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Purpose. Radiotherapy (RT) is one of the major cancer treatments. However, the responses to RT vary among individual patients,
partly due to the differences of the status of gene expression andmutation in tumors of patients. Identification of patients who will
benefit from RT will improve the efficacy of RT. However, only a few clinical biomarkers were currently used to predict RT
response. Our aim is to obtain gene signatures that can be used to predict RTresponse by analyzing the transcriptome differences
between RT responder and nonresponder groups. Materials and Methods. We obtained transcriptome data of 1664 patients
treated with RT from the TCGA database across 15 cancer types. First, the genes with a significant difference between RT
responder (R group) and nonresponder groups (PD group) were identified, and the top 100 genes were used to build the gene
signatures. -en, we developed the predictive model based on binary logistic regression to predict patient response to RT. Results.
We identified a series of differentially expressed genes between the two groups, which are involved in cell proliferation, migration,
invasion, EMT, and DNA damage repair pathway. Among them, MDC1, UCP2, and RBM45 have been demonstrated to be
involved in DNA damage repair and radiosensitivity. Our analysis revealed that the predictive model was highly specific for
distinguishing the R and PD patients in different cancer types with an area under the curve (AUC) ranging from 0.772 to 0.972. It
also provided a more accurate prediction than that from a single-gene signature for the overall survival (OS) of patients.
Conclusion. -e predictive model has a potential clinical application as a biomarker to help physicians create optimal treatment
plans. Furthermore, some of the genes identified here may be directly involved in radioresistance, providing clues for further
studies on the mechanism of radioresistance.

1. Introduction

Cancer is the leading cause of morbidity and mortality in the
world, regardless of the level of human development, which
is accounting for over 9.9 million deaths worldwide annually
[1, 2]. Radiation therapy (RT) has played a major role in
cancer therapeutics, with approximately 50% of cancer
patients using RT [3]. RTmainly induces apoptosis of cancer
cells by causing DNA double-strand breaks (DSBs) [4]. RT is

often curative, particularly in some head and neck cancer,
prostate cancer, and cervical cancer. However, the inherent
radioresistance of tumor cells and the acquired radio-
resistance can reduce the therapeutic effect and ultimately
lead to poor outcomes of patients such as tumor recurrence,
metastasis, and patient death [5]. In the era of precision
medicine, there is a growing need for precision radiotherapy.
-is requires the plans of individualized treatment by
considering patients’ multiple information, including the
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Figure 1: Statistical histogram of cancer types of samples and grouping.
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Figure 2: Heatmap of the top 100 differentially genes for all cancer species analyzed. Both samples and genes were clustered with average
linkage.
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status of gene mutation and profile of gene expression, in
order to achieve the best therapeutic efficacy. Radio-
resistance is partly due to the differences of the status of gene
expression and mutation in tumors of patients. -us,
identification of patients who will benefit from RT through
analyzing genemutation or gene expression will improve the
efficacy of RT.

-e previous studies have demonstrated that the mu-
tations of several genes influenced the radiosensitivity.
Ataxia-telangiectasia mutated (ATM) is a central regulator
of DNA damage response [6]. Mutation and inactivation of
ATM can lead to increased gene instability and impaired
repair of DNA double-strand breaks. Tumors harboring
ATM mutation are extremely sensitive to radiation. Mu-
tations of ATM have been found in several tumor types.
Targeted next-generation sequencing has revealed an 8%
incidence of ATM mutations in prostate cancer [7]. ATM is
also one of the commonly mutated genes in mantle cell
lymphoma (MCL) and lung adenocarcinoma [7, 8]. Recent
experimental evidence demonstrated that the mutational
status of ATM can be used as a biomarker for radiotherapy
[9]. -e correlation between KEAP1/NRF2 mutation status
and radioresistance has been investigated. Keap1-Nrf2 is a
master regulator of cellular response to oxidative and ra-
diation stress [10]. -e KEAP1-NRF2 pathway is involved in
protection of cells from oxidative and toxic stresses. Recent
studies indicated that the activating mutation of the
KEAP1–NRF2 pathway induces radioresistance, and
KEAP1/NRF2 mutation status is a strong predictor of RT
outcome in patients with NSCLC [11].

