNs 
in estimating the daily number of patients recovering from COVID-19. 
Next, ANN-based technique was adapted to data from Italy to validate 
its robustness in other geographic contexts. Ultimately, the proposed 
ANN technique is examined to other conventional models to evaluate 
the prediction accuracy. The ANN model performed well in estimating 
the number of persons recovering from COVID-19, according to the 
findings. Kuvvetli et al. [41] designed an ANN model to estimate the 
upcoming daily number of cases and deaths induced by COVID-19 in a 
generic way to fit the distributions of various geographies. For the study, 
data from the 11th of March 2020 to the 23rd of January 2021 was used 
for various countries. It was stated that an ANN model was presented to 

help the government consider preventative action for clinics and 
healthcare facilities. The findings show an ultimate precision of 86% in 
estimating the mortality rate and 87% in estimating the n frequency 
number of cases. Due to a lack of global studies on COVID-19 spatio- 
temporal modelling, Kianfar et al. [42] used an ANN topology to explore 
the relative significance of putative explanatory variables for COVID-19 
prevalence and death. The relative importance of the explanatory fac
tors was determined employing ten variable significance analytic ap
proaches. The results showed that various factors were shown to be 
among the most persistently influential variables across all time periods. 
COVID-19 mortality was heavily influenced by health-related factors 
including diabetes prevalence and the availability of hospital beds. It is 
noted that the study’s findings can provide general information to public 
health policy makers to observer the spread of the sickness and help 
decision-making. To predict the transmission and death of the COVID-19 
virus in Turkey, Çolak [43] created an ANN model. The ANN model, 
which includes 15 neurons in its hidden layer, was designed utilizing 
COVID-19 data from six various locations. A total of 70% of the dataset 
was used for training, 20% for confirmation, and 10% for testing. The 
COVID-19 virus in Turkey was the quickest developing virus between 
the 20th and 37th days, according to the simulation findings. On the 
twentieth day, a total of 13,845 cases were estimated. On the 20th day, a 
quick rise is expected to commence, followed by a deceleration on the 
43rd day, eventually reaching zero. Alhasan et al. [44] used a predefined 
study procedure using the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses flowchart to propose a systematic review 
approach for COVID-19. 

This study is a continuation of Almongy et al. [39] has specifically 
focused on fully predicting the behavior of the EOWR and optimizing it 
using ANN modeling and maximum Likelihood estimation as well. In the 
literature, there are no studies that optimize and predict reliability an
alyzes of lifetime models using two different methods, ANN modeling 
and maximum Likelihood estimation. While ANN methodologies can be 
applied to a variety of medical areas, and epidemiological model, and 
this article provides a real life implementation to predict the COVID-19 
mortality rates in Ital. This study tries to address an important gap in the 
existing literature. This research is designed with following fashion. 

(i) The major the purpose of this endeavor is to predict and inves
tigate the reliability features of the EOWR model using a set of 

Fig. 1. Impact of parametric vector on PDF of EOWR model.  
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inputs in all ANN models that have never been investigated and 
discussed before.  

(ii) To design the ANN-built models for predicting the attractive 
closed-form features of EOWR model.  

(iii) To study that the ANN models are appropriate for examining and 
predicting the characteristics of real life data using EOWR model.  

(iv) To provide comparative results via two different methods. 

Description of model 

Almongy et al. [39] studied three-parameter model referred to as 
EOWR model. The distribution function or CDF (cumulative distribution 
function) of T indicates the likelihood that the lifespan time is less than 
some value t with shape parameters ξ, γ and scale parameter δ is. 

G
⌣
(t| ξ, γ, δ ) = 1 −

{
1 + ξ

[
eδt2

− 1
]γ }− 1

ξ
(1)  

and PDF (probability density function) of EOWR model is. 

f (t| ξ, γ, δ ) = 2γδteδt2
(

eδt2 − 1
)γ− 1{

1 + ξ
[
eδt2 − 1

]γ }−
ξ+1

ξ
, t, δ, ξ, γ > 0.

