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Reactive oxygen species (ROS) plays an essential role in the development of cancer. Here, we chose ROS-related miRNAs for
consensus clustering analysis and ROS score construction. We find that ROS is extremely associated with prognosis, tumor
immune microenvironment (TIME), gene mutations, N6-methyladenosine (m6A) methylation, and chemotherapy sensitivity
in hepatocellular carcinoma (HCC). Mechanistically, ROS may affect the prognosis of HCC patients in numerous ways.
Moreover, miR-210-3p and miR-106a-5p significantly increased the ROS level and stagnated cell cycle at G2/M in HCC; the
results were more obvious in cells after ionizing radiation (IR). Finally, the two miRNAs suppressed cell proliferation,
migration, and invasion and promoted apoptosis in huh7 and smmc7721 cells. It indicated that ROS might affect the prognosis
of HCC patients through immune response and increase the sensitivity of HCC patients to radiotherapy and chemotherapy.

1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most fre-
quently diagnosed cancer and the third leading cause of can-
cer death in the world in 2020 [1, 2]. The incidence of HCC
is rising faster than other tumors, and the incidence of HCC
in China is more than 10 times that of Europe and the
United States, and its mortality rate ranks fifth among can-
cers [3]. There are many factors contributing to the high
incidence of liver cancer, such as alcohol abuse, smoking,
metabolic syndrome, and hepatitis virus. Especially in
China, hepatitis B virus is the major risk factor for HCC
[4]. Due to the insidiousness of the onset of HCC, patients
are often diagnosed at an advanced stage. Although immu-
notherapy has developed rapidly in the past few years,
improving the survival of patients with HCC, only a few
patients with HCC could benefit from this treatment [5].
Therefore, novel molecular markers with more clinical util-

ity are needed to improve diagnostic and prognostic predic-
tion and guide the clinical treatment of HCC patients.

miRNAs are a group of approximately 21–25 nucleotides
length and small endogenous single-stranded noncoding
RNAs, which can negatively regulate gene expression via
binding to the 3′-untranslated region of messenger RNA
(mRNA) [6]. miRNA profiling can be used to predict cancer
diagnosis and prognosis, for the pattern of miRNA expres-
sion can be correlated with cancer type, stage, and other
clinical variables [7].

Recently, reactive oxygen species (ROS) have been
shown to promote metastasis in a variety of cancers and play
important roles in tissue homeostasis, cellular signaling, dif-
ferentiation, and survival [8–13]. ROS are pleiotropic mole-
cules or free radicals produced by numerous complex
mechanisms. Its excessive production, failure of clearance
mechanisms, and even insufficient antioxidants may lead
to the accumulation of ROS, ultimately leading to oxidative
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stress [14]. Moreover, increasing evidence has suggested that
numerous miRNAs have been linked to processes associated
with ROS. Wang and colleagues find that significant
increases in miR-34a-5p and miR-495-3p are consistent with
ROS levels, but mir-34a-5p inhibition is reduced only in
intestinal injury [15]. In addition, the research indicates that
miR-15b inhibits ROS production by regulating SIRT4 [16].
However, studies of ROS-related miRNAs mainly focus on
cardiac diseases, and the mechanism of hypoxia-induced
miRNAs in tumors remains not clear.

In this research, we screened 36 ROS-related miRNAs
from three reviews [14, 17, 18]. Then, 9 ROS-related miR-
NAs were selected and used for subsequent analysis.
Through comprehensive analysis, ROS score was signifi-
cantly corrected with prognosis, tumor immune microenvi-
ronment (TIME), gene mutations, m6A methylation, and
chemotherapy sensitivity in HCC. In the experiments,
miR-210-3p and miR-106a-5p extremely increased the
ROS level and stagnated cell cycle at G2/M. Collectively,
we confirmed the strong correlation between ROS and
HCC through bioinformatics and experimental methods.

2. Materials and Methods

2.1. Dataset Source. The clinical data of HCC patients were
downloaded from the University of California Santa Cruz
(UCSC, https://xenabrowser.net/datapages/). The research
included 374 tumor and 50 normal samples. The miRNA
expression data of HCC patients were downloaded from
the The Cancer Genome Atlas (TCGA) data portal by the
“TCGAbiolinks” R package [19]. Furthermore, the mutation
data of the TCGA-LIHC was downloaded from the websites
(https://portal.gdc.cancer.gov/).