Although the mutations of these genes could serve as
predictive biomarkers for personalization of therapeutic
strategies, their widespread use would be limited due to the
limited number of ATMor KEAP1-NRF2mutations carriers

among cancer patients. -e previous studies revealed that
the difference in the status of gene expression (including
lncRNA and miRNA) and DNA methylation on tumor
suppressor gene may also contribute to resistance to RT. For
example, radioresistance in NSCLC has been associated with
overexpression of antioxidant enzymes such as Mn-super-
oxide dismutase (Ms-SOD) [12]. Several studies revealed
many miRNAs, including miR-95 [13], miR-221, miR-222
[14], and miR-106b [15], enhanced radioresistance in cancer
cells, while miR-30a [16], miR-16 [17], miR-449 [18], miR-17
[19], and miR-100 [20] enhance the radiosensitivity.-e role
of epigenetic modifications, especially DNA methylation,
has been explored in radioresistance in malignant tumors.
-e changes in radiosensitivity caused by DNA methylation
in the promoter region of genes associated with cell damage
repair, cell proliferation, and cell cycle have been demon-
strated [21]. For example, Liu et al. [22] found the promoter
region of the ERCC1 gene in two radiosensitive cell lines was
hypermethylated, while it was hypomethylated in the other
two radioresistant cell lines.-ese studies provided potential
biomarkers for stratification of RT patients.

In previous studies, cancer cell lines usually were used as
a model for radioresistance study. We speculated that
radioresistance probably involves a complex transcriptional
coexpression network within tumor cells. In tumor tissue,
the factors involved in the response to radiation might be
more complex than in cell lines. -erefore, biomarkers
obtained from the analysis of actual clinical tumor samples
may be closer to clinical application. -e development of
high-throughput sequencing methods for mRNA (RNA-
Seq) has provided a very powerful tool to analyze the
transcriptome of tumors, and a huge amount of data are
available [23]. In this study, we performed a large-scale
analysis of transcriptomic data collected from -e Cancer
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Figure 3: Histogram of pathway enrichment of top 100 differential genes.
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Genome Atlas (TCGA) from those who were treated with
RT across 15 different cancer types. -e gene signatures for
predicting RT response were obtained by analyzing the
transcriptome differences between RT responder and non-
responder groups, and the performance of gene signatures
was estimated in this study.

2. Materials and Methods

2.1. Data Acquisition. -e data for this study were obtained
from the TCGA website (https://portal.gdc.cancer.gov/).
-is study downloaded 15 types of cancer clinical data and
gene expression data. Fifteen types of cancers include
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Figure 4: mRNA levels of differentially expressed genes between response and progressive disease tumors. -e distribution of gene
expression values in R or PD samples was drawn through the boxplot, and the p value is marked (t-test).
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bladder urothelial carcinoma (BLCA), invasive breast cancer
(BRCA), cervical squamous cell carcinoma (CESC),
esophageal cancer (ESCA), head and neck squamous cell
carcinoma (HNSC), low-grade glioma (LGG), lung adeno-
carcinoma (LUAD), lung squamous cell carcinoma (LUSC),
pancreatic cancer (PAAD), prostate adenocarcinoma
(PRAD), sarcoma (SARC), cutaneous melanoma (SKCM),
gastric adenocarcinoma (STAD), thyroid carcinoma
(THCA), and endometrial carcinoma (UCEC). First, this
study extracted the clinical treatment information and
overall survival information of patients. Next, tumor tissue
samples from those patients treated with radiotherapy were
selected according to clinical data, and then the samples were
divided into two categories according to RECIST response
results: response group (including complete response and
partial response) and disease progression group. Finally,
1664 tumor samples were used for analysis in this study,
including 1350 response (R) samples and 314 progressive
disease (PD) samples.

2.2. Expression Analysis and Differential Expression Gene
Identification. Data of the mRNA profile of samples selected
from the TCGA dataset were analyzed using the DESeq2
package [24] in R language. In the gene expression data, the
genes will not be analyzed further if the read counts of these
genes were less than 10 in 80% of samples. In this study,
samples were divided into response (R) and progressive
disease (PD) samples. -e differentially expressed genes

(DEGs) between R and PD samples were identified at the
criteria of p< 0.05 and |logFC|> 1. Wald test was used to
calculate the p value. -e t-test was also used to calculate
p value in this study. -e top 100 genes with the significant
difference were obtained for follow-up analysis. For indi-
vidual tumor types, the tumor type-specific gene signature
was obtained from the top 100 genes according to the p value
of each gene expression difference in individual tumor types.