(2)  

Shape 

Depending on the parameter values, the EOWR density functions can 
take on a variety of structures (see Fig. 1). The PDF’s possible shapes 
according to the parameter ξ, γ that regulates the distribution’s shape, 
also the parameter δ which determine the scale of the distribution, like, 
uni-modal, decreasing, symmetric, inverted J and asymmetric forms 

Fig. 2. Impact of Parametric vector on FF of EOWR model.  

Fig. 3. Impact of Parametric vector on SF/RF of NLT-W model.  
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(Fig. 1(a-d)). The failure function (FF) function is shown in Fig. 2. This 
shows monotonic increasing behavior under considered parametric 
values. 

Fig. 4 demonstrates shapes of failure/hazard rate function (FRF/ 
HRF) function. The different forms of FRF/ HRF are predicted, which 
include decreasing, Uni-modal, increasing, upside down curve, and 
bathtub shapes which are all desirable qualities in a lifetime model. 
These versatile FRF forms are excellent for including monotonic (MNT) 
and non-monotonic (NMNT) hazard rate trends that are generally 
typical in real applications. 

The EOWR distribution is widely used in domains like biomedical 
investigations, biology, dependability, physical engineering, and sur
vival study because of its versatility and ability to replicate skewed data. 

Survival metrics 

The goal of survival analysis, also known as reliability analysis in 
engineering, is to establish a link between variables and an event’s time. 
The term “survival analysis” comes from clinical research, in which 
forecasting the time to death, or “survival,” is frequently the primary 
goal. One of the most used statistical techniques for assessing data on 
time to an event like device failure, heart attack and death so on is 
survival analysis. Many aspects of legal procedures require such data 
analysis, including apportioning coming medical care bills, assessing the 
number of years of life lost, assessing the product’s dependability, 
examining the safety of pharmaceuticals, gauging the feasibility of 
medical therapies and equipment, calculating actuarial loss, and so on. 

Fig. 4. Impact of parametric vector on HRF of EOWR model.  

Fig. 5. Impact of Parametric vector on CHRF of EOWR model.  
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Survival function 

The survival metric is an equation that can be used to calculate the 
chances of living to a certain age. Despite the fact that much of scientific 
research employs mathematical equations to calculate the survival 
metric, actuaries have typically relied on tables that calculate likelihood 
of surviving a year based on an individual’s age and gender. Plots 
depicting the proportion of the population alive after a set length of time 
are often utilized. Risk factors are attributes that may raise probability of 
death, like blood pressure, lifestyle, smoking status, heredity, and 
environment. However, it is imperative not to overlook elements that 
boost survival chances. Lifestyle, social condition (i.e., married), and 
other factors are among them. Let T be a random variable that indicates 

an individual’s lifespan. The survival function S
⌣
(t| ξ, γ, δ ) of EOWR is. 

R(t| ξ, γ, δ ) =
{

1 + ξ
[
eδt2 − 1

]γ }− 1
ξ
, t, δ, ξ, γ > 0. (3) 

The survivability metric is a continuous monotonic decreasing 
function with lim

t→− ∞
S(t) = 1 and lim

t→∞
S(t) = 0. The survivability of many 

individuals varies with the amount of time they have been in use. Fig. 3 
shows graphs of EOWR model survival function for various parameter 
values. 

Hazard function 

A lifetime distribution’s hazard function is one of its most essential 
features. It shows how the risk of failure shifts or with age, which is 
useful in most applications. Model selection might be facilitated by prior 
knowledge about the hazard’s shape. Furthermore, if factors affecting an 
individual’s lifespan change over time, it’s usually necessary to model 
using the hazard function. 