2.2. Identification of Consensus Clustering and Prognosis for
ROS-Related miRNAs. According to the expression levels of
9 ROS-related miRNAs, HCC patients were clustered into
different clusters by using R package “ConsensusCluster-
Plus” (http://www.bioconductor.org/).

2.3. The Calculation of ROS Scores. 340 HCC patients were
randomly divided into a validation dataset (170 patients)
and training dataset (170 patients). Then, LASSO regression
and univariate Cox analysis were used to identify five risk
signatures, including miR-210-3p, miR-20b-5p, miR-144-
5p, miR-106a-5p, and let-7a-5p. Then, the ROS scores were
calculated by the formula: Ros Score =∑n

i=1Coefficientð
miRNAiÞ × ExpressionðmiRNAiÞ.
2.4. Cell Culture. Human HCC huh7 and smmc7721 cell
lines were purchased from Procell Life Science & Technol-
ogy Co., Ltd. (Wuhan, China). The cells were cultured in
high-glucose Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum (FBS; Thermo
Fisher Scientific, Inc., Waltham, MA, USA). All cells were
cultured in a humidified incubator with 5% CO2 at 37°C.

2.5. Cell Transfection. The minics of miR-210-3p (5′CUGU
GCGUGUGACAGCGGCUGA), miR-106a-5p (5′AAAA
GUGCUUACAGUGCAGGUAG), and NC (5′UUCUCC

GAACGUGUCACGUTT) were purchased from Suzhou
GenePharma Co., Ltd. The Huh7 and Smmc7721 cells were
seeded at 8 × 103 cells/well in 96-well plates or 7:5 × 104
cells/well in 6-well plates for 24h, and then, the cells were
transfected with MiR-210-3p/miR-106a-5p minics and NC
minics for 48 h according to the Lipofectamine 3000 kit
instructions.

2.6. Ionizing Radiation. The huh7 and smmc7721 cells were
divided into normal and ionizing radiation groups. The ion-
izing radiation groups were exposed to 6Gy X-ray.

2.7. qRT-PCR. qRT-PCR was performed with Hairpin-it™
Real-Time PCR miRNAs (GenePharma). The specific
primers, miR-106a-5p and miR-210-3p, were purchased
from Suzhou GenePharma Co., Ltd. Thermal cycles were
as follows: 95°C for 3min and 40 cycles of 95°C for 15 s,
62°C for 40 s. Melting curve analysis was used to confirm
the specificity of amplification. The relative expressions of
miRNAs to SNORD44 were determined using the compara-
tive 2-ΔΔCt method.

2.8. Measurement of ROS Production. Flow cytometry was
used to assay ROS levels in Huh7 and Smmc7721 using a
ROS assay kit (Shanghai Biyuntian Biological Co., Ltd.).
Briefly, the cells were seeded in 6-well plates at a density of
2:5 × 105 cells/well for 24h. Next, the cells were incubated
with 10μM of 2′,7′-dichlorodihydrofluorescein diacetate
(DCFH-DA) for 15min at 37°C in a dark room. A Beckman
cytoFLEX flow cytometer was used to detect ROS levels. The
data was analyzed by using the CytExpert 2.3 software.

2.9. Cell Cycle Analysis. Cell cycle analysis was conducted
with a cell cycle staining kit (MultiScience Biotech Co.,
Ltd.). The transfected cells were seeded in 6-well plates at a
density of 2:5 × 105 cells/well for 72 h. Then, the cells were
collected and incubated with 1mL of DNA Staining solution
and 10μM of permeabilization solution for 30min in a dark
room. A Beckman cytoFLEX flow cytometer was used to
detect the cell cycle. The data was analyzed by using the
CytExpert 2.3 software (Beckman Coulter, CA, USA).