2.3. Binary Logistic Regression Analysis. Logistic regression
analysis was used to establish a prediction model based on
risk factors and used one or more explanatory variables to
predict a class of response variables [25]. -e standardized
expression value of the top 100 genes was used as the
variable; the R sample was used as the reference group, and
the value was set to 1; the value of progressive sample was set
to 0. -e RT response was predicted by logistic regression
modeling and quantified using a prediction index. -e
prediction index is the regression coefficient obtained by
multiplying the expression level of the selected gene with the
logistic regression model (β). -e prediction index for each
patient is as follows: predictive index�Expr gene1∗ ß
gene1 + Expr gene2∗ ß gene2 + Expr gene3∗ ß gene3
.......Expr geneN∗ ß geneN+ intercept.

If the prediction index is less than the threshold
(e.g.,< 0.5), the sample is more likely to be a progressive
disease, and if the prediction index is more than the
threshold, the sample is more likely to be radiosensitive.
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Figure 5: ROC curve of differentially expressed genes between response tumors and progressive disease tumors.
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2.4. K-Fold Cross Validation. In the logistic regression
model, the data set was divided into a training set and a
validation set. In this study, the tumor expression level data
set was divided into k subsets (k� 10) by using k-fold cross
validation, and the method was repeated ten times. In each
repetition, one subset was randomly selected as the vali-
dation set, and the remaining k− 1 subset was used as the
training set.-e training set data were used for establishing a
logistic regression model, and then validation set data were
brought into the model for evaluation. In each repetition,
each evaluation score was retained, while the model was
discarded. After ten repetitions, the model evaluation score
was used to summarize the ability of logistic regression
model. AUC (area under the curve) was used to evaluate a
degree or measure of separability.

2.5. Visualization of Differential Expression Gene. -e
graphics of differentially expressed genes were drawn on the
basis of R. Survminer package was used to analyze and
visualize the survival curve of differentially expressed genes,
and log-rank test was used to calculate the p value. -e
overall survival curve was divided into high expression
group and low expression group according to the gene
expression level. A box plot was drawn using the ggpubr

package to show the distribution of DEG in R and PD
samples, and the p value was calculated using the t-test. -e
ROC curve of DEGs was drawn by using the pROC software
package, and the best threshold to distinguish between R and
PD samples was marked. Heatmap of DEGs was drawn by
using pheatmap package. In the regression model, the
samples were sorted from small to large according to the
prediction index, and figures of prediction index were drawn
by using the ggplot2 package. -e best threshold point of
AUC was used as a dividing line between R and PD samples.

2.6. Enrichment Pathway Analysis. Enrichment analysis of
the top 100 differential genes was performed by the online
tool Metascape (https://metascape.org/).

3. Result

3.1. Patient Characteristics. In order to describe the tran-
scriptome characteristics of human cancer response to ra-
diotherapy, the transcriptome of 1664 TCGA clinical
samples from 15 cancer types was analyzed, including
bladder urothelial carcinoma (BLCA, n� 29), breast invasive
carcinoma (BRCA, n� 185), cervical squamous cell carci-
noma (CESC, n� 125), esophageal carcinoma (ESCA,
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n� 43), head and neck squamous cell carcinoma (HNSC,
n� 273), low-grade glioma (LGG, n� 208), lung adenocar-
cinoma (LUAD, n� 55), LUSC (n� 46), pancreatic cancer
(PAAD, n� 37), prostate adenocarcinoma (PRAD, n� 70),
sarcoma (SARC, n� 72), cutaneous melanoma (SKCM,
n� 59), gastric adenocarcinoma (STAD, n� 59), thyroid
carcinoma (THCA, n� 44), and endometrial carcinoma
(UCEC, n� 233). -e response group (R) was defined as
patients with a relatively good response after RT (such as
complete or partial response, n� 1350). -e progressive
disease group (PD) was defined as patients with imaging
progressive disease after RT (n� 314). -e cancer types and
groups of samples were shown in Figure 1.