The term “failure rate function” is routinely employed in the 
research. This concept is used to describe an individual’s failure rate 
over a set period of time and is formally expressed as h(t| ξ, γ, δ ) =

f(t| ξ, γ, δ )/[1 − F(t| ξ, γ, δ ) ]. Hazard functions describe the evolution of 
the failure rate over time. The failure rate function of EOWR model is. 

h(t| ξ, γ, δ ) = 2γδteδt2
(

eδt2
− 1

)γ− 1{
1 + ξ

[
eδt2 − 1

]γ }− 1
(4) 

The higher the failure rate is, the faster the reliability drops with 
time. 

Cumulative hazard rate function 

The cumulative hazard rate H
⌣
(t| ξ, γ, δ ) is important in survival an

alyses. The cumulative hazard rate function (CHRF) or integrated hazard 
function of EOWR model is. 

H
⌣
(t| ξ, γ, δ ) =

∫t

0

h
⌣
(y| ξ, γ, δ )dy = − log

{

S
⌣
(t| ξ, γ, δ )

}
. (5) 

Hence, 

H
⌣
(t| ξ, γ, δ ) =

1
ξ

log
{

1 + ξ
[
eδt2 − 1

]γ }
(6) 

Fig. 5 interprets the influence of the parameters on the EOWR cu
mulative hazard rate function profile. Monotonically increasing 
behavior is observed for chrf function of EOWR model. 

Reversed hazard rate function 

The ratio of the PDF and the related CDF is characterized as the 

reversed hazard rate function (RHRF). The RHRF 
(

h
⌣
(t|ξ, γ, δ ) = f(t| ξ, γ,

δ )[F(t| ξ, γ, δ ) ]− 1
)

have recently grabbed experts’ interest (see, for def

initions, characterizations, and more information, Refs. [45,46]). 

h
⌣
(t|ξ, γ, δ ) =

2γδteδt2
(

eδt2 − 1
)γ− 1{

1 + ξ
[
eδt2 − 1

]γ }−
ξ+1

ξ

1 −
{

1 + ξ[eδt2 − 1]γ
}− 1

ξ
. (7)  

Mills Ratio 

Because of its connection to failure rate, Mills Ratio (MR) is a unique 
technique for describing reliability. 

Fig. 6. Impact of Parametric vector on RHRF of EOWR model.  
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MR(t|ξ, γ, δ ) =
S(t| ξ, γ, δ )
f (t| ξ, γ, δ )

=

{
1 + ξ

[
eδt2 − 1

]γ }

2γδteδt2 (eδt2 − 1)γ− 1. (8) 

The odd function is defined by O
⌣
(t|ξ, γ, δ ) = F(t| ξ, γ, δ )/S(t| ξ, γ, δ ). 

The odd function of T is given by. 

O
⌣
(t|ξ, γ, δ ) =

[

1 −
{

1 + ξ
[
eδt2 − 1

]γ }− 1
ξ
]{

1 + ξ
[
eδt2 − 1

]γ }1
ξ
. (9) 

Depending on the parameter values, the EOWR density functions can 
take on a variety of structures (see The RHRF is shown in Fig. 6. This 
shows monotonic decreasing behavior under considered parametric 
values. Fig. 7 demonstrates shapes of MR. The different forms of MR are 
predicted, which include decreasing, Uni-modal and upside down curve 
which are all desirable qualities in a lifetime model. These versatile MR 
forms are excellent for including monotonic (MNT) and non-monotonic 

(NMNT) hazard rate trends that are generally typical in real applica
tions. Fig. 8 interprets the influence of the parameters on the EOWR odd 
function profile. Monotonically increasing behavior is observed for odd 
function of EOWR model. 

Estimation technique 

In the research, several methods for parameter estimate have been 
developed; however, the maximum likelihood technique is the most 

popular. The maximum likelihood estimator Θ
⌣ 

of Θ is a function of the 
observed data that maximizes L (.) over all possible values of Θ in the 
parameter space Θ. As a result, we only evaluate maximum likelihood 
estimation of EOWR’s unknown parameters from complete samples. Let 
T1,T2, ...,Tn be a random sample and related observed values, t1, t2, ..., tn 
from EOWR model with parameter vector Θ = (ξ, γ, δ). The log- 

Fig. 7. Impact of Parametric vector on MR of EOWR model.  