2.10. Transwell Assay. Transwell assay was conducted to
analyze the migrated and invasive abilities of cells. For cell
migration, transfected SMMC-7721 and Huh7 cells
(1 × 104 cells/well) in 100μL serum-free DMEM medium
were placed in the upper chambers (Costar, Corning, NY,
USA), and 500μL DMEM medium containing 10% FBS
was added to the lower chambers. Cells remaining on the
top surface were removed with a cotton swab after the incu-
bation for 24 h, while migrated cells through the membranes
were fixed with 4% paraformaldehyde and stained with 0.1%
crystal violet (Sigma, St. Louis, MO, USA). The stained cells
were counted from five random fields under a microscope.
For cell invasion, the experiment was performed following
the same approach using transwell chambers pretreated with
Matrigel (BD, San Jose, CA, USA).

2.11. Cell Proliferation Test. The transfected cells (7 × 103)
were seeded in 96-well plates; cell proliferation was assessed
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by the CCK8 reagent (Sigma-Aldrich) which was read from
culture media at 450nm (ELx800 Microplate Reader, BioTek
Instruments, Winooski, VT, USA) at 0, 24, 48, and 72h. Cell
proliferation was expressed relative to the corresponding
control.

2.12. Wound Healing Assay. The transfected cells were
seeded in 6-well plates at a density of 2:5 × 105 cells/well
for 72 h, then draw a wound between the dense cells with a
200μL gun head. The gap closure was monitored under
the microscope and a digital camera (CK30-SLP; Olympus,
Tokyo, Japan) at 0, 24, and 48 h. Images were analyzed using
the ImageJ version 1.52a software (National Institute of
Health, Bethesda, MD, USA).

2.13. Cell Apoptosis Analysis. Apoptosis was assayed using
the annexin V–phycoerythrin (PE)/7-aminoactinomycin D
(7-AAD) or annexin V–adenomatous polyposis coli
(APC)/7-AAD kit (Becton-Dickinson). The transfected cells
were rinsed with ice-cold PBS and resuspended in 100μL of
1×binding buffer. Then, the liquid was stained with 5μL 7-
AAD and 5μL annexin V–APC/PE and incubated for
15min in the dark. Then, another 400μL binding buffer
was added into the mixture before cell apoptosis was
detected on a Beckman cytoFLEX flow cytometer. The anal-
ysis of the above data was carried out using the CytExpert
2.3 software (Beckman Coulter, CA, USA).

2.14. Statistical Analysis. Statistical tests were carried out
using GraphPad Prism 8.0 (GraphPad Software Inc., San
Diego, CA, USA) and R version 4.0.2 (version 4.0.2,
https://www.r-project.org/). “TCGAbiolinks,” “Consensu-
sClusterPlus,” “survival,” “glmnet,” “estimate,” “pRRophe-
tic,” “maftools,” “edgeR,” and “timeROC” R packages
were used.

3. Results

3.1. HBV-Related ROS miRNAs Were Significantly
Associated with Clinical Features in HCC. Experimental evi-
dences indicate that HBV X protein could cause DNA muta-
tion through ROS generation [20]. To optimize the 36 ROS-
related miRNAs, the difference of miRNAs between HBV
patients and normal patients was further analyzed. As
showed in Figure 1(a), 9 ROS miRNAs were significantly
correlated with HBV, including miR-210-3p, miR-20b-5p,
miR-144-5p, miR-106a-5p, miR-486-5p, miR-28-5p, miR-
139a-5p, miR-145-5p, and let-7a-5p. Furthermore, accord-
ing to the similarity between the expression level of m6A
regulators and the proportion of fuzzy clustering measures,
it is determined that k = 2 has the best clustering stability
from k = 2 to 9, (Figure 1(b) and S1). HCC patients were
clustered into cluster1 (n = 142) and cluster2 (n = 197),
based on the expression levels of 9 HBV-related ROS miR-
NAs. Interestedly, we found that cluster1 was significantly
associated with high grade, dead patients, and bad prognosis
(Figures 1(e) and 1(g)). Also, HCC patients were clustered
into cluster1 (n = 97), cluster2 (n = 138), and cluster3
(n = 104), according to the expression levels of 27 none
HBV-related ROS miRNAs (Figure 1(b) and S2). However,
the grade, status, and prognosis of HCC patients were not
significantly different in cluster1/2/3 (Figures 1(c), 1(d),
and 1(f)). The results showed that 9 HBV-related ROS miR-
NAs were more significant than to none HBV-related ROS
miRNAs in HCC.