3.2. Identification ofDifferentially ExpressedGenes inRGroup
and PD Group. First, according to the DEGs selection cri-
teria | logfc | > � 1, p< 0.05, the differentially expressed genes
between R and PD were identified in 15 analyzed cancer
types. -en, the t-test is carried out using these differential

genes to identify genes associated with R or PD (cutoff
threshold p< 0.05). -e heatmap was drawn using genes
with the top 100 differential genes (Figure 2). Among the top
100 differential genes, the high expression of 72 genes and
the low expression of 28 genes were highly correlated with
PD samples. -e functional annotation for these genes
(Table S1) provides insight into the underlying biological
mechanism leading to RT resistance. Genes involved in
migration, cell proliferation, cell invasion, tumor metastasis,
and EMT were significantly upregulated in the PD group
(e.g., MDC1, UCP2, RBM45, BCL9L, P2RX6, RER1, EFNA2,
CASK, CERCAM, and PTPRN). Interestingly, MDC1 has
been reported as a key regulator of the DNA damage re-
sponse in higher eukaryotes [26], and UCP2 and RBM45
have been implicated in RT resistance [27, 28]. Among the
top 100 genes, there was a class of genes related to a
ubiquitination proteasome hydrolysis system, such as
RBM45, TRIM9, PTPRN, RNF123, RNF220, and DTX1.
Ubiquitination is an important means of regulating target
genes at the protein level. Several noncoding RNAs were also
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found in this study, including AC104411.1, CTC-325H20.2,
AP001198.1, C15ORF32, C11ORF40, MTND2P31, RNU6-
1276P, AC002347.1, RNU6-178P, HMGN2P32, and EIF3J-
DT.

GO analysis of the top 100 differential genes including
biological process (BP), molecular function (MF), and on-
cogenic signatures (OncSig) analysis was conducted. In
terms of MF, these genes are significantly enriched in
channel activity, ligand-gated cation channel activity, SH3
domain binding, and ubiquitin-like protein transferase ac-
tivity. BP analysis showed that the gap junction was sig-
nificantly enriched. OncSig analysis showed that four genes
(TRIM9, SCG3, SNAP25, and TUBB4A) were related to
overexpression of KRAS. Our analysis revealed that the four
genes tend to be highly expressed in PD samples. -eir roles
in cancer have been studied. For example, TRIM9 [29]and
SCG3 [30] have been reported to promote the proliferation
of cancer cell, and SNAP25 and TUBB4A were identified as
potential prognostic biomarkers for prostate cancer [31] or
lung adenocarcinoma [32] (Figure 3)

3.3. Assessing the Discriminative Power with a Single-Gene
Signature. In this study, we identified the differentially
expressed genes. We visualized the differential genes using
the boxplot to estimate the discriminative power for R and
PD samples with the single-gene signature (Figure 4). -ese
genes show that there is a statistically significant differential

expression between R and PD samples. We further used the
receiver operating characteristic (ROC) curve to evaluate the
specificity of single-gene signature. As shown in Figure 5, the
AUC value of single-gene discrimination model was be-
tween 0.615 and 0.7, and OR1L8 gene has the highest
specificity (AUC� 0.700), implying that the discriminative
power of single-gene signature is not very strong. However,
the expression patterns of many genes may reflect the un-
derlying molecular mechanisms of tumor radioresistance.
For example, the high expression of MDC1 will increase the
ability of DNA damage repair and eventually lead to an
increase in radiotherapy resistance. -erefore, we believe
that the expression patterns of some of these genes still have
clinical predictive power.

3.4. Evaluation of Survival Rate by the Single-Gene Signature.
In order to investigate whether the single-gene signature has
the ability to predict the survival rate of patients, we analyzed
the overall survival data of the patients. -e overall survival
curve is shown in Figure 6. Statistically significant corre-
lations were observed between the survival time and the
expression in many chosen genes. For example, MDC1
(p< 0.0001), EFNA2 (p< 0.0001), BCL9L (p< 0.0001), RER1
(p< 0.0001), and P2RX6 (p< 0.0001) tended to be highly
expressed in PD samples, and the overall survival rate of the
high expression group was significantly lower than that of
the low expression group. Conversely, ESR1 (p< 0.0001),
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Figure 8: Heatmap of differentially expressed genes in different tumor types.
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RNF123 (p< 0.0001), DTX1 (p< 0.0001), and CACNG2
(p< 0.0001) tended to be highly expressed in the R sample,
and the survival rate of the high expression group was

significantly higher than that of the low expression group.
-ese results revealed that R group patients had a better
survival rate than PD patients.
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Figure 9: Boxplot of differentially expressed genes in different tumor types.