Fig. 8. Impact of Parametric vector on OF of EOWR model.  
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likelihood (log L (.)) is generally easier to maximize. Hence the log- 
likelihood of the joint probability function of T1,T2, ...,Tn is. 

l(t| ξ, γ, δ ) = log
∏n

i=1
f (ti; ξ, γ, δ). (10)  

l(t|ξ, γ, δ )∝nlogγ + nlogδ + δ
∑n

i=1
t2
i + (γ − 1)

∑n

i=1
log

(
eδt2i − 1

)

−

(
ξ + 1

ξ

)
∑n

i=1
log

{
1 + ξ

[
eδt2i − 1

]γ }
.

(11) 

We are now focused about getting the MLEs. To do so, we then 
maximize Eq. (11) and then compute partial derivatives with regard to 
unspecified parameters Θ = (ξ, γ, δ) and equate to zero, accordingly. The 
score function U() is derivative of log L (.), the score vector components 
are. 

U(ξ, γ, δ) =
[

∂l(t|ξ, γ, δ )
∂ξ

,
∂l(t|ξ, γ, δ )

∂γ
,
∂l(t|ξ, γ, δ )

∂δ

]T

. (12) 

The following are partial derivatives w.r.t. ξ, γ and δ respectively. 

∂l(t|ξ, γ, δ )
∂ξ

=
1
ξ2

∑n

i=1
log

{
1

+ ξ
[
eδt2i − 1

]γ }
−

(
ξ + 1

ξ

)
∑n

i=1

[
eδt2i − 1

]γ

{
1 + ξ

[
eδt2i − 1

]γ }, (13)  

∂l(t|ξ, γ, δ )
∂γ

=
n
γ
+

1
ξ2

∑n

i=1
log

(
eδt2i

− 1
)
− (ξ + 1)

∑n

i=1

[
eδt2i − 1

]γ
log

[
eδt2i − 1

]

{
1 + ξ

[
eδt2i − 1

]γ } , (14)  

∂l(t|ξ,γ,δ)
∂δ

=
n
δ
+
∑n

i=1
t2
i +(γ − 1)

∑n

i=1

t2
i eδt2i

(
eδt2i − 1

)− γ(ξ+1)
∑n

i=1

[
eδt2i − 1

]γ− 1
t2
i eδt2

i

{
1+ξ

[
eδt2i − 1

]γ}.

(15) 

The exact solutions for MLEs and optimal value of ξ,γandδ are not 
obtained by the last three non-linear equations. In these kinds of ML 
estimates, the Newton-Raphson (appropriate) algorithm is helpful. 

ANN model design 

A multilayer perceptron (MLP) ANN model was designed to estimate 
survival metrics. MLP network models are one of the routinely recom
mended neural network models with ideal output behavior thanks to 
their strong structures and learning algorithms [47–49]. In the ANN 
model’s input information layer, 4 different input parameters, namely 
mortality rate, two separate shape parameters and scale parameters, 
were determined and 7 different survival metrics were estimated in the 
output layer. Fig. 9 depicts the fundamental design of the constructed 
MLP network. There is no approach for exhibiting the component of 
computation named neuron in the hidden layer of MLP networks 
[50–52]. For this reason, the method used in the literature was followed 
and the performance of neural network models designed having various 
amounts of neurons was examined. After comparative study, the model 
with 9 neurons in hidden layer was decided. The basic architectural 
structure of designed neural network is presented in Fig. 10. Data 
optimization and suitable grouping set employed in the progression of 
ANN models is one of the hyperparameters which directly affects pre
diction behavior of the model [53]. 70% of the data employed in the 
MLP network designed with a total of 59 datasets are grouped for 
training model, 15% for the confirmation phase and 15% for the testing 
phase [54–56]. In the hidden and output layers of the neural network, 
Tan-Sig and Purelin transfer functions are utilized respectively. The 
transfer functions [57] are: 

f (x) =
1

1 + exp(− x)
(16)  

purelin(x) = x (17) 

Another hyper parameter that affects the training and learning ca
pabilities of neural networks is the training algorithms [58]. Levenberg- 
Marquardt training algorithm, which is one of the algorithms with deep 
learning and training performance, is employed in designed neural 
network model [59]. After the development of the MLP network, the 

Fig. 9. The fundamental design of the established MLP network.  