3.2. Correction between ROS Score and Clinical Features in
HCC. Firstly, 340 HCC patients were randomly divided into
a validation dataset (170 patients) and training dataset (170
patients). Then, 5 candidate HBV-related ROS miRNAs
were selected to calculate ROS score by using LASSO regres-
sion in the training dataset (Figure 2(a)). According to the
expression of the candidate HBV-related ROS miRNAs,
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the formula went as follows: Ros Score = ð2:3606 × let − 7a
− 5p ExpressionÞ + ð0:9226 ×miR − 106a − 5p ExpressionÞ
+ ð−0:3014 ×miR − 144 − 5p ExpressionÞ + ð−0:6911 × miR
− 20b − 5p ExpressionÞ + ð1:4139 ×miR − 210 − 3p
ExpressionÞ. Furthermore, patients were divided into high-
and low-risk groups, based on the median ROS score. The
ROS score of high-risk group was higher, the low-risk group
was instead. Interestedly, we found that high-risk groups
were significantly associated with bad prognosis
(Figure 2(b)). Moreover, the time-dependent receiver oper-

ating characteristic (ROC) curve was constructed. The
time-dependent ROC curve (AUC) of five candidate HBV-
related ROS miRNAs was 0.76, 0.81, and 0.78 at one year,
three years, and five years (Figure 2(b)). With regard to the
validation dataset, the AUC of the miRNAs was 0.58, 0.72,
and 0.68 at one year, three years, and five years (Figure 2(c)).
The results indicated that ROS score had a strong ability to
predict prognosis in HCC.

Furthermore, clinical features between high- and low-
risk groups were explored. We find that cluster1, high grade,
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dead status, female, and worse prognosis were significantly
riched in high-risk group (Figure 3(a)). And the higher the
ROS score, the more significant the correlation. Additionally,
there were significant differences in tumor recurrence and
lymph node metastasis between high- and low-risk groups
(Figure 3(b)). The results showed that ROS score could effec-
tively predict the clinical features of HCC patients.

Additionally, GSEA was further analyzed in HCC. The
pathways “oxidative_phosphorylation,” “proteasome,”
“ribosome,” “polymerase,” and “spliceosome” were rich in
cluster1 (Figure 4(a)). There were similar results in the

high-risk group (Figure 4(b)). These pathways were directly
or indirectly associated with cancers.

3.3. ROS Was Associated with TIME in HCC. Experimental
evidences showed that the production of ROS in macrophages
could affect both natural and acquired immunity and immune
responses [21]. Therefore, the correction between ROS score
and TIME in HCC was analyzed. We found that half of the
immune cells (11/22) were significantly different in cluster1/
2, especially “T cell CD4 memory resting,” “T cell follicular
helper,” “Macrophages M0,” and “Macrophages M2”
(Figure 5(a)). Moreover, 9 of the 22 immune cells were
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extremely different in the high- and low-risk groups, especially
“T cells follicular helper,” “MacrophagesM0,” “Mast cells rest-
ing,” and “Eosinophils” (Figure 5(b)). We further analyzed the
effects of ROS on immune checkpoint inhibitors; six well-
known immune markers were selected for analysis. We found
that almost all markers (5/6) were distinct in cluster1/2 and
high/low-risk groups (Figures 5(c) and 5(d)). All expression
levels of six immune markers were higher in cluster1 and
high-risk group, which were associated with worse prognosis
in HCC patients. Furthermore, we analyzed the correction
between immune cells/markers and ROS score. As showed
in Figure 5(e), about one-third of the cells were significantly
associated with ROS score. It indicated that ROS could affect
the immune response and immunotherapy in HCC.