Computational Intelligence and Neuroscience 9



3.5. Using Logistic Regression Model to Distinguish R and PD
Samples. As mentioned above, the discriminative power of
single-gene signature is not very strong. -erefore, we de-
veloped a binary logistic regression model to classify the
samples. -e prediction index was used to quantify each
sample. We used 90% of the data set as the training set and
10% as the validation set. -e ROC curve was drawn
according to the prediction index of the regression model.
Results are shown in Figure 7. -e AUC value reached 0.822
and 0.787 in the training set and validation set at the best
threshold score of 0.758, respectively (Figure 7(a)). Com-
pared with the best AUC value of single-gene signature
(OR1L8, AUC� 0.700), the logistic regression model has
better performance for distinguishing R and PD samples.
-e performance of classifying patients by prediction index
is shown by visualizing predicted and actual classifications
(Figure 7(b)). -e result showed that PD samples were
enriched on the left side of the prediction index curve and R
samples are enriched on the right side of the prediction

index curve, implying that most of the samples can be
classified correctly. We also assessed whether the prediction
index can reach a better prediction for the survival rate of
patients. As shown in Figure 7(c), the patients with a high
prediction index had better survival than those patients with
a low prediction index (p< 0.0001). -is also implied that
the RT responding patients had a better survival rate.

3.6. Performance of Single-Gene Signature in Different Tumor
Types. In this study, the gene signature was obtained from
1664 TCGA clinical tumor samples. -e tumors derive from
15 cancer types. However, given that there may be some
degree of variation in expression patterns between different
tumor types, it is necessary to select the optimal subset for
each tumor type from the 100-gene signature. -erefore, we
analyzed the discrimination ability of each gene for R and
PD samples in each cancer type. Genes with a p value of less
than 0.05 (p value less than 0.1 in few of tumor types) were
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Figure 10: ROC map of differentially expressed genes in different tumor types.
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chosen to build tumor-specific gene subsets (Table S2).
Cluster analysis revealed two distinct expression patterns of
gene subsets in several cancer types, such as BLCA, PAAD,
LUSC, and LGG (Figure 8). Many genes exhibited good
ability to distinguish between R and PD groups (Figure 9).
For example, RNF123 (p � 0.00024, in CESC), PHACTR3
(p � 7.7 E – 06, in HNSC), OR5T1 (p � 0.00039, in HNSC),
P2RX6 (p � 2.2E – 05, in LGG), and SCG3 (p � 7.5E – 05, in

LGG) were expressed higher in R samples, while
MTND2P31 (p � 0.0053, in CESC), OR5T1 (p � 0.00061, in
PRAD), EOLA1 (p � 0.0068, in PRAD), BCHE (p � 0.0033,
in SARC), MTND2P31 (p � 9.3E− 05, in STAD), and DGKG
(p � 0.0013, in STAD) were expressed higher in PD samples.
Analysis by ROC curve also revealed several genes had high
specificity of distinction (Figure 10), such as ACER1
(AUC� 0.867, in BLCA), RBM45 (AUC� 0.790, in BRCA),

p = 0.046
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Figure 11: Overall survival curve of differentially expressed genes in different tumor types.
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RNU6−178P (AUC� 0.756, in ESCA), and DOCK9−AS1
(AUC� 0.760, in SARC). Several genes also exhibited the
predictive power for survival of patients (Figure 11). -e
higher expression of P2RX6 (p � 0.039, in BRCA), RNF123
(p � 0.03, in CESC), CASK (p< 0.0001, in LGG), DGKG
(p � 3E-04, in STAD), RBM45 (p � 0.043, in LUSC), and
KCNH8 (p � 0.00012, in UCEC) was associated with worse
survival, while the higher expression of PDGFD (p � 0.046,
in BLCA), SCG3 (p � 0.036, in LGG) and FSD1 (p � 0.0025,
in LGG) was associated with better survival.