Fig. 10. The basic architectural structure of the designed neural network.  
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training, learning and prediction accuracies of the network model were 
examined and verified. For this purpose, coefficient of determination 
(R), Mean Squared Error (MSE) and proportional deviation values, 
which are widely used in the research, were used [60]. The mathe
matical expressions utilized in assessing of the efficiency characteristics 
[61] are: 

MSE =
1
N

∑N

i=1

(
Xtarg(i) − Xpred(i)

)2 (18)  

R =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
∑N

i=1

(
Xtarg(i) − Xpred(i)

)2

{
∑N

i=1

(
Xtarg(i)

)2

}− 1
√
√
√
√ (19)  

Deviation (%) = [
Xtarg − Xpred

Xtarg
] × 100 (20)  

Validation of maximum likelihood method and ANN predict 

In this part, we examine the implementation EOWR model for data of 
biological sciences. This data set is studied in detail by Almongy et al. 
[39]. They studied the 59-day mortality rates in Italy, which were 
observed between February 27 and April 27, 2020. 

The results of this study revealed that when the EOWR model was 

compared to competing models such as Rayleigh, Kumaraswamy expo
nentiated Rayleigh, extended odd Weibull exponential, and Marshall- 
Olkin Rayleigh models, the Anderson–Darling, Crammervon Mises, 
and Kolmogorov–Smirnov (KS) statistic and its P-value were used as 
criteria for model selection, the EOWR’s implementation meets all of the 
criteria for a better fit model. The results of their studies regarding the 
MLEs of parameters for the mortality rates data results are γ⌢ = 2.9019,

ξ
⌢

= 15.8688 and δ
⌢

= 0.0551.
We have now achieved numerical results utilizing these results that 

evaluated the effects of maximum likelihood estimates of pertinent pa
rameters on the FF, RF, HRF, RHRF, Mills Ratio, odd function, and CHRF 
for mortality rates data and predict these outcomes using an ANN model. 
These values of the survival metrics of interest were calculated for the 
purpose of determining the accuracy of the results for the γ⌢ = 2.9019,

ξ
⌢

= 15.8688 and δ
⌢

= 0.0551.
The performance of the FF, RF, HRF, RHRF, Mills Ratio, Odd func

tion, and CHRF for mortality rates data derived from numerical esti
mation using the Maximum Likelihood approach and ANN prediction. 
When compared to the ANN model, these have been shown to be in good 
agreement. As a result, it can be concluded that the current study can be 
used reliably to investigate these research issue. 