3.4. The Correction between ROS and Gene Muntion in HCC.
ROS contributes to the accumulation of DNA mutations
[22]. We further analyzed the effects of ROS on gene muta-
tions in HCC patients. We found that the mutation rate of
HCC patients was higher in cluster1 and high-risk group

than in cluster2 and low-risk group (Figures 6(a)–6(d)).
The highest mutation rate was TP53 in cluster1 and high-
risk group (Figures 6(a) and 6(b)). Moreover, the mutated
genes were more in cluster1 and high-risk group than in
cluster2 and low-risk group (Figures 6(e) and 6(f)). As
showed in Figure 5(g), ROS score of HCC patients with
TP53+ was higher than patients with TP53- (Figure 6(g)).
The results indicated that ROS could effect gene mutations,
especially TP53 in HCC patients.

3.5. ROS Regulate m6A Methylation Level of HCC. Alteration
of N6-methyladenosine (m6A) levels participates in cancer
pathogenesis and progression [23–25]. We further analyzed
the correction between ROS and m6A levels. The results
showed that most of the m6A RNA methylation regulators
(14/19) were more highly expressed in the high-ROS score
group than in the low-ROS score group (Figure 6(h)). In
addition, ROS-related miRNAs were significantly correlated
with m6A RNA methylation regulators (Figure 6(i)). We
further found that ROS score was positively correlated with
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the m6A score (Figure 6(j)). The results indicated that ROS
could promote m6A methylation level of HCC.

3.6. ROS Induced Chemotherapy Sensitivity in HCC. Many
chemotherapeutic agents act on cancer through ROS pro-
duction [26–28]. We further explored whether ROS could
also affect the chemotherapy sensitivity in HCC. The correc-
tion between chemotherapy drug and ROS score was ana-
lyzed by using R package “pRRophetic”. As showed in
Figure 7, “Sorafenib,” “Gefitinib,” “Rapamycin,” and “Lapa-
tinib” were more highly expressed in high-ROS score
patients. It showed that ROS could increase the chemother-
apy sensitivity in HCC.

3.7. miR-210-3p and miR-106a-5p Were Associated with ROS
and Cell Cycle.We further analyzed the overall survival (OS)
of the five ROS-related miRNAs in HCC, only the OS of

miR-210-3p and miR-106a-5p have statistical significance
(Figure S3). We further find that miR-210-3p and miR-
106a-5p increased ROS levels in huh7 and smcc7721 cells
(Figure 8(a)). It is reported that ROS plays a role in
radiation-induced cancer cell death [29]. Furthermore, we
examined the effect of miRNAs on HCC cell cycle.
Interestedly, miR-106a-5p and miR-210-3p stagnated the
cell cycle at G2/M phases; the results were more obvious in
cells after IR (Figures 8(b)–8(e)). It indicated that ROS-
related miRNAs might improve the radiotherapy sensitivity
of HCC. Additionally, GO enrichment analysis was
performed for the common target genes of miR-210-3p
and miR-106a-5p; the results were similar to GSEA
analysis (Figure 4(c)).

3.8. miR-210-3p and miR-106a-5p Suppressed HCC Cells.We
further analyzed the biological function of miR-210-3p and

(e)

Figure 5: The correction between TIME and ROS score. (a, b) The expression of 22 immune cells in cluster1/2 and high/low-risk groups. (c,
d) The expression of six immune markers in cluster1/2 and high/low-risk groups. (e) The correlation between TIME and ROS score. ∗p
< 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001.
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Figure 6: The correction between gene mutation, m6A methylation, and ROS score. (a) Gene altered of cluster1. (b) Gene altered of the
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miR-106a-5p in HCC. We found that miR-210-3p and miR-
106a-5p could suppress huh7 and smmc7721 cell prolifera-
tion (Figure 9(a)). Furthermore, two miRNAs inhibited cell
migration and invasion (Figures 9(b)–9(e)). Additionally,
two miRNAs promoted apoptosis of huh7 and smmc721
cells.