3.7. Using Logistic Regression Model to Distinguish R and PD
Samples in Different Tumor Types. Analysis of ROC curve
revealed that the higher specificity was achieved in each
cancer type by using the prediction index (Figure 12). For
example, the AUC value of BLCA obtained by the prediction
index was higher than from ACER1 (0.972 vs 0.867). Our
results showed that most of the samples can be correctly
classified in each cancer type (Figure 13). We also investi-
gated whether the predictive model could provide better
performance for the prediction of survival rate for each
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Figure 12: Logistic regression prediction ROC diagram of different tumor types.
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cancer type. As shown in Figure 14, patients with a high
prediction index were associated with better survival.

4. Discussion

In this study, we identified the differentially expressed genes
between RT responder and nonresponder. Among them,
MDC1 [26], UCP2 [27], and RBM45 [28] have been dem-
onstrated to be involved in the DNA damage pathway and
radiosensitivity. MDC1 [26] was identified as a component
of DNA repair complex, controlling the damage-induced
cell cycle arrest checkpoint. Cells lackingMDC1 are sensitive
to ionizing radiation. Our study showed that MDC1 was
expressed higher in the PD group, which might lead to

stronger repairability in PD patients. UCP2 [27] is a mi-
tochondrial transporter, which can produce proton leakage
on the inner membrane of mitochondria, thus uncoupling
oxidative phosphorylation and ATP synthesis. -e previous
studies demonstrated that irradiation treatment can increase
the expression level of UCP2, and silencing of UCP2 in-
creased the radiosensitivity of HeLa cells and led to increased
apoptosis, cell cycle arrest in G2/M, and mitochondrial ROS.
Our results showed that the expression of UCP2 was sig-
nificantly upregulated in the PD group, supporting that
UCP2 has a role in radioresistance. RBM45 [28], also named
DRB1, was recently found to be a FUS-interacting RBP. -e
previous study demonstrated that silencing of RBM45 led to
a decreased efficiency in DSBs repair. Consistent with the
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Figure 13: Logistic regression predictors of different tumor types.
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results of the previous study, our results showed that RBM45
was expressed higher in the PD group.

Besides these three genes, several genes involving mi-
gration, cell proliferation, cell invasion, and EMT were
identified in our study. For example, BCL9L [33], P2RX6
[34], RER1 [35], EFNA2 [36], CASK [37], CERCAM [38],
and PTPRN [39] were demonstrated to promote EMT,
metastasis, and invasion of tumor cells. Six genes involving
ubiquitination proteasome process, including RBM45,
TRIM9, PTPRN, RNF123, RNF220, and DTX1, were also
identified. Ubiquitination plays an important role in innate
and postnatal regulation of cell differentiation and cell
survival. Previous studies have reported that ubiquitination-
related proteins were involved in the regulation of DNA
damage pathways and influenced the radiosensitivity of
tumor cells [40, 41]. For example, Santra et al. found that E3
ubiquitin ligase FBXO31 mediates the degradation of cyclin
D1 through ubiquitination and proteasome-mediated pro-
tein degradation pathway [40]. Knockdown of FBXO31
could prevent cells from undergoing efficient G1 arrest
following c-irradiation and greatly increased the sensitivity
to DNA damage [41]. -e differentially expressed genes also
include several noncoding RNAs in our study. UFC1 is a
long-chain noncoding RNA and was expressed higher in the
PD group. Previous study showed that UFC1 was elevated
and predicted poor prognosis of gastric cancer (GC), and
knockdown of UFC1 inhibited the proliferation, migration,
and invasion of GC cells [42].

Our study identified a series of genes that were differ-
entially expressed in RT responders and nonresponders,
providing useful clues for studying the molecular

mechanisms of tumor radioresistance.-ose genes that were
overexpressed in RT nonresponders could be potential
targets for radiosensitization. -e prediction models and
gene signatures identified here also have the potential
clinical application. A targeted mRNA sequencing tech-
nology based on the gene signatures identified in this study
could be developed and used to detect mRNA levels in
clinical samples. By analyzing the gene signatures, patients
who will benefit from RT are identified, which could reduce
the number of patients receiving unnecessary treatment and
greatly reduce the cost of oncology treatment.
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