Ensuring the training and learning reliability of the developed ANN 
model is vital step in verifying the prediction behavior of the model. In 
Fig. 11, the training performance of designed neural network is given. It 
is apparent to notice from the figure that the MSE values, which are high 
in the initial phase, diminish with the advancing epochs. The fact that 
MSE values approach zero represents that the errors acquired from the 
training phase of the neural network are also decreasing. The point 
where the MSE values acquired from the training, validation and testing 
phases intersect with best validation line is the point where the most 
ideal training data has been reached, and training phase of the model 
has been terminated at this stage. The differences between the outputs 
acquired during training phase of ANN model and the target data are 
shown in error histogram given in Fig. 12. When the results obtained 
from the error histograms are scrutinized, the disparities between the 
target values and the simulated values are extremely small, as can be 
observed. It should also be noted that the errors are integrated near the 
zero error line, which is generally drawn in yellow. These findings ob
tained from the error histogram confirm that the training phase of the 
developed neural network was completed with very low errors. Fig. 13 
shows MSE values calculated for each of the 59 data used in training the 
neural network. When MSE values presented separately for each output 
value are examined, it is seen that MSE values are generally very close to 
the zero error line. The closeness of the MSE values to the zero error line 
shows that the calculated MSE values for each data point are very close 
to zero. These low values of MSE values confirm that the developed ANN 
model completed the training and learning stages with very low errors 
and learned the relationship between the data in a very ideal way. In 
order to analyze the prediction accuracy of MLP network model, the 
outputs obtained from the neural network and the target data for each of 
the 7 different output values are shown on the same figure. When the 
graphs presented in Fig. 14 are scrutinized, it will be seen that the 
simulation outputs shown with blue lines are in perfect agreement with 
the target values expressed with red circles. This ideal fit of the simu
lation results with the target data confirms that the developed ANN 
model can predict each output value with very high accuracy. Evalua
tion of the proportional deviation between the outputs obtained from 
the neural network and the target data is important in analyzing the 
prediction errors of the neural network. In Fig. 15, the proportional 
deviation values evaluated for each data are given. Looking at the de
viation results expressed with blue squares, it can be observed that they 
are almost close near to zero error line for each output. When the mean 
deviation line expressed with the red line is examined, it is clearly seen 
that it has a very similar trend with the zero error line. The results 

Fig. 11. The training performance of the designed neural network.  

Fig. 12. Error histogram for the designed ANN model.  
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produced from the deviation values prove that designed MLP network 
can predict with very low errors. In order to study error rates of the 
designed MLP neural networks more comprehensively, for each of the 7 
output values, the deviations between the target data and output values 
at each data point are calculated and shown in Fig. 16. When the lines 
expressing the difference values are evaluated, it is seen that the de
viations calculated for each data are very low. The low differences be
tween the target data and the prediction values show that prediction 
values acquired from the ANN model are the readings are fairly close to 
the target values. This is another indication that neural network is 
developed to have very low prediction errors. Because to understand the 

prediction reliability of the neural network in more detail, target data 
are put on the x-axis of Fig. 17, and simulation outputs are put on the y- 
axis and the data points’ positions are studied. When the data points 
obtained for 7 output values are assessed, it is observed that each point is 
located on the zero error line. The fact that data points are located close 
to zero error line shows that the predicted values and target values are in 
perfect line with each another. The obtained outcomes clearly confirm 
that developed ANN model can predict with very high correctness and 
very low errors. 

Fig. 13. The MSE values calculated for each of the 59 data used in training the neural network.  
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Fig. 14. The responses acquired from the neural network and the target data.  
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Fig. 15. The proportional deviation values calculated for each data.  
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Fig. 16. The deviations between the target data and the output readings at each data point.  
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Fig. 17. Target and prediction values for all outputs.  
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Conclusions 

This article discussed the uses of the maximum likelihood technique 
and ANN modelling. This work investigates the applicability of ANN 
models in a study of COVID-19 mortality rates. The survival metrics of 
the EOWR model have been evaluated using seven different measures. 
The numerical approach of estimate has been used to calculate the 
survival characters to be evaluated. ANNs have been demonstrated to be 
useful in survival analysis as generic non-linear models. The current 
study has been comprised of comparative analysis of maximum likeli
hood method and ANN model of new lifetime EOWR model. As generic 
non-linear models, ANNs have been shown to be beneficial in survival 
analysis. The current research included a comparison of the maximum 
likelihood approach and the ANN model of a new lifespan EOWR model. 
This novel model has been used with survival based analysis of data of 
mortality rate of COVID-19. The training, learning and prediction per
formance of the developed ANN model has been extensively studied and 
evaluated. The maximum deviation between the estimation values ob
tained from the ANN model and the target data was found to be − 0.14%. 
Another performance parameter, the R value, was calculated as 
0.99836. The findings revealed that the ANN model provides high ac
curacy prediction and optimization results. The study also demonstrated 
that ANNs are an excellent engineering tool for predicting survival and 
mortality rates. 
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