4. Discussion

The mechanisms of ROS in cancer are complex for numer-
ous reasons [29]. First, ROS play a key role in the develop-
ment of cancer [30–33]. Second, ROS induced G2/M arrest
leads to affect the cell-cycle progression [34–37]. Third,
chronic inflammation is regulated by ROS, which promote
tumorigenesis [38, 39]. Forth, the expression levels of vari-
ous tumor-related genes are regulated by ROS, including
p53 [40–42]. Fifth, ROS are associated with cell apoptosis
[43, 44]. Sixth, lots of chemotherapeutic and radiotherapeu-
tic agents kill cancer cells by increasing ROS levels [45, 46].
Although ROS act on tumors through numerous pathways,
the specific mechanisms remain unclear. ROS have a dual
effect on tumors [29]. For example, ROS can promote tumor
cell proliferation, such as bladder, liver, breast, lung, and
ovarian cancer cells [47–50]. However, ROS also inhibits
tumor cell proliferation, including liver, prostate, and breast
cancer cells [51–53]. According to these previous reports,
the role of ROS in tumors is contradictory and complex.
Therefore, the mechanism of ROS in tumors needs to be fur-
ther investigated. Currently, the effect of ROS in HCC needs
further analyzed.

In this research, 36 ROS-related miRNAs were screened
and divided into HBV-related ROS miRNAs (9) and none
HBV-related ROS miRNAs (27). Then, HCC patients were
divided into cluster1 and cluster2, based on the expression

of the HBV-related ROS miRNAs. We found that cluster1
was significantly associated with high grade, dead patients,
and bad prognosis. In addition, HCC patients were divided
into cluster1, cluster2, and cluster3. However, the clinical
features were not significantly different in cluster1/2/3. It
indicated that HBV-related ROS miRNAs were more rele-
vant to HCC patients. HBV can cause DNA mutation
through ROS generation and is an important pathogenic fac-
tor of HCC [4, 20]. The miRNAs associated with both ROS
and HBV are more relevant to HCC patients than mRNAs
that are purely related to ROS. It was consistent with the
above results. Additionally, HBV-related ROS miRNAs
included miR-210-3p, miR-20b-5p, miR-144-5p, miR-
106a-5p, miR-486-5p, miR-28-5p, miR-139a-5p, miR-145-
5p, and let-7a-5p. Most of HBV-related miRNAs (6/9) were
consistent with the previous reports [54–59].

Furthermore, 340 HCC patients were randomly divided
into a validation dataset (170 patients) and training dataset
(170 patients). Five candidate HBV-related ROS miRNAs
were selected to calculate ROS score by using LASSO regres-
sion in the training dataset, including let-7a-5p, miR-106a-
5p, miR-144-5p, miR-20b-5p, and miR-210-3p. ROS score
was calculated by using the formula. Patients were divided
into high-risk (high ROS score) and low-risk groups (low
ROS score), based on the median ROS score. The high-risk
groups were significantly associated with bad prognosis in
the training dataset. Also, the similar result occurred in the
validation dataset. Moreover, the AUC of five candidate
HBV-related ROS miRNAs was 0.76, 0.81, and 0.78 at one
year, three years, and five years in training dataset. In regard
to the validation dataset, the AUC of the miRNAs was 0.58,
0.72, and 0.68 at one year, three years, and five years. AUC
> 0:5 indicated prognostic ability, while AUC > 0:7 indi-
cated a strong prognostic ability. The results showed that
five candidate HBV-related ROS miRNAs had a strong
prognostic ability.

Furthermore, we analyzed the relationship of TIME,
mutation, m6A methylation, chemotherapy sensitivity, and
ROS score in HCC. Interestedly, half of the 22 immune cells
were significantly different in cluster1/2, especially “T cells
CD4 memory resting,” “T cells follicular helper,” “Macro-
phages M0,” and “Macrophages M2” (p < 0:001). Moreover,
ROS score was significantly corrected with immune check-
point inhibitors; the expressions of CTLA-4, PD-1, LAG-3,
TIM-3, and TIGIT were higher in the high-risk group. The
results have also been verified in cluster1. Additionally,
“StromalScore,” “CTLA-4,” “LAG-3,” “Macrophages M0,”
“Macrophages M1,” “Macrophages M2,” “Neutrophils,”
“Mast cells resting,” and “T cells regulatory (Tregs)” were
extremely associated with ROS score (p < 0:05). These
results showed that ROS could affect the immune response
and immunotherapy in HCC. The increase of NADPH
oxidase-derived extracellular and intracellular ROS is a
major cause of oxidative stress, which contributes to func-
tional changes in immune cells [60]. Interestedly, macro-
phages M0/1/2 were all associated with ROS score, and it
indicated that ROS regulated tumor cells through macro-
phages. Moreover, ROS production in macrophages affects
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natural and acquired immunity and the immune response
[21]. Thus, previous reports confirm our results.

In regard to gene mutation, the mutation rates of HCC
patients with high ROS score were higher, and TP53 muta-
tion rates were the highest among all genes in HCC patients
with high ROS score. The results have also been verified in
cluster1. Due to the lack of antioxidant damage repair sys-
tem, mitochondria DNA (mtDNA) is more susceptible to
ROS damage and mutation [61]. In turn, mtDNA mutations
can increase ROS production, further aggravating the muta-
tion effect and accumulating mutations, thus increasing the
risk of tumor mutation [62]. What is more, ROS promote
HCC cell survival by regulating TP53 degradation [63].
These researches confirm our results.

Regarding to m6A methylation, Zhuang and his col-
leagues find that m6A demethylase FTO could induce oxida-
tive stress and ROS production and show impaired tumor
growth [64]. Also, Yu and his colleagues find that ROS sig-
nificantly induces global mRNA N6-methyladenosine
(m6A) levels by modulating ALKBH5, to induce various bio-
logical processes quickly and effectively including DNA
damage repair [65]. In this research, it is the first time to
report that ROS is significantly associated with m6A in
HCC. However, there are few reports about ROS and m6A;
the mechanism of ROS and m6A needs further exploration.

Many chemotherapeutic agents kill tumor cells through
ROS production [29]. For example, procarbazine is one of
the first drugs to be developed based on its ROS-producing
properties [45]. Until to now, the drug is approved to treat
Hodgkin’s lymphoma, non-Hodgkin’s lymphoma, and pri-
mary brain tumors [66, 67]. In our research, we analyzed
the difference of chemotherapy drugs between high-ROS
score patients and low-ROS score patients. The results
showed that “Sorafenib,” “Gefitinib,” “Rapamycin,” and
“Lapatinib” were more highly expressed in high-ROS score
patients, which indicated that ROS could increase the che-
motherapy sensitivity in HCC.

Finally, our experiments showed that ROS-related miR-
NAs miR-210-3p and miR-106a-5p could increase the ROS
level of HCC. Moreover, these two miRNAs could stagnate
HCC cell cycle at G2/M; the results were more obvious in
cells after IR. The relative radiosensitivity of cells is deter-
mined by the cell cycle stage. Cells are most sensitive to radi-
ation in G2/M phase, less sensitive in G1 phase, and least
sensitive in late S phase [68].

Therefore, ROS-related miRNAs miR-210-3p and miR-
106a-5p can increase the radiotherapy sensitivity of HCC
cells. ROS play a role in radiation-induced cancer cell death,
including lung cancer, prostate cancer, and breast cancer
[69–71]. Our experimental results provide data support for
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the role of ROS in HCC radiotherapy. Moreover, the exper-
imental results showed that miR-210-3p and miR-106a-5p
suppressed HCC cell proliferation, migration, and invasion.
And two miRNAs promoted apoptosis of huh7 and
smmc721 cells. It indicated that miR-210-3p and miR-
106a-5p played a key role in the biological function of HCC.

In summary, we systematically assessed the relationship
of clinical futures, TIME, muntion, m6A methylation, che-
motherapy sensitivity, and ROS score in HCC. HCC patients
were divided into cluster1/2 and high/low-risk groups, based
on the expression of ROS-related miRNAs and ROS score.
High ROS score was significantly with worse prognosis,
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immune cells, and immune checkpoint inhibitors. High ROS
score also regulated gene mutation, m6A methylation level,
and increased chemotherapy sensitivity in HCC. These
results were confirmed in both cluster1/2 and high/low-risk
groups. Moreover, ROS-related miRNAs miR-210-3p and
miR-106a-5p significantly increased the ROS level and
radiotherapy sensitivity and played a key role in the biolog-
ical function of HCC. Therefore, ROS might improve the
radiotherapy sensitivity of HCC patients, which could pro-
vide a new treatment strategy for HCC patients.
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